

#### Welcome to E-XFL.COM

#### **Understanding Embedded - Microprocessors**

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

### Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

#### Details

EXF

| Product Status                  | Active                                                    |
|---------------------------------|-----------------------------------------------------------|
| Core Processor                  | ARM926EJ-S                                                |
| Number of Cores/Bus Width       | 1 Core, 32-Bit                                            |
| Speed                           | 266MHz                                                    |
| Co-Processors/DSP               | -                                                         |
| RAM Controllers                 | SDRAM                                                     |
| Graphics Acceleration           | No                                                        |
| Display & Interface Controllers | Keypad, LCD                                               |
| Ethernet                        |                                                           |
| SATA                            | -                                                         |
| USB                             | USB 1.x (2)                                               |
| Voltage - I/O                   | 1.8V, 3V                                                  |
| Operating Temperature           | 0°C ~ 70°C (TA)                                           |
| Security Features               | -                                                         |
| Package / Case                  | 289-LFBGA                                                 |
| Supplier Device Package         | 289-PBGA (17x17)                                          |
| Purchase URL                    | https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9328mx21vm |
|                                 |                                                           |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| Part Order Number | Package Size | Package Type | Operating Range |  |
|-------------------|--------------|--------------|-----------------|--|
| Introduction      | U            | 0 71         |                 |  |

| MC9328MX21DVK! | 289-lead MAPBGA<br>0.65mm, 14mm x 14mm | Lead-free | -30°C–70°C |
|----------------|----------------------------------------|-----------|------------|
| MC9328MX21DVM! | 289-lead MAPBGA<br>0.8mm, 17mm x 17mm  | Lead-free | -30°C–70°C |
| MC9328MX21CVK! | 289-lead MAPBGA<br>0.65mm, 14mm x 14mm | Lead-free | -40°C–85°C |
| MC9328MX21CVM! | 289-lead MAPBGA<br>0.8mm, 17mm x 17mm  | Lead-free | -40°C–85°C |
| MC9328MX21CJM  | 289-lead MAPBGA<br>0.8mm, 17mm x 17mm  | Lead-free | -40°C–85°C |

### 1.5 Features

The i.MX21 boasts a robust array of features that can support a wide variety of applications. Below is a brief description of i.MX21 features.

- ARM926EJ-S Core Complex
- enhanced Multimedia Accelerator (eMMA)
- Display and Video Modules
  - LCD Controller (LCDC)
  - Smart LCD Controller (SLCDC)
  - CMOS Sensor Interface (CSI)
- Bus Master Interface (BMI)
- Wireless Connectivity
  - Fast Infra-Red Interface (FIRI)
- Wired Connectivity
  - USB On-The-Go (USBOTG) Controller
  - Four Universal Asynchronous Receiver/Transmitters (UARTx)
  - Three Configurable Serial Peripheral Interfaces (CSPIx) for High Speed Data Transfer
  - Inter-IC  $(I^2C)$  Bus Module
  - Two Synchronous Serial Interfaces (SSI) with Inter-IC Sound  $(I^2S)$
  - Digital Audio Mux
  - One-Wire Controller
  - Keypad Interface
- Memory Expansion and I/O Card Support
  - Two Multimedia Card and Secure Digital (MMC/SD) Host Controller Modules

| Signal Name     | Function/Notes                                                                                                                                                                                                                                                                                                                                                               |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EB1             | Byte Strobe—Active low external enable byte signal that controls D [23:16], shared with SDRAM DQM1.                                                                                                                                                                                                                                                                          |
| EB2             | Byte Strobe—Active low external enable byte signal that controls D [15:8], shared with SDRAM DQM2 and PCMCIA PC_REG.                                                                                                                                                                                                                                                         |
| EB3             | LSB Byte Strobe—Active low external enable byte signal that controls D [7:0], shared with SDRAM DQM3 and PCMCIA PC_IORD.                                                                                                                                                                                                                                                     |
| OE              | Memory Output Enable—Active low output enables external data bus, shared with PCMCIA PC_IOWR.                                                                                                                                                                                                                                                                                |
| <u>CS</u> [5:0] | Chip Select—The chip select signals $\overline{CS}$ [3:2] are multiplexed with $\overline{CSD}$ [1:0] and are selected by the Function Multiplexing Control Register (FMCR) in the System Control chapter. By default $\overline{CSD}$ [1:0] is selected. DTACK is multiplexed with $\overline{CS4}$ .                                                                       |
| ECB             | Active low input signal sent by flash device to the EIM whenever the flash device must terminate an on-<br>going burst sequence and initiate a new (long first access) burst sequence.                                                                                                                                                                                       |
| LBA             | Active low signal sent by flash device causing the external burst device to latch the starting burst address.                                                                                                                                                                                                                                                                |
| BCLK            | Clock signal sent to external synchronous memories (such as burst flash) during burst mode.                                                                                                                                                                                                                                                                                  |
| RW              | RW signal—Indicates whether external access is a read (high) or write (low) cycle. This signal is also shared with the PCMCIA PC_WE.                                                                                                                                                                                                                                         |
| DTACK           | DTACK signal—External input data acknowledge signal, multiplexed with CS4.                                                                                                                                                                                                                                                                                                   |
|                 | Bootstrap                                                                                                                                                                                                                                                                                                                                                                    |
| BOOT [3:0]      | System Boot Mode Select—The operational system boot mode upon system reset is determined by the settings of these pins. To hardwire these inputs low, terminate with a 1 K $\Omega$ resister to ground. For a logic high, terminate with a 1 K $\Omega$ resistor to VDDA. Do not change the state of these inputs after power-up. Boot 3 should always be tied to logic low. |
|                 | SDRAM Controller                                                                                                                                                                                                                                                                                                                                                             |
| SDBA [4:0]      | SDRAM non-interleave mode bank address signals. These signals are multiplexed with address signals A[20:16].                                                                                                                                                                                                                                                                 |
| SDIBA [3:0]     | SDRAM interleave addressing mode bank address signals. These signals are multiplexed with address signals A[24:21].                                                                                                                                                                                                                                                          |
| MA [11:0]       | SDRAM address signals. MA[9:0] are multiplexed with address signals A[10:1].                                                                                                                                                                                                                                                                                                 |
| DQM [3:0]       | SDRAM data qualifier mask multiplexed with EB[3:0]. DQM3 corresponds to D[31:24], DQM2 corresponds to D[23:16], DQM1 corresponds to D[15:8], and DQM0 corresponds to D[7:0].                                                                                                                                                                                                 |
| CSD0            | SDRAM Chip Select signal. This signal is multiplexed with the $\overline{CS2}$ signal. This signal is selectable by programming the Function Multiplexing Control Register in the System Control chapter.                                                                                                                                                                    |
| CSD1            | SDRAM Chip Select signal. This signal is multiplexed with the $\overline{CS3}$ signal. This signal is selectable by programming the Function Multiplexing Control Register in the System Control chapter.                                                                                                                                                                    |
| RAS             | SDRAM Row Address Select signal.                                                                                                                                                                                                                                                                                                                                             |
| CAS             | SDRAM Column Address Select signal                                                                                                                                                                                                                                                                                                                                           |
| SDWE            | SDRAM Write Enable signal                                                                                                                                                                                                                                                                                                                                                    |
| SDCKE0          | SDRAM Clock Enable 0                                                                                                                                                                                                                                                                                                                                                         |
| SDCKE1          | SDRAM Clock Enable 1                                                                                                                                                                                                                                                                                                                                                         |
| SDCLK           | SDRAM Clock                                                                                                                                                                                                                                                                                                                                                                  |

### Table 2. i.MX21 Signal Descriptions (Continued)

| Signal Name               | Function/Notes                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                           | General Purpose Timers                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| TIN                       | Timer Input Capture or Timer Input Clock—The signal on this input is applied to all 3 timers simultaneously. This signal is muxed with the Walk-up Guard Mode WKGD signal in the PLL, Clock, and Reset Controller module.                                                                |  |  |  |  |  |
| TOUT1<br>(or simply TOUT) | Timer Output signal from General Purpose Timer1 (GPT1). This signal is multiplexed with SYS_CLK1 and SYS_CLK2 signal of SSI1 and SSI2. The pin name of this signal is simply TOUT.                                                                                                       |  |  |  |  |  |
| TOUT2                     | Timer Output signal from General Purpose Timer1 (GPT2). This signal is multiplexed with PWMO.                                                                                                                                                                                            |  |  |  |  |  |
| TOUT3                     | Timer Output signal from General Purpose Timer1 (GPT3). This signal is multiplexed with PWMO.                                                                                                                                                                                            |  |  |  |  |  |
|                           | USB On-The-Go                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| USB_BYP                   | USB Bypass input active low signal. This signal can only be used for USB function, not for GPIO.                                                                                                                                                                                         |  |  |  |  |  |
| USB_PWR                   | USB Power output signal                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| USB_OC                    | USB Over current input signal. This signal can only be used for USB function, not for GPIO.                                                                                                                                                                                              |  |  |  |  |  |
| USBG_RXDP                 | USB OTG Receive Data Plus input signal. This signal is muxed with SLCDC1_DAT15.                                                                                                                                                                                                          |  |  |  |  |  |
| USBG_RXDM                 | USB OTG Receive Data Minus input signal. This signal is muxed with SLCDC1_DAT14.                                                                                                                                                                                                         |  |  |  |  |  |
| USBG_TXDP                 | USB OTG Transmit Data Plus output signal. This signal is muxed with SLCDC1_DAT13.                                                                                                                                                                                                        |  |  |  |  |  |
| USBG_TXDM                 | USB OTG Transmit Data Minus output signal. This signal is muxed with SLCDC1_DAT12.                                                                                                                                                                                                       |  |  |  |  |  |
| USBG_RXDAT                | USB OTG Transceiver differential data receive signal. Multiplexed with CSPI1_SS2.                                                                                                                                                                                                        |  |  |  |  |  |
| USBG_OE                   | USB OTG Output Enable signal. This signal is muxed with SLCDC1_DAT11.                                                                                                                                                                                                                    |  |  |  |  |  |
| USBG_ON                   | USB OTG Transceiver ON output signal. This signal is muxed with SLCDC1_DAT9.                                                                                                                                                                                                             |  |  |  |  |  |
| USBG_FS                   | USB OTG Full Speed output signal. This signal is multiplexed with external transceiver USBG_TXR_INT signal of USB OTG. This signal is muxed with SLCDC1_DAT10.                                                                                                                           |  |  |  |  |  |
| USBH1_RXDP                | USB Host1 Receive Data Plus input signal. This signal is multiplexed with UART4_RXD and SLCDC1_DAT6. It also provides an alternative multiplex for UART4_RTS, where this signal is selectable by programming the Function Multiplexing Control Register in the System Control chapter.   |  |  |  |  |  |
| USBH1_RXDM                | USB Host1 Receive Data Minus input signal. This signal is muxed with SLCDC1_DAT5. It also provides an alternative multiplex for UART4_CTS.                                                                                                                                               |  |  |  |  |  |
| USBH1_TXDP                | USB Host1 Transmit Data Plus output signal. This signal is multiplexed with UART4_CTS and SLCDC1_DAT4. It also provides an alternative multiplex for UART4_RXD, where this signal is selectable by programming the Function Multiplexing Control Register in the System Control chapter. |  |  |  |  |  |
| USBH1_TXDM                | USB Host1 Transmit Data Minus output signal. Multiplexed with UART4_TXD and SLCDC1_DAT3.                                                                                                                                                                                                 |  |  |  |  |  |
| USBH1_RXDAT               | USB Host1 Transceiver differential data receive signal. Multiplexed with USBH1_FS.                                                                                                                                                                                                       |  |  |  |  |  |
| USBH1_OE                  | USB Host1 Output Enable signal. This signal is muxed with SLCDC1_DAT2.                                                                                                                                                                                                                   |  |  |  |  |  |
| USBH1_FS                  | USB Host1 Full Speed output signal. Multiplexed with UART4_RTS and SLCDC1_DAT1 and USBH1_RXDAT.                                                                                                                                                                                          |  |  |  |  |  |
| USBH_ON                   | USB Host transceiver ON output signal. This signal is muxed with SLCDC1_DAT0.                                                                                                                                                                                                            |  |  |  |  |  |
| USBH2_RXDP                | USB Host2 Receive Data Plus input signal. This signal is multiplexed with CSPI2_SS[1] of CSPI2.                                                                                                                                                                                          |  |  |  |  |  |
| USBH2_RXDM                | USB Host2 Receive Data Minus input signal. This signal is multiplexed with CSPI2_SS[2] of CSPI2.                                                                                                                                                                                         |  |  |  |  |  |
| USBH2_TXDP                | USB Host2 Transmit Data Plus output signal. This signal is multiplexed with CSPI2_MOSI of CSPI2.                                                                                                                                                                                         |  |  |  |  |  |
| USBH2_TXDM                | USB Host2 Transmit Data Minus output signal. This signal is multiplexed with CSPI2_MISO of CSPI2.                                                                                                                                                                                        |  |  |  |  |  |
| USBH2_OE                  | USB Host2 Output Enable signal. This signal is multiplexed with CSPI2_SCLK of CSPI2.                                                                                                                                                                                                     |  |  |  |  |  |

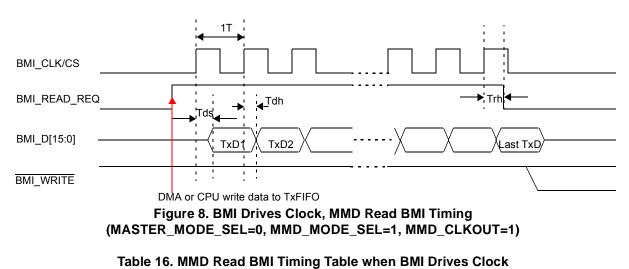
### **Signal Descriptions**

| Table 2. i.MX21 Si | ignal Descriptions | (Continued) |
|--------------------|--------------------|-------------|
|--------------------|--------------------|-------------|

| Signal Name | Function/Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SYS_CLK1    | SSI1 master clock. Multiplexed with TOUT.                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SSI2_CLK    | Serial clock signal which is output in master or input in slave.                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SSI2_TXD    | Transmit serial data signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SSI2_RXD    | Receive serial data                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SSI2_FS     | Frame Sync signal which is output in master and input in slave.                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SYS_CLK2    | SSI2 master clock. Multiplexed with TOUT.                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SSI3_CLK    | Serial clock signal which is output in master or input in slave. Multiplexed with SLCDC2_CLK                                                                                                                                                                                                                                                                                                                                                                                                |
| SSI3_TXD    | Transmit serial data signal which is multiplexed with SLCDC2_CS                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SSI3_RXD    | Receive serial data which is multiplexed with SLCDC2_RS                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SSI3_FS     | Frame Sync signal which is output in master and input in slave. Multiplexed with SLCDC2_D0.                                                                                                                                                                                                                                                                                                                                                                                                 |
| SAP_CLK     | Serial clock signal which is output in master or input in slave.                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SAP_TXD     | Transmit serial data                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SAP_RXD     | Receive serial data                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SAP_FS      | Frame Sync signal which is output in master and input in slave.                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             | l <sup>2</sup> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| I2C_CLK     | I <sup>2</sup> C Clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| I2C_DATA    | I <sup>2</sup> C Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             | 1-Wire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| OWIRE       | 1-Wire input and output signal. This signal is multiplexed with JTAG RTCK.                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             | PWM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PWMO        | PWM Output. This signal is multiplexed with PC_SPKOUT of PCMCIA, as well as TOUT2 and TOUT3 of the General Purpose Timer module.                                                                                                                                                                                                                                                                                                                                                            |
|             | General Purpose Input/Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PF[16]      | Dedicated GPIO. When unused, program this signal as an input with the on-chip pull-up resistor enabled.                                                                                                                                                                                                                                                                                                                                                                                     |
|             | Keypad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| KP_COL[7:0] | Keypad Column selection signals. KP_COL[7:6] are multiplexed with UART2_CTS and UART2_TXD respectively. Alternatively, KP_COL6 is also available on the internal factory test signal TEST_WB2. The Function Multiplexing Control Register in the System Control chapter must be used in conjunction with programming the GPIO multiplexing (to select the alternate signal multiplexing) to choose which signal KP_COL6 is available.                                                       |
| KP_ROW[7:0] | Keypad Row selection signals. KP_ROW[7:6] are multiplexed with UART2_RTS and UART2_RXD signals respectively. Alternatively, KP_ROW7 and KP_ROW6 are available on the internal factory test signals TEST_WB0 and TEST_WB1 respectively. The Function Multiplexing Control Register in the System Control chapter must be used in conjunction with programming the GPIO multiplexing (to select the alternate signal multiplexing) to choose which signals KP_ROW6 and KP_ROW7 are available. |
|             | Noisy Supply Pins                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| NVDD        | Noisy Supply for the I/O pins. There are six (6) I/O voltages, NVDD1 through NVDD6.                                                                                                                                                                                                                                                                                                                                                                                                         |
| NVSS        | Noisy Ground for the I/O pins                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

For more information about I/O pads grouping per VDD, please refer to Table 4.

| Rating                            |                 | Symbol            | Minimum | Maximum | Unit |
|-----------------------------------|-----------------|-------------------|---------|---------|------|
| Operating temperature range       | Part No. Suffix |                   |         |         | 1    |
|                                   | VK, VM          | T <sub>A</sub>    | 0       | 70      | °C   |
|                                   | DVK, DVM        | T <sub>A</sub>    | -30     | 70      | °C   |
|                                   | CVK, CVM        | T <sub>A</sub>    | - 40    | 85      | °C   |
| I/O supply voltage NVDD 1-6       | +               | NVDD <sub>x</sub> | 1.70    | 3.30    | V    |
| Internal supply voltage (Core = 2 | 266 MHz)        | QVDD, QVDDx       | 1.45    | 1.65    | V    |
| Analog supply voltage             |                 | VDDA              | 1.70    | 3.30    | V    |


### Table 4. 266 MHz Recommended Operating Range

## 3.3 DC Electrical Characteristics

Table 5 contains the DC characteristics of the i.MX21.

**Table 5. DC Characteristics** 

| Parameter                                | Symbol            | Test Conditions                                                                                 | Min                          | Typ <sup>1</sup> | Max     | Units |
|------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------|------------------------------|------------------|---------|-------|
| High-level input voltage                 | V <sub>IH</sub>   | _                                                                                               | 0.7NVDD                      | _                | NVDD    |       |
| Low-level Input voltage                  | V <sub>IL</sub>   | _                                                                                               | 0                            | _                | 0.3NVDD |       |
| High-level output voltage                | V <sub>OH</sub>   | I <sub>OH</sub> = spec'ed Drive                                                                 | 0.8NVDD                      | _                | _       | V     |
| Low-level output voltage                 | V <sub>OL</sub>   | I <sub>OL</sub> = spec'ed Drive                                                                 | -                            | _                | 0.2NVDD | V     |
| High-level output current, slow I/O      | I <sub>OH_S</sub> | V <sub>out</sub> =0.8NVDD<br>DSCR <sup>2</sup> = 000<br>DSCR = 001<br>DSCR = 011<br>DSCR = 111  | -2<br>-4<br>-8<br>-12        | _                | -       | mA    |
| High-level output current, fast I/O      | I <sub>OH_F</sub> | V <sub>out</sub> =0.8NVDD1<br>DSCR <sup>2</sup> = 000<br>DSCR = 001<br>DSCR = 011<br>DSCR = 111 | -3.5<br>-4.5<br>-5.5<br>-6.5 | _                | -       | mA    |
| Low-level output current, slow I/O       | I <sub>OL_S</sub> | V <sub>out</sub> =0.2NVDD<br>DSCR <sup>2</sup> = 000<br>DSCR = 001<br>DSCR = 011<br>DSCR = 111  | 2<br>4<br>8<br>12            |                  | -       | mA    |
| Low-level output current, fast I/O       | I <sub>OL_F</sub> | V <sub>out</sub> =0.2NVDD1<br>DSCR <sup>2</sup> = 000<br>DSCR = 001<br>DSCR = 011<br>DSCR = 111 | 3.5<br>4.5<br>5.5<br>6.5     | _                | -       | mA    |
| Schmitt trigger Positive-input threshold | V <sub>T</sub> +  | _                                                                                               | -                            | _                | 2.15    | V     |
| Schmitt trigger Negative-input threshold | V <sub>T</sub> -  |                                                                                                 | 0.75                         | _                | -       | V     |
| Hysteresis                               | V <sub>HYS</sub>  | _                                                                                               | -                            | 0.3              | _       | V     |



| Item | Symbol | Minimum | Typical | Maximum | Uni |
|------|--------|---------|---------|---------|-----|
|      |        |         |         |         |     |

| item                     | Symbol | Minimum | турісаі | WIAXIIIIUIII | Unit |
|--------------------------|--------|---------|---------|--------------|------|
| Transfer data setup time | Tds    | 2       | -       | 8            | ns   |
| Transfer data hold time  | Tdh    | 2       | -       | 8            | ns   |
| Read_req hold time       | Trh    | 2       | _       | 18           | ns   |

**Note:** In this mode, the max frequency of the BMI\_CLK/CS can be up to 36MHz (double as max data pad speed). **Note:** The BMI\_CLK/CS can only be divided by 2,4,8,16 from HCLK.

### 3.8.1.4 MMD Write BMI Timing

Figure 9 shows the MMD write BMI timing when BMI drives BMI\_CLK/CS.

When the **BMI\_WRITE** signal is asserted, the BMI can write a 1 to READ bit of control register to issue a WRITE cycle. This bit is cleared automatically when the WRITE operation is completed. In a WRITE burst the MMD will write COUNT+1 data to the BMI. The user can issue another WRITE operation if the MMD still has data to write after the first operation completed.

The BMI can latch the data either at falling edge or the next rising edge of the BMI\_CLK/CS according to the DATA\_LATCH bit. When the DATA\_LATCH bit is set, the BMI latch data at the next rising edge and latch the last data using the internal clock.

BMI\_WRITE signal can not be negated when the WRITE operation is proceeding.



A 1 is written to READ bit of control register

Figure 9. BMI Drives Clock, MMD Write BMI Timing (MASTER\_MODE\_SEL=0, MMD\_MODE\_SEL=1, MMD\_CLKOUT=1)

| Item                     | Symbol | Minimum | Typical | Maximum | Unit |
|--------------------------|--------|---------|---------|---------|------|
| Receive data setup time1 | Tds1   | 14      | -       | -       | ns   |
| Receive data setup time2 | Tds2   | 14      | _       | -       | ns   |

**Note:** The BMI\_CLK/CS can only be up to 30MHz if BMI latch data at the falling edge and can be up to 36MHz (double as max data pad speed) if BMI latch data at the next rising edge.

Note: Tds1 is the receive data setup time when BMI latch data at the falling edge.

Note: Tds2 is the receive data setup time when BMI latch data at the next rising edge.

## 3.8.2 Connecting BMI to External Bus Master Devices

In this mode both MASTER\_SEL bit and MMD\_MODE\_SEL bit are cleared and the MMD\_CLKOUT bit is no useful. BMI\_WRITE and BMI\_CLK/CS are input signals driving by the external bus master. The Output signal BMI\_READ\_REQ can be used as an interrupt signal to inform external bus master that data is ready in the BMI TxFIFO for a read access. The external bus master can write data to the BMI RxFIFO anytime since the CPU or DMA can move data out from RxFIFO much faster than the BMI interface. An overflow interrupt is generated if RxFIFO overflow is detected. Once this happens, the new coming data is ignored.

Each falling edge of BMI\_CLK/CS will determine if the current cycle is read or write cycle. It drives data and enables data out if BMI\_WRITE is logic high. The D\_EN signal remains active only while BMI\_CLK/CS is logic low and BMI\_WRITE is logic high.

Each rising edge of BMI\_CLK/CS will determine if data should be latched to RxFIFO from the data bus.

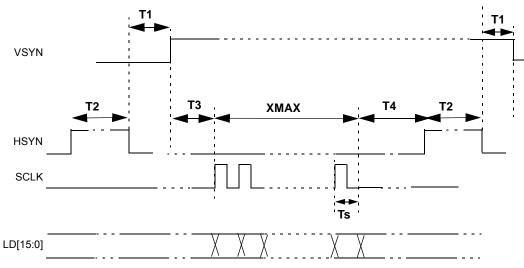
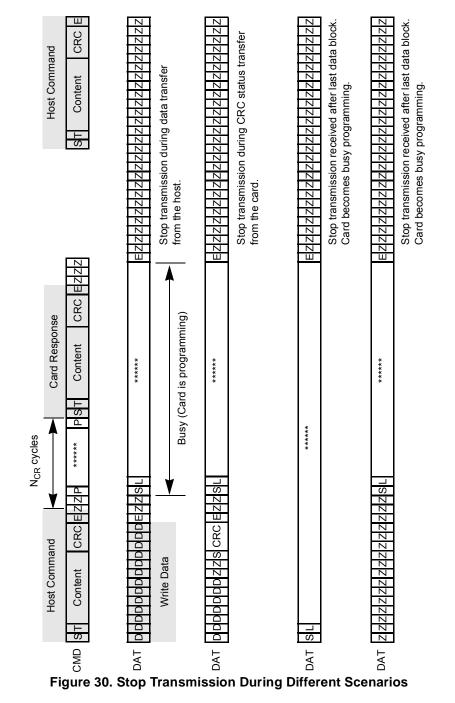



Figure 22. Non-TFT Mode Panel Timing

### Table 23. Non-TFT Mode Panel Timing

| Symbol | Description        | Minimum | Value             | Unit |
|--------|--------------------|---------|-------------------|------|
| T1     | HSYN to VSYN delay | 2       | HWAIT2+2          | Tpix |
| T2     | HSYN pulse width   | 1       | HWIDTH+1          | Tpix |
| Т3     | VSYN to SCLK       | -       | $0 \le T3 \le Ts$ | -    |
| T4     | SCLK to HSYN       | 1       | HWAIT1+1          | Тріх |


Note:

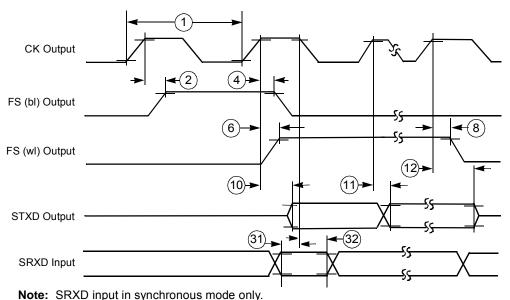
• Ts is the SCLK period while Tpix is the pixel clock period.

• VSYN, HSYN and SCLK can be programmed as active high or active low. In Figure 67, all these 3 signals are active high.

• When it is in CSTN mode or monochrome mode with bus width = 1, T3 = Tpix = Ts.

• When it is in monochrome mode with bus width = 2, 4, and 8, T3 = 1, 2 and 4 Tpix respectively.




| Table 28. | Timing Val | ues for Fi | aure 26 th | rough Figure 30 |
|-----------|------------|------------|------------|-----------------|
|           | Think the  |            |            |                 |

| Parameter                                                                         | Symbol | Minimum | Maximum     | Unit         |  |
|-----------------------------------------------------------------------------------|--------|---------|-------------|--------------|--|
| MMC/SD bus clock, CLK (All values are referred to minimum (VIH) and maximum (VIL) |        |         |             |              |  |
| Command response cycle                                                            | NCR    | 2       | 64          | Clock cycles |  |
| Identification response cycle                                                     | NID    | 5       | 5           | Clock cycles |  |
| Access time delay cycle                                                           | NAC    | 2       | TAAC + NSAC | Clock cycles |  |

## 3.16 Synchronous Serial Interface

The transmit and receive sections of the SSI can be synchronous or asynchronous. In synchronous mode, the transmitter and the receiver use a common clock and frame synchronization signal. In asynchronous mode, the transmitter and receiver each have their own clock and frame synchronization signals. Continuous or gated clock mode can be selected. In continuous mode, the clock runs continuously. In gated clock mode, the clock functions only during transmission. The internal and external clock timing diagrams are shown in Figure 42 through Figure 45.

Normal or network mode can also be selected. In normal mode, the SSI functions with one data word of I/O per frame. In network mode, a frame can contain between 2 and 32 data words. Network mode is typically used in star or ring-time division multiplex networks with other processors or codecs, allowing interface to time division multiplexed networks without additional logic. Use of the gated clock is not allowed in network mode. These distinctions result in the basic operating modes that allow the SSI to communicate with a wide variety of devices.



The SSI can be connected to 4 set of ports, SAP, SSI1, SSI2 and SSI3.

Figure 42. SSI Transmitter Internal Clock Timing Diagram

| Ref | Parameter                                         | 1.8 V $\pm$ 0.1 V |                | 3.0 V $\pm$ 0.3 V |         | Unit |
|-----|---------------------------------------------------|-------------------|----------------|-------------------|---------|------|
| No. | Falameter                                         | Minimum           | Maximum        | Minimum           | Maximum | Onit |
| 28  | (Tx) CK high to STXD high impedance               | 9.02              | 16.46          | 7.29              | 14.97   | ns   |
| 29  | SRXD setup time before (Rx) CK low                | 1.49              | -              | 1.49              | -       | ns   |
| 30  | 30 SRXD hole time after (Rx) CK low               |                   | -              | 0                 | -       | ns   |
|     | Synchronous Internal Clo                          | ock Operation     | n (SSI3 Ports) |                   |         |      |
| 31  | SRXD setup before (Tx) CK falling                 | 21.99             | -              | 21.99             | -       | ns   |
| 32  | 32 SRXD old fter Txh) Kafallin/g C                |                   | -              | 0                 | -       | ns   |
|     | Synchronous External Clock Operation (SSI3 Ports) |                   |                |                   |         |      |
| 33  | SRXD setup before (Tx) CK falling                 | 3.80              | -              | 3.80              | _       | ns   |
| 34  | SRXD old fter Txh) Kafallin/g C                   | 0                 | -              | 0                 | -       | ns   |

### Table 37. SSI to SSI3 Ports Timing Parameters (Continued)

1. All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures.

## 3.17 1-Wire Interface Timing

## 3.17.1 Reset Sequence with Reset Pulse Presence Pulse

To begin any communications with the DS2502, it is required that an initialization procedure be issued. A reset pulse must be generated and then a presence pulse must be detected. The minimum reset pulse length is 480 us. The bus master (one-wire) will generate this pulse, then after the DS2502 detects a rising edge on the one-wire bus, it will wait 15-60 us before it will transmit back a presence pulse. The presence pulse will exist for 60-240 us.

The timing diagram for this sequence is shown in Figure 46.

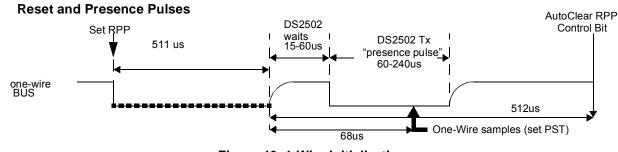



Figure 46. 1-Wire Initialization

The reset pulse begins the initialization sequence and it is initiated when the RPP control register bit is set. When the presence pulse is detected, this bit will be cleared. The presence pulse is used by the bus master to determine if at least one DS2502 is connected. Software will determine if more than one DS2502 exists. The one-wire will sample for the DS2502 presence pulse. The presence pulse is latched in the one-wire control register PST. When the PST bit is set to a one, it means that a DS2502 is present; if the bit is set to a zero, then no device was found.

### 3.17.2 Write 0

The Write 0 function simply writes a zero bit to the DS2502. The sequence takes 117 us. The one-wire bus is held low for 100us.

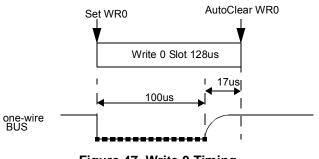



Figure 47. Write 0 Timing

The Write 0 pulse sequence is initiated when the WR0 control bit register is set. When the write is complete, the WR0 register will be auto cleared.

## 3.17.3 Write 1/Read Data

The Write 1 and Read timing is identical. The time slot is first driven low. According to the DS2502 documentation, the DS2502 has a delay circuit which is used to synchronize the DS2502 with the bus master (one-wire). This delay circuit is triggered by the falling edge of the data line and is used to decide when the DS2502 should sample the line. In the case of a write 1 or read 1, after a delay, a 1 will be transmitted / received. When a read 0 slot is issued, the delay circuit will hold the data line low to override the 1 generated by the bus master (one-wire).

For the Write 1 or Read, the control register WR1/RD is set and auto-cleared when the sequence has been completed. After a Read, the control register RDST bit is set to the value of the read.

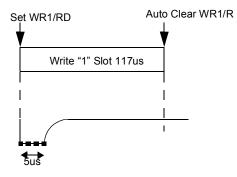



Figure 48. Write 1 Timing

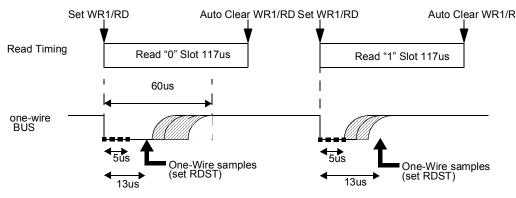



Figure 49. Read Timing

The precision of the generated clock is very important to get a proper behavior of the one-wire module. This module is based on a state machine which undertakes actions at defined times.

| Times       | Values<br>(Microsec) | Minimum<br>(Microsec) | Maximum<br>(microsec) | Absolute<br>Precision | Relative<br>Precision |
|-------------|----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| RSTL        | 511                  | 480                   | -                     | 31                    | 0.0645                |
| PST         | 68                   | 60                    | 75                    | 7                     | 0.1                   |
| RSTH        | 512                  | 480                   | -                     | 32                    | 0.0645                |
| LOW0        | 100                  | 60                    | 120                   | 20                    | 0.2                   |
| LOWR        | 5                    | 1                     | 15                    | 4                     | 0.8                   |
| READ_sample | 13                   | _                     | 15                    | 2                     | 0.15                  |

Table 38. System Timing Requirements

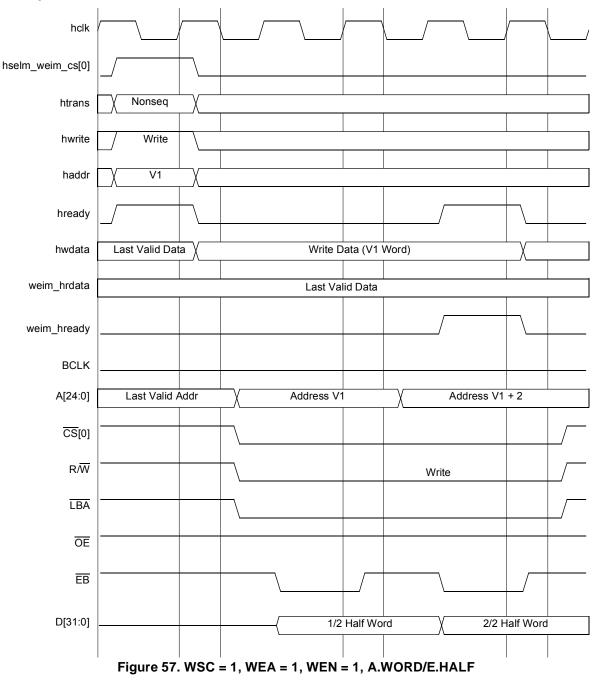
The most stringent constraint is 0.0645 as a relative time imprecision.

The time relative precision is directly derived from the frequency of the derivative clock (f):

Time relative precision = 1/f - 1 = divider/clock (MHz) - 1

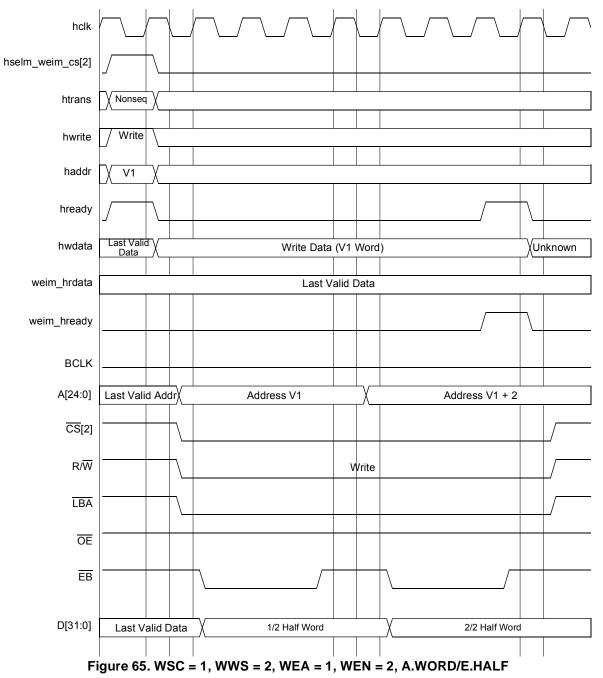
The Figure 39 gathers relative time precision for different main clock frequencies.

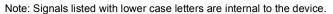
| Table 39 | . System | Clock | Requirements |
|----------|----------|-------|--------------|
|----------|----------|-------|--------------|

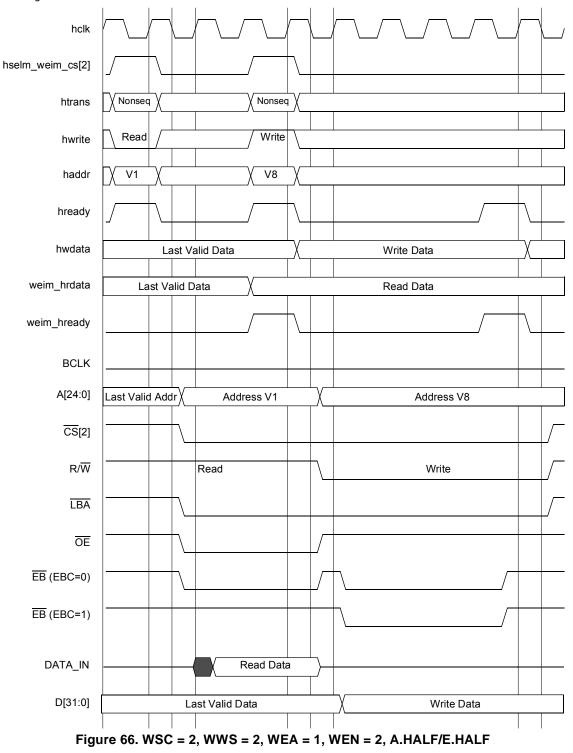

| Main Clock Frequency (MHz) | 13 | 16.8   | 19.44 |
|----------------------------|----|--------|-------|
| Clock divide ratio         | 13 | 17     | 19    |
| Generated frequency (MHz)  | 1  | 0.9882 | 1.023 |
| Relative time imprecision  | 0  | 0.0117 | 0.023 |

This shows that the user should take care of the main clock frequency when using the one-wire module. If the main clock is an exact integer multiple of 1 MHz, then the generated frequency will be exactly 1 MHz.

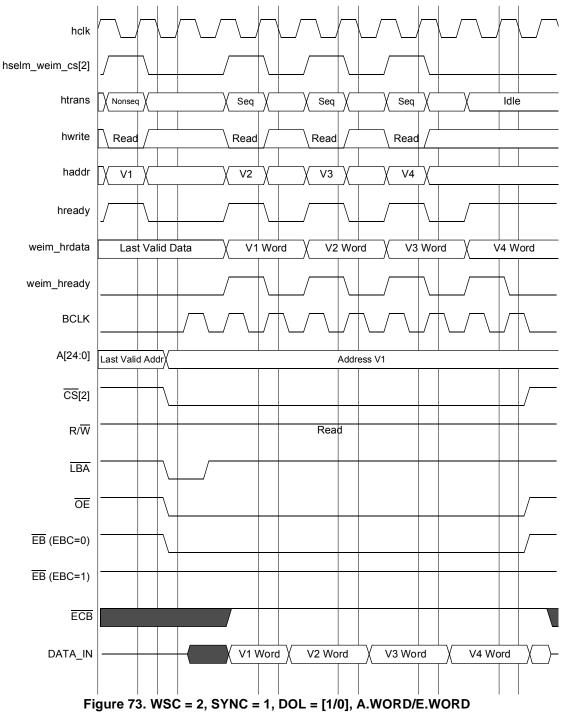
### NOTE

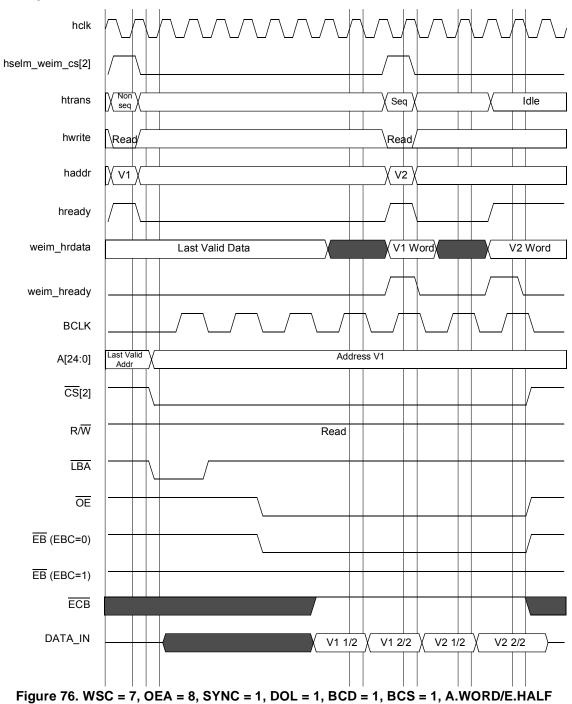

A main clock frequency below 10 MHz might cause a misbehavior of the module.


MC9328MX21 Technical Data, Rev. 3.4




Note: Signals listed with lower case letters are internal to the device.


Note: Signals listed with lower case letters are internal to the device.














Note: Signals listed with lower case letters are internal to the device.

## 3.20 DTACK Mode Memory Access Timing Diagrams

When enabled, the DTACK input signal is used to externally terminate a data transfer. For DTACK enabled operations, a bus time-out monitor generates a bus error when an external bus cycle is not terminated by the DTACK input signal after 1024 HCLK clock cycles have elapsed, where HCLK is the internal system clock driven from the PLL module. For a 133 MHz HCLK setting, this time equates to 7.7  $\mu$ s. Refer to the Section 3.5, "DPLL Timing Specifications" for more information on how to generate different HCLK frequencies.

There are two modes of operation for the DTACK input signal: rising edge detection or level sensitive detection with a programmable insensitivity time. DTACK is only used during external asynchronous data transfers, thus the SYNC bit in the chip select control registers must be cleared.

During edge detection mode, the EIM will terminate an external data transfer following the detection of the DTACK signal's rising edge, so long as it occurs within the 1024 HCLK cycle time. Edge detection mode is used for devices that follow the PCMCIA standard. Note that DTACK rising edge detection mode can only be used for  $\overline{CS}[5]$  operations. To configure  $\overline{CS}[5]$  for DTACK rising edge detection, the following bits must be programmed in the Chip Select 5 Control Register and EIM Configuration Register:

- WSC bit field set to 0x3F and CSA (or CSN) set to 1 or greater in the Chip Select 5 Control Register
- AGE bit set in the EIM Configuration Register

Other bits such as DSZ, OEA, OEN, and so on, may be set according to system and timing requirements of the external device. The requirement of setting CSA or CSN is required to allow the EIM to wait for the rising edge of DTACK during back-to-back external transfers, such as during DMA transfers or an internal 32-bit access through an external 16-bit data port.

During level sensitive detection, the EIM will first hold off sampling the DTACK signal for at least 2 HCLK cycles, and up to 5 HCLK cycles as programmed by the DCT bits in the Chip Select Control Register. After this insensitivity time, the EIM will sample DTACK and if it detects that DTACK is logic high, it will continue the data transfer at the programmed number of wait states. However, if the EIM detects that DTACK is logic low, it will wait until DTACK goes to logic high to continue the access, so long as this occurs within the 1024 HCLK cycle time. If at anytime during an external data transfer DTACK goes to logic low, the EIM will wait until DTACK returns to logic high to resume the data transfer. Level detection is often used for asynchronous devices such graphic controller chips. Level detection may be used with any chip select except CS[4] as it is multiplexed with the DTACK signal. To configure a chip select for DTACK level sensitive detection, the following bits must be programmed in the Chip Select Control Register and EIM Configuration Register:

- EW bit set, WSC set to > 1, and CSN set to < 3 in the Chip Select Control Register
- BCD/DCT set to desired "insensitivity time" in the Chip Select Control Register. The "insensitivity time" is dictated by the external device's timing requirements.
- AGE bit cleared in the EIM Configuration Register

Other bits such as DSZ, OEA, OEN, and so on, may be set according to system and timing requirements of the external device.

The waveforms in the following section provide examples of the DTACK signal operation.

# 5 Document Revision History

Table 48 provides the document changes for the MC9328MX21 Rev. 3.4.

| Location            | Description of Change                             |  |
|---------------------|---------------------------------------------------|--|
| Table 30 on page 46 | Updated the table by removing the table footnote  |  |
| Table 1 on page 3   | Added VM and CVM devices.                         |  |
| Table 7 on page 16  | Jpdated Sleep Current values.                     |  |
| Table 1 on page 4   | Added a part number MC9328MX21CJM and a footnote. |  |

### Table 48. Document Revision History