E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, SD, SPI, UART/USART, USB, USB OTG
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	66
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 33x16b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mk60dn512zvll10

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Communication interfaces
 - Ethernet controller with MII and RMII interface to external PHY and hardware IEEE 1588 capability
 - USB full-/low-speed On-the-Go controller with on-chip transceiver
 - Two Controller Area Network (CAN) modules
 - Three SPI modules
 - Two I2C modules
 - Five UART modules
 - Secure Digital host controller (SDHC)
 - I2S module

8	Pinc		
	8.1	K60 Signal Multiplexing and Pin Assignments68	5

	8.2	K60 Pin	outs	 	 	 	72
9	Rev	ision His	tory	 	 	 	73

3.1.1 Example

This is an example of an operating requirement:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	0.9	1.1	V

3.2 Definition: Operating behavior

An *operating behavior* is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.

3.2.1 Example

This is an example of an operating behavior:

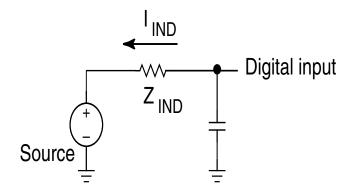
Symbol	Description	Min.	Max.	Unit
I _{WP}	Digital I/O weak pullup/ pulldown current	10	130	μΑ

3.3 Definition: Attribute

An *attribute* is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

3.3.1 Example

This is an example of an attribute:


Symbol	Description	Min.	Max.	Unit
CIN_D	Input capacitance: digital pins	—	7	pF

General

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
I _{IND}	Input leakage current, digital pins					4, 5
	• V _{DD} < V _{IN} < 5.5 V	_	1	50	μA	
Z _{IND}	Input impedance examples, digital pins					4, 7
	• V _{DD} = 3.6 V	_	—	48	kΩ	
	• V _{DD} = 3.0 V	_	—	55	kΩ	
	• V _{DD} = 2.5 V	_	—	57	kΩ	
	• V _{DD} = 1.7 V	_	_	85	kΩ	
R _{PU}	Internal pullup resistors	20	35	50	kΩ	8
R _{PD}	Internal pulldown resistors	20	35	50	kΩ	9

Table 4. Voltage and current operating behaviors (continued)

- 1. Typical values characterized at 25° C and VDD = 3.6 V unless otherwise noted.
- 2. Open drain outputs must be pulled to V_{DD} .
- 3. Analog pins are defined as pins that do not have an associated general purpose I/O port function.
- 4. Digital pins have an associated GPIO port function and have 5V tolerant inputs, except EXTAL and XTAL.
- 5. Internal pull-up/pull-down resistors disabled.
- 6. Characterized, not tested in production.
- 7. Examples calculated using V_{IL} relation, V_{DD} , and max I_{IND} : $Z_{IND}=V_{IL}/I_{IND}$. This is the impedance needed to pull a high signal to a level below V_{IL} due to leakage when $V_{IL} < V_{IN} < V_{DD}$. These examples assume signal source low = 0 V.
- 8. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{SS}
- 9. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{DD}

5.2.4 Power mode transition operating behaviors

All specifications except t_{POR} , and VLLSx \rightarrow RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 100 MHz
- Bus clock = 50 MHz
- FlexBus clock = 50 MHz
- Flash clock = 25 MHz
- MCG mode: FEI

- 2. $V_{DD} = 3.3 \text{ V}, T_A = 25 \text{ °C}, f_{OSC} = 12 \text{ MHz} \text{ (crystal)}, f_{SYS} = 96 \text{ MHz}, f_{BUS} = 48 \text{ MHz}$
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions TEM Cell and Wideband TEM Cell Method

5.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.freescale.com.
- 2. Perform a keyword search for "EMC design."

5.2.8 Capacitance attributes

Table 8. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN_A}	Input capacitance: analog pins	—	7	pF
C _{IN_D}	Input capacitance: digital pins	_	7	pF

5.3 Switching specifications

5.3.1 Device clock specifications

Table 9. Device clock specifications

Symbol	Description	Min.	Max.	Unit	Notes				
	Normal run mode								
f _{SYS}	System and core clock	—	100	MHz					
f _{SYS_USB}	System and core clock when Full Speed USB in operation	20	_	MHz					
f _{ENET}	System and core clock when ethernet in operation			MHz					
	• 10 Mbps	5	—						
	• 100 Mbps	50	_						
f _{BUS}	Bus clock	_	50	MHz					
FB_CLK	FlexBus clock	_	50	MHz					
f _{FLASH}	Flash clock	—	25	MHz					
f _{LPTMR}	LPTMR clock	—	25	MHz					

5.4.1 Thermal operating requirements

 Table 11.
 Thermal operating requirements

Symbol	Description	Min.	Max.	Unit
TJ	Die junction temperature	-40	125	°C
T _A	Ambient temperature	-40	105	°C

5.4.2 Thermal attributes

Board type	Symbol	Description	100 LQFP	Unit	Notes
Single-layer (1s)	R _{0JA}	Thermal resistance, junction to ambient (natural convection)	47	°C/W	1
Four-layer (2s2p)	R _{0JA}	Thermal resistance, junction to ambient (natural convection)	35	°C/W	1
Single-layer (1s)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	37	°C/W	1
Four-layer (2s2p)	R _{0JMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	29	°C/W	1
_	R _{θJB}	Thermal resistance, junction to board	20	°C/W	2
_	R _{θJC}	Thermal resistance, junction to case	9	°C/W	3
_	Ψ _{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	2	°C/W	4

- 1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air).
- 2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board.
- 3. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
- 4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air).

Peripheral operating requirements and behaviors

6.4.1.5 Write endurance to FlexRAM for EEPROM

When the FlexNVM partition code is not set to full data flash, the EEPROM data set size can be set to any of several non-zero values.

The bytes not assigned to data flash via the FlexNVM partition code are used by the flash memory module to obtain an effective endurance increase for the EEPROM data. The built-in EEPROM record management system raises the number of program/erase cycles that can be attained prior to device wear-out by cycling the EEPROM data through a larger EEPROM NVM storage space.

While different partitions of the FlexNVM are available, the intention is that a single choice for the FlexNVM partition code and EEPROM data set size is used throughout the entire lifetime of a given application. The EEPROM endurance equation and graph shown below assume that only one configuration is ever used.

 $Writes_subsystem = \frac{EEPROM - 2 \times EEESPLIT \times EEESIZE}{EEESPLIT \times EEESIZE} \times Write_efficiency \times n_{nvmcycd}$

where

- Writes_subsystem minimum number of writes to each FlexRAM location for subsystem (each subsystem can have different endurance)
- EEPROM allocated FlexNVM for each EEPROM subsystem based on DEPART; entered with the Program Partition command
- EEESPLIT FlexRAM split factor for subsystem; entered with the Program Partition command
- EEESIZE allocated FlexRAM based on DEPART; entered with the Program Partition command
- Write_efficiency
 - 0.25 for 8-bit writes to FlexRAM
 - 0.50 for 16-bit or 32-bit writes to FlexRAM
- n_{nvmcycd} data flash cycling endurance (the following graph assumes 10,000 cycles)

2. Specification is valid for all FB_AD[31:0] and FB_TA.

Table 26. Flexbus full voltage range switching specifications

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	1.71	3.6	V	
	Frequency of operation	—	FB_CLK	MHz	
FB1	Clock period	1/FB_CLK	_	ns	
FB2	Address, data, and control output valid	—	13.5	ns	1
FB3	Address, data, and control output hold	0	_	ns	1
FB4	Data and FB_TA input setup	13.7	_	ns	2
FB5	Data and FB_TA input hold	0.5	—	ns	2

1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W, FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS.

2. Specification is valid for all FB_AD[31:0] and $\overline{\text{FB}_{-}\text{TA}}.$

Peripheral operating requirements and behaviors

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
C _{rate}	ADC conversion rate	16-bit mode					5
	Tale	No ADC hardware averaging	37.037	—	461.467	Ksps	
		Continuous conversions enabled, subsequent conversion time					

Table 27. 16-bit ADC operating conditions (continued)

- 1. Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production.
- 2. DC potential difference.
- This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R_{AS}/C_{AS} time constant should be kept to < 1 ns.
- 4. To use the maximum ADC conversion clock frequency, the ADHSC bit must be set and the ADLPC bit must be clear.
- 5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.

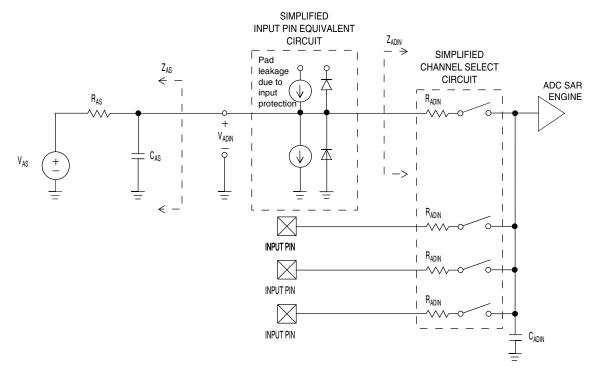
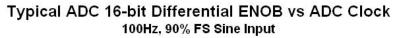
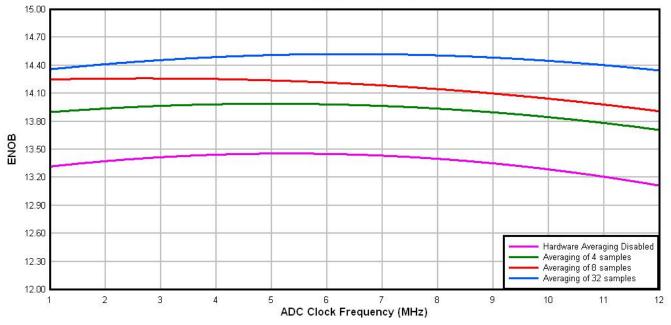


Figure 13. ADC input impedance equivalency diagram

6.6.1.2 16-bit ADC electrical characteristics Table 28. 16-bit ADC characteristics (V_{REFH} = V_{DDA}, V_{REFL} = V_{SSA})

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
I _{DDA_ADC}	Supply current		0.215		1.7	mA	3


Table continues on the next page ...


Peripheral operating requirements and behaviors

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
E _{IL}	Input leakage error			$I_{ln} \times R_{AS}$		mV	I _{In} = leakage current
							(refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	Across the full temperature range of the device	1.55	1.62	1.69	mV/°C	
V _{TEMP25}	Temp sensor voltage	25 °C	706	716	726	mV	

Table 28. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

- 1. All accuracy numbers assume the ADC is calibrated with $V_{REFH} = V_{DDA}$
- Typical values assume V_{DDA} = 3.0 V, Temp = 25°C, f_{ADCK} = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power). For lowest power operation the ADLPC bit must be set, the HSC bit must be clear with 1 MHz ADC conversion clock speed.
- 4. 1 LSB = $(V_{REFH} V_{REFL})/2^N$
- 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
- 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
G	Gain ⁴	• PGAG=0	0.95	1	1.05		R _{AS} < 100Ω
		• PGAG=1	1.9	2	2.1		
		• PGAG=2	3.8	4	4.2		
		• PGAG=3	7.6	8	8.4		
		• PGAG=4	15.2	16	16.6		
		• PGAG=5	30.0	31.6	33.2		
		• PGAG=6	58.8	63.3	67.8		
BW	Input signal	16-bit modes			4	kHz	
	bandwidth	 < 16-bit modes 	_	_	40	kHz	
PSRR	Power supply rejection ratio	Gain=1	_	-84		dB	V _{DDA} = 3V ±100mV, f _{VDDA} = 50Hz, 60Hz
CMRR	Common mode	Gain=1	_	-84	_	dB	V _{CM} =
	rejection ratio	• Gain=64	_	-85	_	dB	500mVpp, f _{VCM} = 50Hz, 100Hz
V _{OFS}	Input offset voltage		_	0.2	—	mV	Output offset = V _{OFS} *(Gain+1)
T _{GSW}	Gain switching settling time		—	-	10	μs	5
EIL	Input leakage All modes error			$I_{In} \times R_{AS}$	mV	I _{In} = leakage current	
							(refer to the MCU's voltage and current operating ratings)
V _{PP,DIFF}	Maximum differential input signal swing			$\frac{V_{x}V_{\text{DDA}} - V_{x}}{\text{Gain}}$ $\mathbf{x} = \mathbf{V}_{\text{REFPG}}$)	V	6
SNR	Signal-to-noise	Gain=1	80	90		dB	16-bit
eru i	ratio	• Gain=64	52	66	_	dB	differential mode, Average=32
THD	Total harmonic	Gain=1	85	100		dB	16-bit
	distortion	• Gain=64	49	95	_	dB	differential mode, Average=32, f _{in} =100Hz
SFDR	Spurious free	Gain=1	85	105		dB	16-bit
	dynamic range	• Gain=64	53	88		dB	differential mode, Average=32, f _{in} =100Hz

Table 30. 16-bit ADC with PGA characteristics (continued)

Table continues on the next page...

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
ENOB	Effective number	Gain=1, Average=4	11.6	13.4	—	bits	16-bit
	of bits	• Gain=64, Average=4	7.2	9.6	_	bits	differential mode, f _{in} =100Hz
		 Gain=1, Average=32 	12.8	14.5		bits	
		Gain=2, Average=32	11.0	14.3		bits	
		Gain=4, Average=32	7.9	13.8	_	bits	
		Gain=8, Average=32	7.3	13.1	_	bits	
		Gain=16, Average=32	6.8	12.5		bits	
		Gain=32, Average=32	6.8	11.5	_	bits	
		• Gain=64, Average=32	7.5	10.6	_	bits	
SINAD	Signal-to-noise plus distortion ratio	See ENOB	6.02	× ENOB +	1.76	dB	

Table 30. 16-bit ADC with PGA characteristics (continued)

1. Typical values assume V_{DDA} =3.0V, Temp=25°C, f_{ADCK}=6MHz unless otherwise stated.


- 2. This current is a PGA module adder, in addition to ADC conversion currents.
- Between IN+ and IN-. The PGA draws a DC current from the input terminals. The magnitude of the DC current is a strong function of input common mode voltage (V_{CM}) and the PGA gain.
- 4. Gain = 2^{PGAG}
- 5. After changing the PGA gain setting, a minimum of 2 ADC+PGA conversions should be ignored.
- 6. Limit the input signal swing so that the PGA does not saturate during operation. Input signal swing is dependent on the PGA reference voltage and gain setting.

6.6.2 CMP and 6-bit DAC electrical specifications

Table 31. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage	1.71	_	3.6	V
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	—	_	200	μA
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)	—	_	20	μA
V _{AIN}	Analog input voltage	V _{SS} – 0.3	_	V _{DD}	V
V _{AIO}	Analog input offset voltage	—	_	20	mV
V _H	Analog comparator hysteresis ¹				
	• CR0[HYSTCTR] = 00	_	5	_	mV
	• CR0[HYSTCTR] = 01	_	10	_	mV
	• CR0[HYSTCTR] = 10	_	20	_	mV
	• CR0[HYSTCTR] = 11	—	30	_	mV
V _{CMPOh}	Output high	V _{DD} – 0.5	_	_	V
V _{CMPOI}	Output low	—	_	0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN=1, PMODE=1)	20	50	200	ns

Table continues on the next page...

Peripheral operating requirements and behaviors

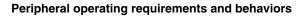
Figure 17. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=1)

6.6.3 12-bit DAC electrical characteristics

6.6.3.1 12-bit DAC operating requirements Table 32. 12-bit DAC operating requirements

Symbol	Desciption	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage	1.71	3.6	V	
V _{DACR}	Reference voltage	1.13	3.6	V	1
T _A	Temperature		emperature he device	°C	
CL	Output load capacitance	— 100		pF	2
١L	Output load current	—	1	mA	

1. The DAC reference can be selected to be V_{DDA} or the voltage output of the VREF module (VREF_OUT)


2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC

6.6.3.2 12-bit DAC operating behaviors Table 33. 12-bit DAC operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA_DACL} P	Supply current — low-power mode		—	150	μΑ	
I _{DDA_DACH} P	Supply current — high-speed mode	_	—	700	μΑ	
t _{DACLP}	Full-scale settling time (0x080 to 0xF7F) — low-power mode		100	200	μs	1
t _{DACHP}	Full-scale settling time (0x080 to 0xF7F) — high-power mode	_	15	30	μs	1
t _{CCDACLP}	Code-to-code settling time (0xBF8 to 0xC08) — low-power mode and high-speed mode	_	0.7	1	μs	1
V _{dacoutl}	DAC output voltage range low — high-speed mode, no load, DAC set to 0x000	_	—	100	mV	
V _{dacouth}	speed mode, no load, DAC set to 0xFFF		—	V _{DACR}	mV	
INL	Integral non-linearity error — high speed mode	_	—	±8	LSB	2
DNL	Differential non-linearity error — $V_{DACR} > 2$ V	—	—	±1	LSB	3
DNL	Differential non-linearity error — V _{DACR} = VREF_OUT	_	—	±1	LSB	4
V _{OFFSET}	Offset error	—	±0.4	±0.8	%FSR	5
E _G	Gain error	_	±0.1	±0.6	%FSR	5
PSRR	Power supply rejection ratio, $V_{DDA} \ge 2.4 \text{ V}$	60	—	90	dB	
T _{CO}	Temperature coefficient offset voltage	_	3.7	_	μV/C	6
T_{GE}	Temperature coefficient gain error	—	0.000421	—	%FSR/C	
Rop	Output resistance load = 3 k Ω		—	250	Ω	
SR	Slew rate -80h→ F7Fh→ 80h				V/µs	
	 High power (SP_{HP}) 	1.2	1.7	—		
	 Low power (SP_{LP}) 	0.05	0.12	—		
СТ	Channel to channel cross talk			-80	dB	
BW	3dB bandwidth				kHz	
	• High power (SP _{HP})	550	_	_		
	 Low power (SP_{LP}) 	40	_	_		

1. Settling within ±1 LSB

- 2. The INL is measured for 0 + 100 mV to V_{DACR} –100 mV
- 3. The DNL is measured for 0 + 100 mV to V_{DACR} –100 mV
- 4. The DNL is measured for 0 + 100 mV to V_{DACR} –100 mV with V_{DDA} > 2.4 V
- 5. Calculated by a best fit curve from V_{SS} + 100 mV to V_{DACR} 100 mV
- V_{DDA} = 3.0 V, reference select set for V_{DDA} (DACx_CO:DACRFS = 1), high power mode (DACx_CO:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device

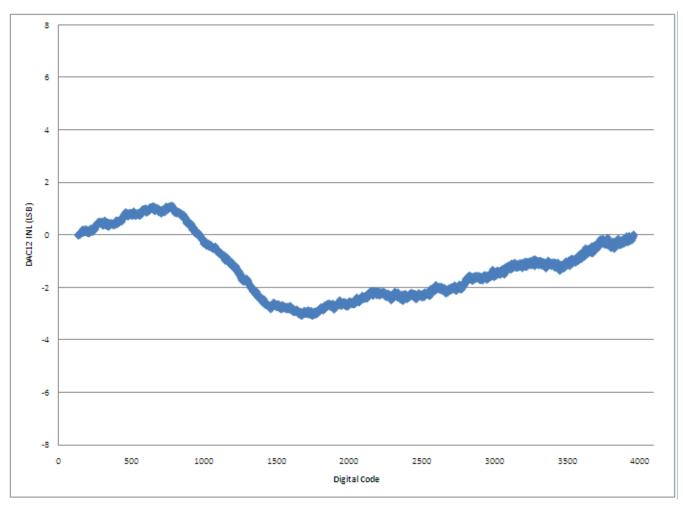


Figure 18. Typical INL error vs. digital code

6. C_b = total capacitance of the one bus line in pF.

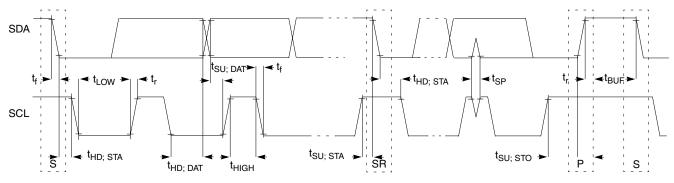
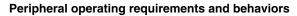


Figure 26. Timing definition for fast and standard mode devices on the I²C bus

6.8.9 UART switching specifications


See General switching specifications.

6.8.10 SDHC specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

Num	Symbol	Description	Min.	Max.	Unit
		Card input clock			
SD1	fpp	Clock frequency (low speed)	0	400	kHz
	fpp	Clock frequency (SD\SDIO full speed\high speed)	0	25\50	MHz
	fpp	Clock frequency (MMC full speed\high speed)	0	20\50	MHz
	f _{OD}	Clock frequency (identification mode)	0	400	kHz
SD2	t _{WL}	Clock low time	7	—	ns
SD3	t _{WH}	Clock high time	7	—	ns
SD4	t _{TLH}	Clock rise time	_	3	ns
SD5	t _{THL}	Clock fall time	_	3	ns
		SDHC output / card inputs SDHC_CMD, SDHC_DAT	(reference to	SDHC_CLK)	
SD6	t _{OD}	SDHC output delay (output valid)	-5	8.3	ns
		SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to	SDHC_CLK)	
SD7	SD7 t _{ISU} SDHC input setup time		5	—	ns
SD8	t _{IH}	SDHC input hold time	0	—	ns

Table 47. SDHC switching specifications

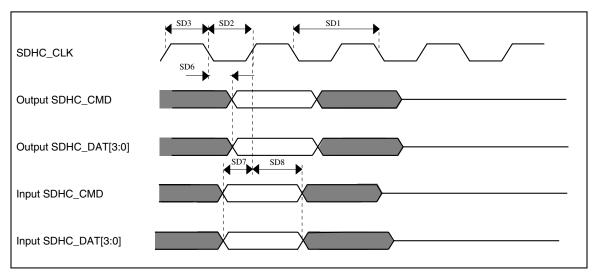


Figure 27. SDHC timing

6.8.11 I²S switching specifications

This section provides the AC timings for the I²S in master (clocks driven) and slave modes (clocks input). All timings are given for non-inverted serial clock polarity (TCR[TSCKP] = 0, RCR[RSCKP] = 0) and a non-inverted frame sync (TCR[TFSI] = 0, RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal (I2S_BCLK) and/or the frame sync (I2S_FS) shown in the figures below.

Num	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
S1	I2S_MCLK cycle time	2 x t _{SYS}		ns
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period
S3	I2S_BCLK cycle time	5 x t _{SYS}	—	ns
S4	I2S_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_BCLK to I2S_FS output valid	—	15	ns
S6	I2S_BCLK to I2S_FS output invalid	-2.5	—	ns
S7	I2S_BCLK to I2S_TXD valid	—	15	ns
S8	I2S_BCLK to I2S_TXD invalid	-3	—	ns
S9	I2S_RXD/I2S_FS input setup before I2S_BCLK	20	—	ns
S10	I2S_RXD/I2S_FS input hold after I2S_BCLK	0	—	ns

Table 48. I²S master mode timing (limited voltage range)

100 LQFP	Pin Name	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
14	ADC0_DP1	ADC0_DP1	ADC0_DP1								
15	ADC0_DM1	ADC0_DM1	ADC0_DM1								
16	ADC1_DP1	ADC1_DP1	ADC1_DP1								
17	ADC1_DM1	ADC1_DM1	ADC1_DM1								
18	PGA0_DP/ ADC0_DP0/ ADC1_DP3	PGA0_DP/ ADC0_DP0/ ADC1_DP3	PGA0_DP/ ADC0_DP0/ ADC1_DP3								
19	PGA0_DM/ ADC0_DM0/ ADC1_DM3	PGA0_DM/ ADC0_DM0/ ADC1_DM3	PGA0_DM/ ADC0_DM0/ ADC1_DM3								
20	PGA1_DP/ ADC1_DP0/ ADC0_DP3	PGA1_DP/ ADC1_DP0/ ADC0_DP3	PGA1_DP/ ADC1_DP0/ ADC0_DP3								
21	PGA1_DM/ ADC1_DM0/ ADC0_DM3	PGA1_DM/ ADC1_DM0/ ADC0_DM3	PGA1_DM/ ADC1_DM0/ ADC0_DM3								
22	VDDA	VDDA	VDDA								
23	VREFH	VREFH	VREFH								
24	VREFL	VREFL	VREFL								
25	VSSA	VSSA	VSSA								
26	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18								
27	DAC0_OUT/ CMP1_IN3/ ADC0_SE23	DAC0_OUT/ CMP1_IN3/ ADC0_SE23	DAC0_OUT/ CMP1_IN3/ ADC0_SE23								
28	XTAL32	XTAL32	XTAL32								
29	EXTAL32	EXTAL32	EXTAL32								
30	VBAT	VBAT	VBAT								
31	PTE24	ADC0_SE17	ADC0_SE17	PTE24	CAN1_TX	UART4_TX			EWM_OUT_b		
32	PTE25	ADC0_SE18	ADC0_SE18	PTE25	CAN1_RX	UART4_RX			EWM_IN		
33	PTE26	DISABLED		PTE26		UART4_CTS_b	ENET_1588_ CLKIN		RTC_CLKOUT	USB_CLKIN	
34	PTAO	JTAG_TCLK/ SWD_CLK/ EZP_CLK	TSI0_CH1	PTA0	UARTO_CTS_b	FTM0_CH5				JTAG_TCLK/ SWD_CLK	EZP_CLK
35	PTA1	JTAG_TDI/ EZP_DI	TSI0_CH2	PTA1	UARTO_RX	FTM0_CH6				JTAG_TDI	EZP_DI
36	PTA2	JTAG_TDO/ TRACE_SWO/ EZP_DO	TSI0_CH3	PTA2	UARTO_TX	FTM0_CH7				JTAG_TDO/ TRACE_SWO	EZP_DO
37	PTA3	JTAG_TMS/ SWD_DIO	TSI0_CH4	PTA3	UARTO_RTS_b	FTM0_CH0				JTAG_TMS/ SWD_DIO	
38	PTA4/ LLWU_P3	NMI_b/ EZP_CS_b	TSI0_CH5	PTA4/ LLWU_P3		FTM0_CH1				NMI_b	EZP_CS_b

Revision History

Rev. No.	Date	Substantial Changes
3	3/2011	Added sections that were inadvertently removed in previous revision
4	3/2011	Reworded I _{IC} footnote in "Voltage and Current Operating Requirements" table.
		Added paragraph to "Peripheral operating requirements and behaviors" section.
		Added "JTAG full voltage range electricals" table to the "JTAG electricals" section.
5	6/2011	 Changed supported part numbers per new part number scheme Changed <i>DC injection current</i> specs in "Voltage and current operating requirements" table Changed <i>Input leakage current</i> and <i>internal pullup/pulldown resistor</i> specs in "Voltage and current operating behaviors" table Split <i>Low power stop mode current</i> specs by temperature range in "Power consumption operating behaviors" table Changed typical <i>I_{DD} v_{BAT}</i> spec in "Power consumption operating behaviors" table Added ENET and LPTMR clock specs to "Device clock specifications" table Changed <i>PLL operating current</i> in "MCG specifications" table Changed <i>PLL operating current</i> in "MCG specifications" table Changed <i>Crystal startup time</i> in "Oscillator DC electrical specifications" table Changed <i>Crystal startup</i> time in "Scillator Trequency specifications" table Changed <i>Crystal startup</i> time in "Scillator Trequency specifications" table Changed <i>Crystal startup</i> time in "Scillator Trequency specifications" table Changed <i>Crystal startup</i> time in "Scillator Trequency specifications" table Changed <i>Crystal startup</i> time in "Carl switching specifications" table Changed <i>Aloc asynchronous clock source</i> specs in "16-bit ADC characteristics" table Changed <i>Aloc asynchronous clock source</i> specs in "16-bit ADC with PGA characteristics" table Changed <i>Analog comparator initialization delay</i> in "Comparator and 6-bit DAC electrical specifications" table Changed <i>Analog comparator initialization delay</i> in "Comparator and 6-bit DAC electrical specifications" table Changed <i>Analog comparator initialization delay</i> in "Comparator and 6-bit DAC electrical specifications" table Changed <i>Analog comparator initialization delay</i> in "Comparator and 6-bit DAC electrical specifications" table Changed <i>Analog</i>

Table 53. Revision History (continued)

Table continues on the next page...

Rev. No.	Date	Substantial Changes
6	01/2012	 Added AC electrical specifications. Replaced TBDs with silicon data throughout. In "Power mode transition operating behaviors" table, removed entry times. Updated "EMC radiated emissions operating behaviors" to remove SAE level and also added data for 144LQFP. Clarified "EP7" in "EzPort switching specifications" table and "EzPort Timing Diagram". Added "ENOB vs. ADC_CLK for 16-bit differential and 16-bit single-ended modes" figures. Updated I_{DD_RUN} numbers in 'Power consumption operating behaviors' section. Clarified 'Diagram: Typical IDD_RUN operating behavior' section and updated 'Run mode supply current vs. core frequency — all peripheral clocks disabled' figure. In 'Voltage reference electrical specifications' section, updated V_{DP_SRC}, I_{DDstby}, and 'V_{Reg33out} values.
7	02/2013	 In "ESD handling ratings", added a note for I_{LAT}. Updated "Voltage and current operating requirements". Updated "Voltage and current operating behaviors". Updated "Power mode transition operating behaviors". Updated "EMC radiated emissions operating behaviors" to add MAPBGA data. In "MCG specifications", updated the description of f_{ints_t}. In "16-bit ADC operating conditions", updated the max spec of V_{ADIN}. In "16-bit ADC electrical characteristics", updated the temp sensor slope and voltage specs. Updated "I2C switching specifications". In "SDHC specifications", removed the operating voltage limits and updated the SD1 and SD6 specs. In "I2S switching specifications", added separate specification tables for the full operating voltage range.

Table 53. Revision History (continued)