

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M4/M0
Core Size	32-Bit Dual-Core
Speed	204MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, Microwire, SD, SPI, SSI, SSP, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, WDT
Number of I/O	49
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	16K x 8
RAM Size	104K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 4x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TFBGA
Supplier Device Package	100-TFBGA (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/lpc4322jet100e

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

32-bit ARM Cortex-M4/M0 microcontroller

4. Ordering information

Table 1.Ordering information

Type number	Package	Package									
	Name	me Description									
LPC4357FET256	LBGA256	Plastic low profile ball grid array package; 256 balls; body $17 \times 17 \times 1$ mm	SOT740-2								
LPC4357JET256	LBGA256	Plastic low profile ball grid array package; 256 balls; body $17 \times 17 \times 1$ mm	SOT740-2								
LPC4357JBD208	LQFP208	Plastic low profile quad flat package; 208 leads; body $28 \times 28 \times 1.4$ mm	SOT459-1								
LPC4353FET256	LBGA256	Plastic low profile ball grid array package; 256 balls; body $17 \times 17 \times 1$ mm	SOT740-2								
LPC4353JET256	LBGA256	Plastic low profile ball grid array package; 256 balls; body $17 \times 17 \times 1$ mm	SOT740-2								
LPC4353JBD208	LQFP208	Plastic low profile quad flat package; 208 leads; body $28 \times 28 \times 1.4$ mm	SOT459-1								
LPC4337FET256	LBGA256	Plastic low profile ball grid array package; 256 balls; body $17 \times 17 \times 1$ mm	SOT740-2								
LPC4337JET256	LBGA256	Plastic low profile ball grid array package; 256 balls; body $17 \times 17 \times 1$ mm	SOT740-2								
LPC4337JBD144	LQFP144	Plastic low profile quad flat package; 144 leads; body $20 \times 20 \times 1.4$ mm	SOT486-1								
LPC4337JET100	TFBGA100	Plastic thin fine-pitch ball grid array package; 100 balls; body $9 \times 9 \times 0.7$ mm	SOT926-1								
LPC4333FET256	LBGA256	Plastic low profile ball grid array package; 256 balls; body $17 \times 17 \times 1$ mm	SOT740-2								
LPC4333JET256	LBGA256	Plastic low profile ball grid array package; 256 balls; body $17 \times 17 \times 1$ mm	SOT740-2								
LPC4333JBD144	LQFP144	Plastic low profile quad flat package; 144 leads; body $20 \times 20 \times 1.4$ mm	SOT486-1								
LPC4333JET100	TFBGA100	Plastic thin fine-pitch ball grid array package; 100 balls; body $9 \times 9 \times 0.7$ mm	SOT926-1								
LPC4327JBD144	LQFP144	Plastic low profile quad flat package; 144 leads; body $20 \times 20 \times 1.4$ mm	SOT486-1								
LPC4327JET100	TFBGA100	Plastic thin fine-pitch ball grid array package; 100 balls; body $9 \times 9 \times 0.7$ mm	SOT926-1								
LPC4325JBD144	LQFP144	Plastic low profile quad flat package; 144 leads; body $20 \times 20 \times 1.4$ mm	SOT486-1								
LPC4325JET100	TFBGA100	Plastic thin fine-pitch ball grid array package; 100 balls; body $9 \times 9 \times 0.7$ mm	SOT926-1								
LPC4323JBD144	LQFP144	Plastic low profile quad flat package; 144 leads; body $20 \times 20 \times 1.4$ mm	SOT486-1								
LPC4323JET100	TFBGA100	Plastic thin fine-pitch ball grid array package; 100 balls; body $9 \times 9 \times 0.7$ mm	SOT926-1								
LPC4322JBD144	LQFP144	Plastic low profile quad flat package; 144 leads; body $20 \times 20 \times 1.4$ mm	SOT486-1								
LPC4322JET100	TFBGA100	Plastic thin fine-pitch ball grid array package; 100 balls; body $9 \times 9 \times 0.7$ mm	SOT926-1								
LPC4317JBD144	LQFP144	Plastic low profile quad flat package; 144 leads; body $20 \times 20 \times 1.4$ mm	SOT486-1								
LPC4317JET100	TFBGA100	Plastic thin fine-pitch ball grid array package; 100 balls; body $9 \times 9 \times 0.7$ mm	SOT926-1								
LPC4315JBD144	LQFP144	Plastic low profile quad flat package; 144 leads; body $20 \times 20 \times 1.4$ mm	SOT486-1								
LPC4315JET100	TFBGA100	Plastic thin fine-pitch ball grid array package; 100 balls; body $9 \times 9 \times 0.7$ mm	SOT926-1								
LPC4313JBD144	LQFP144	Plastic low profile quad flat package; 144 leads; body $20 \times 20 \times 1.4$ mm	SOT486-1								
LPC4313JET100	TFBGA100	Plastic thin fine-pitch ball grid array package; 100 balls; body $9 \times 9 \times 0.7$ mm	SOT926-1								
LPC4312JBD144	LQFP144	Plastic low profile quad flat package; 144 leads; body $20 \times 20 \times 1.4$ mm	SOT486-1								
LPC4312JET100	TFBGA100	Plastic thin fine-pitch ball grid array package; 100 balls; body $9 \times 9 \times 0.7$ mm	SOT926-1								

32-bit ARM Cortex-M4/M0 microcontroller

Pin name	LBGA256	TFBGA100	LQFP208	LQFP144		Reset state [1]	Type	Description
P2_9	H16	B10	144	102	[2]	N; PU	I/O	GPIO1[10] — General purpose digital input/output pin. Boot pin (see <u>Table 5</u>).
							0	CTOUT_3 — SCT output 3. Match output 3 of timer 0.
							I/O	U3_BAUD — Baud pin for USART3.
							I/O	EMC_A0 — External memory address line 0.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.
P2_10	G16	E8	146	104	[2]	N;	I/O	GPIO0[14] — General purpose digital input/output pin.
						PU	0	CTOUT_2 — SCT output 2. Match output 2 of timer 0.
							0	U2_TXD — Transmitter output for USART2.
							I/O	EMC_A1 — External memory address line 1.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.
P2_11	F16	A9	148	105	[2]	N;	I/O	GPIO1[11] — General purpose digital input/output pin.
						PU	0	CTOUT_5 — SCT output 5. Match output 3 of timer 3.
							I	U2_RXD — Receiver input for USART2.
							I/O	EMC_A2 — External memory address line 2.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.
P2_12	E15	B9	153	106	[2]	N;	I/O	GPIO1[12] — General purpose digital input/output pin.
						PU	0	CTOUT_4 — SCT output 4. Match output 3 of timer 3.
							-	R — Function reserved.
							I/O	EMC_A3 — External memory address line 3.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.
							I/O	U2_UCLK — Serial clock input/output for USART2 in synchronous mode.

 Table 3.
 Pin description ...continued

32-bit ARM Cortex-M4/M0 microcontroller

Pin name	LBGA256	TFBGA100	LQFP208	LQFP144		Reset state	Type	Description
P5_0	N3	-	53	37	[2]	N;	I/O	GPIO2[9] — General purpose digital input/output pin.
						PU	0	MCOB2 — Motor control PWM channel 2, output B.
							I/O	EMC_D12 — External memory data line 12.
							-	R — Function reserved.
							I	U1_DSR — Data Set Ready input for UART 1.
							I	T1_CAP0 — Capture input 0 of timer 1.
							-	R — Function reserved.
							-	R — Function reserved.
P5_1	P3	-	55	39	[2]	N;	I/O	GPIO2[10] — General purpose digital input/output pin.
						PU	I	MCI2 — Motor control PWM channel 2, input.
							I/O	EMC_D13 — External memory data line 13.
							-	R — Function reserved.
							0	U1_DTR — Data Terminal Ready output for UART 1. Can also be configured to be an RS-485/EIA-485 output enable signal for UART 1.
							I	T1_CAP1 — Capture input 1 of timer 1.
							-	R — Function reserved.
							-	R — Function reserved.
P5_2	R4	-	63	46	[2]	N;	I/O	GPIO2[11] — General purpose digital input/output pin.
						PU	I	MCI1 — Motor control PWM channel 1, input.
							I/O	EMC_D14 — External memory data line 14.
							-	R — Function reserved.
							0	U1_RTS — Request to Send output for UART 1. Can also be configured to be an RS-485/EIA-485 output enable signal for UART 1.
							I	T1_CAP2 — Capture input 2 of timer 1.
							-	R — Function reserved.
							-	R — Function reserved.
P5_3	T8	-	76	54	[2]	N;	I/O	GPIO2[12] — General purpose digital input/output pin.
						PU	I	MCI0 — Motor control PWM channel 0, input.
							I/O	EMC_D15 — External memory data line 15.
							-	R — Function reserved.
							I	U1_RI — Ring Indicator input for UART 1.
							I	T1_CAP3 — Capture input 3 of timer 1.
							-	R — Function reserved.
							-	R — Function reserved.

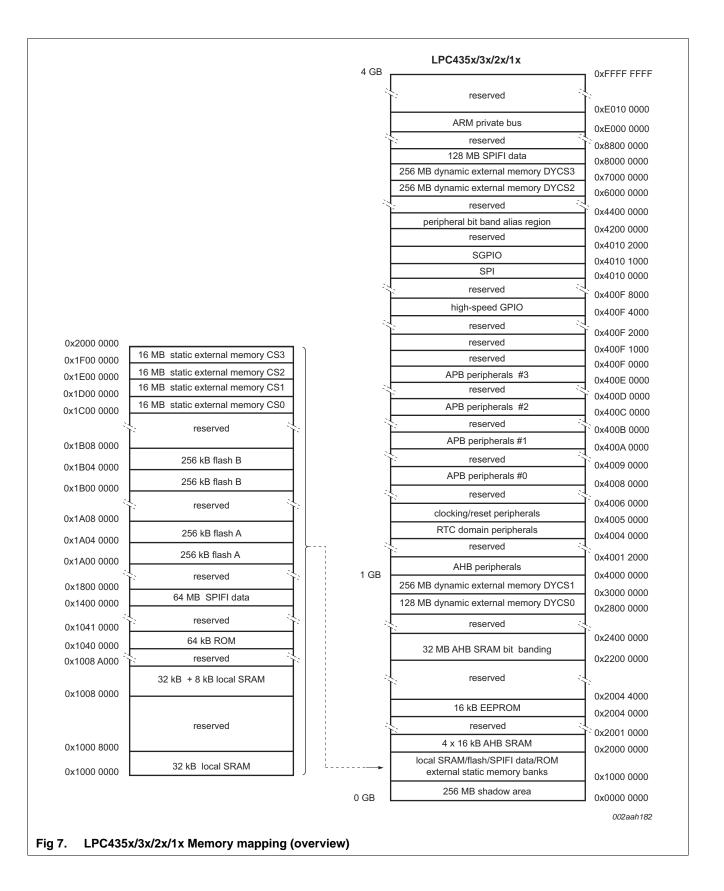
 Table 3.
 Pin description ...continued

32-bit ARM Cortex-M4/M0 microcontroller

Boot mode	Pins				Description
	P2_9	P2_8	P1_2	P1_1	
USB1	LOW	HIGH	HIGH	LOW	Boot from USB1.
SPI (SSP)	LOW	HIGH	HIGH	HIGH	Boot from SPI flash connected to the SSP0 interface on P3_3 (function SSP0_SCK), P3_6 (function SSP0_SSEL), P3_7 (function SSP0_MISO), and P3_8 (function SSP0_MOSI) ^[1]
USART3	HIGH	LOW	LOW	LOW	Enter ISP mode using USART3 pins P2_3 and P2_4.

Table 5. Boot mode when OPT BOOT_SRC bits are zero

[1] The boot loader programs the appropriate pin function at reset to boot using either SSP0 or SPIFI. **Remark:** Pin functions for SPIFI and SSP0 boot are different.


7.14 Memory mapping

The memory map shown in Figure 7 and Figure 8 is global to both the Cortex-M4 and the Cortex-M0 processors and all SRAM, flash, and EEPROM memory is shared between both processors. Each processor uses its own ARM private bus memory map for the NVIC and other system functions.

NXP Semiconductors

LPC435x/3x/2x/1x

32-bit ARM Cortex-M4/M0 microcontroller

32-bit ARM Cortex-M4/M0 microcontroller

Table 0. Line pinout for unrerent packages										
Function	LBGA256	TFBGA100	LQFP208	LQFP144						
OE	EMC_OE	EMC_OE	EMC_OE	EMC_OE						
WE	EMC_WE	EMC_WE	EMC_WE	EMC_WE						
CKEOUT	EMC_ CKEOUT[3:0]	EMC_ CKEOUT[1:0]	EMC_ CKEOUT[1:0]	EMC_ CKEOUT[1:0]						
CLK	EMC_CLK[3:0]; EMC_CLK01, EMC_CLK23	EMC_CLK0, EMC_CLK3; EMC_CLK01, EMC_CLK23	EMC_CLK0, EMC_CLK3; EMC_CLK01, EMC_CLK23	EMC_CLK0, EMC_CLK3; EMC_CLK01, EMC_CLK23						
DQMOUT	EMC_ DQMOUT[3:0]	-	EMC_ DQMOUT[1:0]	EMC_ DQMOUT[1:0]						
DYCS	EMC_ DYCS[3:0]	EMC_DYCS[1:0]	EMC_DYCS[2:0]	EMC_DYCS[1:0]						
CAS	EMC_CAS	EMC_CAS	EMC_CAS	EMC_CAS						
RAS	EMC_RAS	EMC_RAS	EMC_RAS	EMC_RAS						

Table 6. EMC pinout for different packages

7.18.4.1 Features

- Dynamic memory interface support including single data rate SDRAM.
- Asynchronous static memory device support including RAM, ROM, and NOR flash, with or without asynchronous page mode.
- Low transaction latency.
- Read and write buffers to reduce latency and to improve performance.
- 8/16/32 data and 24 address lines wide static memory support.
- 16 bit and 32 bit wide chip select SDRAM memory support.
- Static memory features include:
 - Asynchronous page mode read
 - Programmable Wait States
 - Bus turnaround delay
 - Output enable and write enable delays
 - Extended wait
- Four chip selects for synchronous memory and four chip selects for static memory devices.
- Power-saving modes dynamically control EMC_CKEOUT and EMC_CLK signals to SDRAMs.
- Dynamic memory self-refresh mode controlled by software.
- Controller supports 2048 (A0 to A10), 4096 (A0 to A11), and 8192 (A0 to A12) row address synchronous memory parts. Those are typically 512 MB, 256 MB, and 128 MB parts, with 4, 8, 16, or 32 data bits per device.
- Separate reset domains allow the for auto-refresh through a chip reset if desired.
- SDRAM clock can run at full or half the Cortex-M4 core frequency.

Note: Synchronous static memory devices (synchronous burst mode) are not supported.

All information provided in this document is subject to legal disclaimers.

LPC435X 3X 2X 1X

© NXP Semiconductors N.V. 2016. All rights reserved.

32-bit ARM Cortex-M4/M0 microcontroller

7.23.7 System PLL1

The PLL1 accepts an input clock frequency from an external oscillator in the range of 1 MHz to 25 MHz. The input frequency is multiplied up to a high frequency with a Current Controlled Oscillator (CCO). The multiplier can be an integer value from 1 to 32. The CCO operates in the range of 156 MHz to 320 MHz. This range is possible through an additional divider in the loop to keep the CCO within its frequency range while the PLL is providing the desired output frequency. The output divider can be set to divide by 2, 4, 8, or 16 to produce the output clock. Since the minimum output divider value is 2, it is insured that the PLL output has a 50 % duty cycle. The PLL is turned off and bypassed following a chip reset. After reset, software can enable the PLL. The program must configure and activate the PLL, wait for the PLL to lock, and then connect to the PLL as a clock source. The PLL settling time is 100 μ s.

7.23.8 Reset Generation Unit (RGU)

The RGU allows generation of independent reset signals for individual blocks and peripherals on the LPC435x/3x/2x/1x.

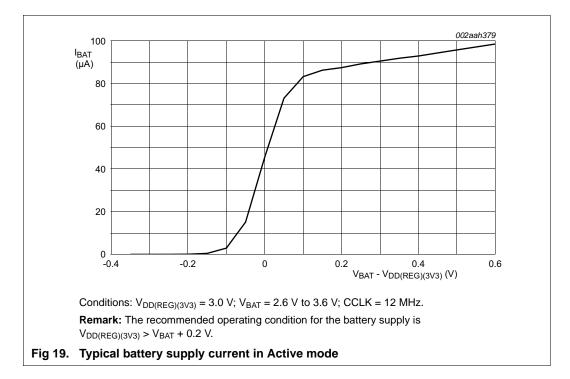
7.23.9 Power Management Controller (PMC)

The PMC controls the power to the cores, peripherals, and memories.

The LPC435x/3x/2x/1x support the following power modes in order from highest to lowest power consumption:

- 1. Active mode
- 2. Sleep mode
- 3. Power-down modes:
 - a. Deep-sleep mode
 - b. Power-down mode
 - c. Deep power-down mode

Active mode and sleep mode apply to the state of the core. In a dual-core system, either core can be in active or sleep mode independently of the other core.


If the core is in Active mode, it is fully operational and can access peripherals and memories as configured by software. If the core is in Sleep mode, it receives no clocks, but peripherals and memories remain running.

Either core can enter sleep mode from active mode independently of the other core and while the other core remains in active mode or is in sleep mode.

Power-down modes apply to the entire system. In the Power-down modes, both cores and all peripherals except for peripherals in the always-on power domain are shut down. Memories can remain powered for retaining memory contents as defined by the individual power-down mode.

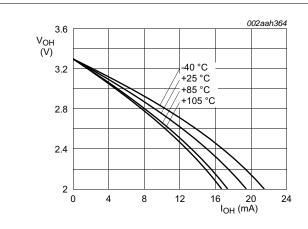
Either core in active mode can put the part into one of the three power down modes if the core is enabled to do so. If both cores are enabled for putting the system into power-down, then the system enters power-down only once both cores have received a WFI or WFE instruction.

32-bit ARM Cortex-M4/M0 microcontroller

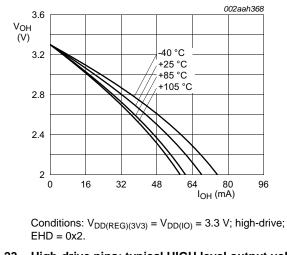
10.2 Peripheral power consumption

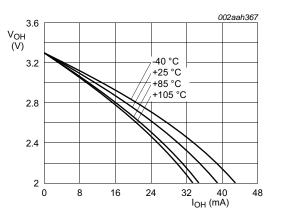
The typical power consumption at T = 25 $^{\circ}$ C for each individual peripheral is measured as follows:

- 1. Enable all branch clocks and measure the current I_{DD(REG)(3V3)}.
- 2. Disable the branch clock to the peripheral to be measured and keep all other branch clocks enabled.
- 3. Calculate the difference between measurement 1 and 2. The result is the peripheral power consumption.

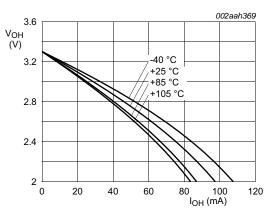

Table 12. Peripheral power consumption

Peripheral	Branch clock	I _{DD(REG)(3V3)} in mA					
		Branch clock frequency = 48 MHz	Branch clock frequency = 96 MHz				
M0 core	CLK_M4_M0APP	3.3	6.6				
I2C1	CLK_APB3_I2C1	0.01	0.01				
I2C0	CLK_APB1_I2C0	< 0.01	0.02				
DAC	CLK_APB3_DAC	0.01	0.02				
ADC0	CLK_APB3_ADC0	0.07	0.07				
ADC1	CLK_APB3_ADC1	0.07	0.07				
CAN0	CLK_APB3_CAN0	0.17	0.17				
CAN1	CLK_APB1_CAN1	0.16	0.15				
MOTOCON	CLK_APB1_MOTOCON	0.04	0.04				
I2S	CLK_APB1_I2S	0.09	0.08				
SPIFI	CLK_SPIFI, CLK_M4_SPIFI	1.14	2.29				

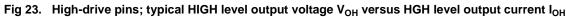

LPC435X_3X_2X_1X


© NXP Semiconductors N.V. 2016. All rights reserved.

32-bit ARM Cortex-M4/M0 microcontroller



Conditions: $V_{DD(REG)(3V3)} = V_{DD(IO)} = 3.3$ V; normal-drive; EHD = 0x0.



Conditions: $V_{DD(REG)(3V3)} = V_{DD(IO)} = 3.3 \text{ V};$ medium-drive; EHD = 0x1.

Conditions: $V_{DD(REG)(3V3)} = V_{DD(IO)} = 3.3$ V; ultra high-drive; EHD = 0x3.

32-bit ARM Cortex-M4/M0 microcontroller

11. Dynamic characteristics

11.1 Flash/EEPROM memory

Table 15. Flash characteristics

 $T_{amb} = -40 \ ^{\circ}C$ to +105 $\ ^{\circ}C$, unless otherwise specified. $V_{DD(REG)(3V3)} = 2.4 \ V$ to 3.6 V for read operations; $V_{DD(REG)(3V3)} = 2.7 \ V$ to 3.6 V for erase/program operations.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
N _{endu}	endurance	sector erase/program	<u>[1]</u>	10000	-	-	cycles
	page erase/program; page in large sector		1000	-	-	cycles	
		page erase/program; page in small sector		10000	-	-	cycles
t _{ret}	retention time	powered		10	-	-	years
		unpowered		10	-	-	years
t _{er}	erase time	page, sector, or multiple consecutive sectors		-	100	-	ms
t _{prog}	programming time		[2]	-	1	-	ms

[1] Number of erase/program cycles.

[2] Programming times are given for writing 512 bytes from RAM to the flash. Data must be written to the flash in blocks of 512 bytes.

Table 16. EEPROM characteristics

 $T_{amb} = -40$ °C to +105 °C; $V_{DD(REG)(3V3)} = 2.7$ V to 3.6 V.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
f _{clk}	clock frequency			800	1500	1600	kHz
N _{endu}	endurance			100 000	-	-	cycles
t _{ret}	retention time	$T_{amb} = -40 \ ^{\circ}C \ to +85 \ ^{\circ}C$		20	-	-	years
		$85 \text{ °C} < T_{amb} \le 105 \text{ °C}$		10	-	1600 kHz - cycles - years - years - ns - ns - ms - ms - ns - ns	years
t _a		120	-	ns			
				-	1.99	-	ms
		erase/program; f _{clk} = 1600 kHz		-	1.87	-	kHz cycles years years ns ms ms ns ns ns ns ns ns ns
t _{wait}	wait time	read; RPHASE1	[1]	70	 120 - 1.99 -	ns	
		read; RPHASE2	[1]	35	-	-	ns
		write; PHASE1	[1]	20	-	-	ns
		write; PHASE2	[1]	40	-	-	ns
		write; PHASE3	[1]	10	-	-	ns

[1] See the LPC43xx user manual how to program the wait states for the different read (RPHASEx) and erase/program phases (PHASEx)

32-bit ARM Cortex-M4/M0 microcontroller

11.4 Crystal oscillator

Table 19. Dynamic characteristic: oscillator

 $T_{amb} = -40$ °C to +105 °C; $V_{DD(10)}$ over specified ranges; 2.4 V $\leq V_{DD(REG)(3V3)} \leq 3.6$ V.[1]

Symbol	Parameter	Conditions		Min	Typ[2]	Max	Unit				
Low-frequency mode (1-20 MHz) ^[5]											
t _{jit(per)}	period jitter time	5 MHz crystal	[3][4]	-	13.2	-	ps				
		10 MHz crystal		-	6.6	-	ps				
		15 MHz crystal		-	4.8	-	ps				
High-frequ	uency mode (20 - 25	MHz)[6]			ŀ	i					
t _{jit(per)}	period jitter time	20 MHz crystal	[3][4]	-	4.3	-	ps				
		25 MHz crystal		-	3.7	-	ps				

[1] Parameters are valid over operating temperature range unless otherwise specified.

- [2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.
- [3] Indicates RMS period jitter.
- [4] PLL-induced jitter is not included.
- [5] Select HF = 0 in the XTAL_OSC_CTRL register.
- [6] Select HF = 1 in the XTAL_OSC_CTRL register.

11.5 IRC oscillator

Table 20. Dynamic characteristic: IRC oscillator

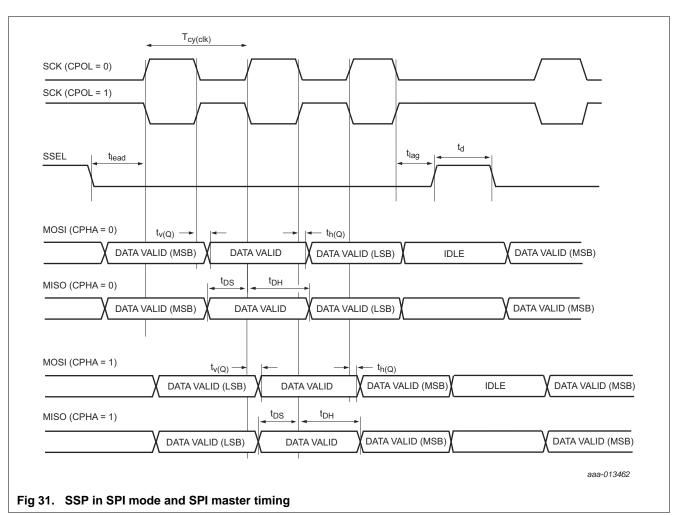
 $2.4 V \le V_{DD(REG)(3V3)} \le 3.6 V$

Symbol	Parameter	Conditions	Min	Typ <u>[1]</u>	Max	Unit
f _{osc(RC)} internal RC oscillator frequency		-40 °C \leq T _{amb} $<$ 0 °C	12.0 - 3 %	12.0	12.0 + 3 %	MHz
	frequency	$0 \ ^{\circ}C \le T_{amb} \le 85 \ ^{\circ}C$	12.0 - 1.5 %	12.0	12.0 + 1.5 %	MHz
		$85 \ ^\circ C < T_{amb} < 105 \ ^\circ C$	12.0 - 3 %	12.0	12.0 + 3 %	MHz

 Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.

11.6 RTC oscillator

See Section 13.3 for connecting the RTC oscillator to an external clock source.


Table 21. Dynamic characteristic: RTC oscillator

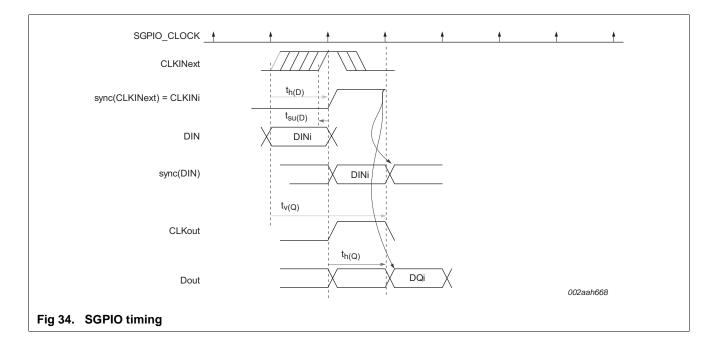
 $T_{amb} = -40 \text{ °C to } +105 \text{ °C}; 2.4 \text{ V} \le V_{DD(REG)(3V3)} \le 3.6 \text{ V or } 2.4 \text{ V} \le V_{BAT} \le 3.6 \text{ V}_{emb}^{[1]}$

Symbol	Parameter	Conditions	Min	Typ <u>[1]</u>	Мах	Unit
fi	input frequency	-	-	32.768	-	kHz
I _{CC(osc)}	oscillator supply current			280	800	nA

[1] Parameters are valid over operating temperature range unless otherwise specified.

32-bit ARM Cortex-M4/M0 microcontroller

11.14 SSP/SPI timing diagrams

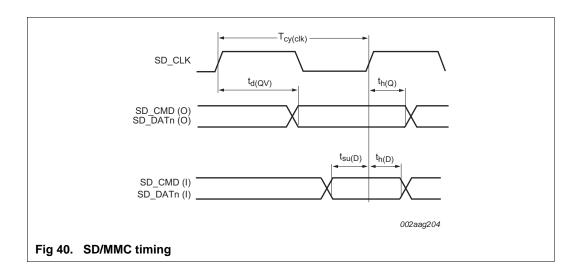

32-bit ARM Cortex-M4/M0 microcontroller

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
t _{su(D)}	data input set-up time			2	-	-	ns
t _{h(D)}	data input hold time		<u>[1]</u>	T _{SGPIO} + 2	-	-	ns
t _{su(D)}	data input set-up time	sampled by SGPIO_CLOCK	<u>[1]</u>	T _{SGPIO} + 2	-	-	ns
t _{h(D)}	data input hold time	sampled by SGPIO_CLOCK	<u>[1]</u>	T _{SGPIO} + 2	-	-	ns
t _{v(Q)}	data output valid time		[1]	-	-	$2 \times T_{SGPIO}$	ns
t _{h(Q)}	data output hold time		<u>[1]</u>	T _{SGPIO}	-		ns
t _{v(Q)}	data output valid time	sampled by SGPIO_CLOCK	<u>[1]</u>	-3	-	3	ns
t _{h(Q)}	data output hold time	sampled by SGPIO_CLOCK	<u>[1]</u>	-3	-	3	ns

Table 30. Dynamic characteristics: SGPIO

 $T_{amb} = -40$ °C to +105 °C; 2.4 V $\leq V_{DD(REG)(3V3)} \leq 3.6$ V; 2.7 V $\leq V_{DD(IO)} \leq 3.6$ V. Simulated values.

[1] SGPIO_CLOCK is the internally generated SGPIO clock. $T_{SGPIO} = 1/f_{SGPIO_CLOCK}$.


32-bit ARM Cortex-M4/M0 microcontroller

11.20 SD/MMC

Table 37. Dynamic characteristics: SD/MMC

 $T_{amb} = -40 \degree C$ to +105 $\degree C$, 2.4 V $\leq V_{DD(REG)(3V3)} \leq 3.6$ V; 2.7 V $\leq V_{DD(IO)} \leq 3.6$ V, $C_L = 20$ pF. SAMPLE_DELAY = 0x9, DRV_DELAY = 0x6 in the SDDELAY register, sampled at 90 % and 10 % of the signal level, EHS = 1 for SD_CLK pin, EHS = 0 for SD_DATn and SD_CMD pins. Simulated values.

Symbol	Parameter	Conditions	Min	Max	Unit
f _{clk}	clock frequency	on pin SD_CLK; data transfer mode	-	52	MHz
t _{su(D)}	data input set-up time	on pins SD_DATn as inputs	5.2	-	ns
		on pins SD_CMD as inputs	7	-	ns
t _{h(D)}	data input hold time	on pins SD_DATn as inputs	0.2	-	ns
		on pins SD_CMD as inputs	-1		ns
t _{d(QV)}	data output valid delay	on pins SD_DATn as outputs	-	15.7	ns
	time	on pins SD_CMD as outputs	-	15.9	ns
t _{h(Q)}	data output hold time	on pins SD_DATn as outputs	3.5	-	ns
		on pins SD_CMD as outputs	3.5	-	ns

11.21 LCD

Table 38. Dynamic characteristics: LCD

 $T_{amb} = -40$ °C to 105 °C; 2.4 V $\leq V_{DD(REG)(3V3)} \leq 3.6$ V; 2.7 V $\leq V_{DD(IO)} \leq 3.6$ V; C_L = 20 pF. Simulated values.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{clk}	clock frequency	on pin LCD_DCLK	-	50	-	MHz
t _{d(QV)}	data output valid delay time		-	-	17	ns
t _{h(Q)}	data output hold time		8.5	-	-	ns

32-bit ARM Cortex-M4/M0 microcontroller

12. ADC/DAC electrical characteristics

Table 39. ADC characteristics

 $V_{DDA(3V3)}$ over specified ranges; $T_{amb} = -40 \ \text{C}$ to +105 C; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
VIA	analog input voltage			0	-	V _{DDA(3V3)}	V
C _{ia}	analog input capacitance			-	-	2	pF
E _D	differential linearity error	$2.7~\text{V} \leq \text{V}_{DDA(3V3)} \leq 3.6~\text{V}$	[1][2]	-	±0.8	-	LSB
		$2.4 \text{ V} \le \text{V}_{\text{DDA}(3\text{V}3)} < 2.7 \text{ V}$		-	±1.0	-	LSB
E _{L(adj)}	integral non-linearity	$2.7~\text{V} \leq \text{V}_{DDA(3V3)} \leq 3.6~\text{V}$	[3]	-	±0.8	-	LSB
		$2.4 \text{ V} \le \text{V}_{\text{DDA}(3\text{V}3)} < 2.7 \text{ V}$		-	±1.5	-	LSB
Eo	offset error	$2.7 \ V \le V_{DDA(3V3)} \le 3.6 \ V$	[4]	-	±0.15	-	LSB
		$2.4 \text{ V} \le \text{V}_{\text{DDA}(3\text{V}3)} < 2.7 \text{ V}$		-	±0.15	-	LSB
E _G	gain error	$2.7~\text{V} \leq \text{V}_{DDA(3V3)} \leq 3.6~\text{V}$	[5]	-	±0.3	-	%
		$2.4 \text{ V} \le \text{V}_{\text{DDA}(3\text{V}3)} < 2.7 \text{ V}$		-	±0.35	-	%
Ε _T	absolute error	$2.7~\text{V} \leq \text{V}_{DDA(3V3)} \leq 3.6~\text{V}$	[6]	-	±3	-	LSB
		$2.4 \text{ V} \le \text{V}_{\text{DDA}(3\text{V}3)} < 2.7 \text{ V}$		-	±4	-	LSB
R _{vsi}	voltage source interface resistance	see Figure 42		-	-	$\begin{array}{c} 1/(7\times f_{clk(ADC)}\times \\ C_{ia}) \end{array}$	kΩ
R _i	input resistance		[7][8]	-	-	1.2	MΩ
f _{clk(ADC)}	ADC clock frequency			-	-	4.5	MHz
f _s	sampling frequency	10-bit resolution; 11 clock cycles		-	-	400	kSamples/s
		2-bit resolution; 3 clock cycles				1.5	MSamples/s

[1] The ADC is monotonic, there are no missing codes.

[2] The differential linearity error (E_D) is the difference between the actual step width and the ideal step width. See Figure 41.

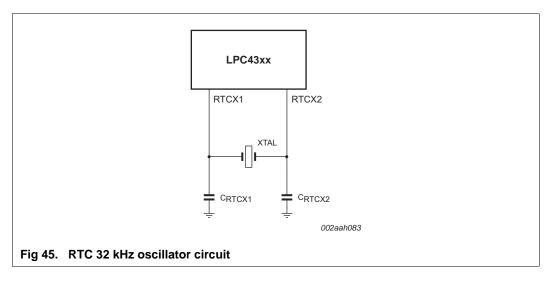
[3] The integral non-linearity (E_{L(adj)}) is the peak difference between the center of the steps of the actual and the ideal transfer curve after appropriate adjustment of gain and offset errors. See <u>Figure 41</u>.

[4] The offset error (E_O) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the ideal curve. See Figure 41.

[5] The gain error (E_G) is the relative difference in percent between the straight line fitting the actual transfer curve after removing offset error, and the straight line which fits the ideal transfer curve. See <u>Figure 41</u>.

[6] The absolute error (E_T) is the maximum difference between the center of the steps of the actual transfer curve of the non-calibrated ADC and the ideal transfer curve. See <u>Figure 41</u>.

[7] $T_{amb} = 25 \ ^{\circ}C.$


[8] Input resistance R_i depends on the sampling frequency fs: R_i = 2 k Ω + 1 / (f_s × C_{ia}).

32-bit ARM Cortex-M4/M0 microcontroller

13.3 RTC oscillator

In the RTC oscillator circuit, only the crystal (XTAL) and the capacitances C_{RTCX1} and C_{RTCX2} need to be connected externally. Typical capacitance values for C_{RTCX1} and C_{RTCX2} are $C_{RTCX1/2} = 20$ (typical) ± 4 pF.

An external clock can be connected to RTCX1 if RTCX2 is left open. The recommended amplitude of the clock signal is $V_{i(RMS)}$ = 100 mV to 200 mV with a coupling capacitance of 5 pF to 10 pF.

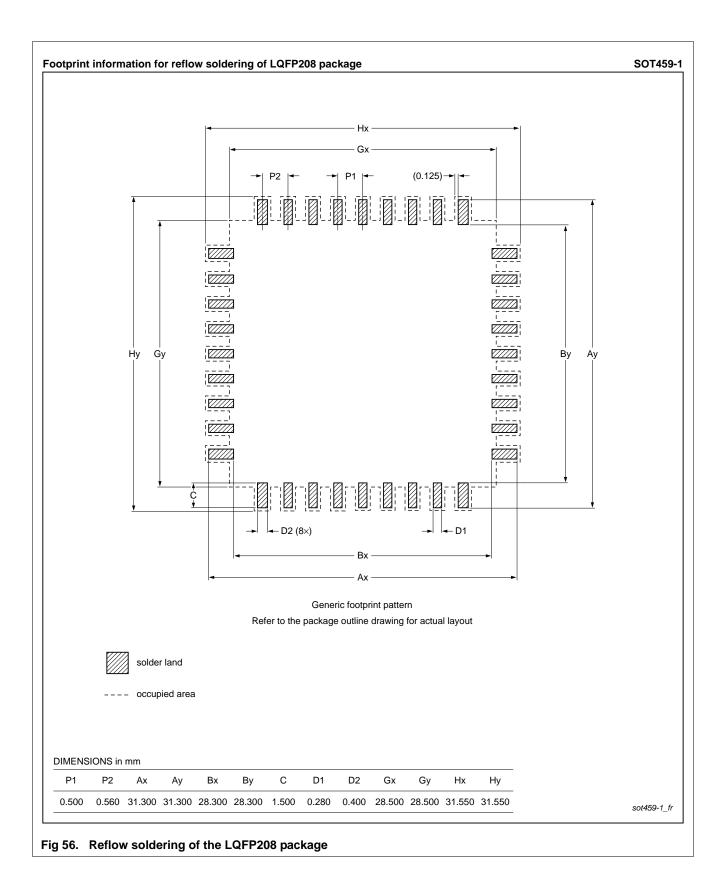
13.4 XTAL and RTCX Printed Circuit Board (PCB) layout guidelines

Connect the crystal on the PCB as close as possible to the oscillator input and output pins of the chip. Take care that the load capacitors C_{X1} , C_{X2} , and C_{X3} in case of third overtone crystal usage have a common ground plane. Also connect the external components to the ground plain. To keep the noise coupled in via the PCB as small as possible, make loops and parasitics as small as possible. Choose smaller values of C_{X1} and C_{X2} if parasitics increase in the PCB layout.

Ensure that no high-speed or high-drive signals are near the RTCX1/2 signals.

13.5 Standard I/O pin configuration

Figure 46 shows the possible pin modes for standard I/O pins with analog input function:


- Digital output driver enabled/disabled
- Digital input: Pull-up enabled/disabled
- Digital input: Pull-down enabled/disabled
- Digital input: Repeater mode enabled/disabled
- Digital input: Input buffer enabled/disabled
- Analog input

The default configuration for standard I/O pins is input buffer disabled and pull-up enabled. The weak MOS devices provide a drive capability equivalent to pull-up and pull-down resistors.

NXP Semiconductors

LPC435x/3x/2x/1x

32-bit ARM Cortex-M4/M0 microcontroller

32-bit ARM Cortex-M4/M0 microcontroller

16. Abbreviations

AcronymDescriptionADCAnalog-to-Digital ConverterAHBAdvanced High-performance BusAPBAdvanced Peripheral BusAPIApplication Programming InterfaceBODBrownOut DetectionCANController Area NetworkCMACCipher-based Message Authentication CodeCSMA/CDCarrier Sense Multiple Access with Collision DetectionDACDigital-to-Analog ConverterDC-DCDirect Current-to-Direct CurrentDMADirect Memory AccessGPIOGeneral Purpose Input/OutputIRCInfrared Data AssociationJTAGJoint Test Action GroupLCDLiquid Crystal DisplayLSBLeast Significant BitMACMedia Access ControlMCUMicroController UnitMIIMMedia Independent Interface Managementn.c.not connectedOTGOn-The-GoPHYPhysical LayerPLLPhase-Locked LoopPWMPulse Width ModulatorAccessControlPWMPulse Width Modulator	Table 46. Abbreviations					
AHBAdvanced High-performance BusAPBAdvanced Peripheral BusAPIApplication Programming InterfaceBODBrownOut DetectionCANController Area NetworkCMACCipher-based Message Authentication CodeCSMA/CDCarrier Sense Multiple Access with Collision DetectionDACDigital-to-Analog ConverterDC-DCDirect Current-to-Direct CurrentDMADirect Memory AccessGPIOGeneral Purpose Input/OutputIRCInternal RCIrDAInfrared Data AssociationJTAGJoint Test Action GroupLCDLiquid Crystal DisplayLSBLeast Significant BitMACMedia Access ControlMCUMicroController UnitMIIMMedia Independent Interface Managementn.c.not connectedOHCIOpen Host Controller InterfaceOTGOn-The-GoPHYPhysical LayerPLLPower Mode ControlPWMPulse Width Modulator	Acronym	Description				
APBAdvanced Peripheral BusAPIApplication Programming InterfaceBODBrownOut DetectionCANController Area NetworkCMACCipher-based Message Authentication CodeCSMA/CDCarrier Sense Multiple Access with Collision DetectionDACDigital-to-Analog ConverterDC-DCDirect Current-to-Direct CurrentDMADirect Memory AccessGPIOGeneral Purpose Input/OutputIRCInternal RCIrDAInfrared Data AssociationJTAGJoint Test Action GroupLCDLiquid Crystal DisplayLSBLeast Significant BitMACMedia Access ControlMCUMicroController UnitMIIMMedia Independent Interface Managementn.c.not connectedOHCIOpen Host Controller InterfaceOTGOn-The-GoPHYPhysical LayerPLLPhase-Locked LoopPWMPulse Width Modulator	ADC	Analog-to-Digital Converter				
APIApplication Programming InterfaceBODBrownOut DetectionCANController Area NetworkCMACCipher-based Message Authentication CodeCSMA/CDCarrier Sense Multiple Access with Collision DetectionDACDigital-to-Analog ConverterDC-DCDirect Current-to-Direct CurrentDMADirect Memory AccessGPIOGeneral Purpose Input/OutputIRCInternal RCIrDAInfrared Data AssociationJTAGJoint Test Action GroupLCDLiquid Crystal DisplayLSBLeast Significant BitMACMedia Access ControlMCUMicroController UnitMIIMMedia Independent Interface Managementn.c.not connectedOTGOn-The-GoPHYPhysical LayerPLLPhase-Locked LoopPWMPulse Width Modulator	AHB	Advanced High-performance Bus				
BOD BrownOut Detection CAN Controller Area Network CMAC Cipher-based Message Authentication Code CSMA/CD Carrier Sense Multiple Access with Collision Detection DAC Digital-to-Analog Converter DC-DC Direct Current-to-Direct Current DMA Direct Memory Access GPIO General Purpose Input/Output IRC Internal RC IrDA Infrared Data Association JTAG Joint Test Action Group LCD Liquid Crystal Display LSB Least Significant Bit MAC Media Access Control MCU MicroController Unit MIIM Media Independent Interface Management n.c. not connected OHCI Open Host Controller Interface OTG On-The-Go PHY Physical Layer PLL Phase-Locked Loop PMC Power Mode Control PWM Pulse Width Modulator	APB	Advanced Peripheral Bus				
CANController Area NetworkCMACCipher-based Message Authentication CodeCSMA/CDCarrier Sense Multiple Access with Collision DetectionDACDigital-to-Analog ConverterDC-DCDirect Current-to-Direct CurrentDMADirect Memory AccessGPIOGeneral Purpose Input/OutputIRCInternal RCIrDAJoint Test Action GroupLCDLiquid Crystal DisplayLSBLeast Significant BitMACMedia Access ControlMCUMicroController UnitMIIMMedia Independent Interface Managementn.c.not connectedOTGOn-The-GoPHYPhysical LayerPLLPhase-Locked LoopPWMPulse Width Modulator	API	Application Programming Interface				
CMACCipher-based Message Authentication CodeCSMA/CDCarrier Sense Multiple Access with Collision DetectionDACDigital-to-Analog ConverterDC-DCDirect Current-to-Direct CurrentDMADirect Memory AccessGPIOGeneral Purpose Input/OutputIRCInternal RCIrDAInfrared Data AssociationJTAGJoint Test Action GroupLCDLiquid Crystal DisplayLSBLeast Significant BitMACMedia Access ControlMCUMicroController UnitMIIMMedia Independent Interface Managementn.c.not connectedOTGOn-The-GoPHYPhysical LayerPLLPhase-Locked LoopPWMPulse Width Modulator	BOD	BrownOut Detection				
CSMA/CDCarrier Sense Multiple Access with Collision DetectionDACDigital-to-Analog ConverterDC-DCDirect Current-to-Direct CurrentDMADirect Memory AccessGPIOGeneral Purpose Input/OutputIRCInternal RCIrDAInfrared Data AssociationJTAGJoint Test Action GroupLCDLiquid Crystal DisplayLSBLeast Significant BitMACMedia Access ControlMCUMicroController UnitMIIMMedia Independent Interface Managementn.c.not connectedOTGOn-The-GoPHYPhysical LayerPLLPhase-Locked LoopPWMPulse Width Modulator	CAN	Controller Area Network				
DACDigital-to-Analog ConverterDC-DCDirect Current-to-Direct CurrentDMADirect Memory AccessGPIOGeneral Purpose Input/OutputIRCInternal RCIrDAInfrared Data AssociationJTAGJoint Test Action GroupLCDLiquid Crystal DisplayLSBLeast Significant BitMACMedia Access ControlMCUMicroController UnitMIIMMedia Independent Interface Managementn.c.not connectedOHCIOpen Host Controller InterfaceOTGOn-The-GoPHYPhysical LayerPLLPhase-Locked LoopPWMPulse Width Modulator	CMAC	Cipher-based Message Authentication Code				
DC-DCDirect Current-to-Direct CurrentDMADirect Memory AccessGPIOGeneral Purpose Input/OutputIRCInternal RCIrDAInfrared Data AssociationJTAGJoint Test Action GroupLCDLiquid Crystal DisplayLSBLeast Significant BitMACMedia Access ControlMCUMicroController UnitMIIMMedia Independent Interface Managementn.c.not connectedOHCIOpen Host Controller InterfaceOTGOn-The-GoPHYPhysical LayerPLLPhase-Locked LoopPWMPulse Width Modulator	CSMA/CD	Carrier Sense Multiple Access with Collision Detection				
DMADirect Memory AccessGPIOGeneral Purpose Input/OutputIRCInternal RCIrDAInfrared Data AssociationJTAGJoint Test Action GroupLCDLiquid Crystal DisplayLSBLeast Significant BitMACMedia Access ControlMCUMicroController UnitMIIMMedia Independent Interface Managementn.c.not connectedOHCIOpen Host Controller InterfaceOTGOn-The-GoPHYPhysical LayerPLLPhase-Locked LoopPWMPulse Width Modulator	DAC	Digital-to-Analog Converter				
GPIOGeneral Purpose Input/OutputIRCInternal RCIrDAInfrared Data AssociationJTAGJoint Test Action GroupLCDLiquid Crystal DisplayLSBLeast Significant BitMACMedia Access ControlMCUMicroController UnitMIIMMedia Independent Interface Managementn.c.not connectedOHCIOpen Host Controller InterfaceOTGOn-The-GoPHYPhysical LayerPLLPhase-Locked LoopPWMPulse Width Modulator	DC-DC	Direct Current-to-Direct Current				
IRCInternal RCIrDAInfrared Data AssociationJTAGJoint Test Action GroupLCDLiquid Crystal DisplayLSBLeast Significant BitMACMedia Access ControlMCUMicroController UnitMIIMMedia Independent Interface Managementn.c.not connectedOHCIOpen Host Controller InterfaceOTGOn-The-GoPHYPhysical LayerPLLPhase-Locked LoopPMCPower Mode ControlPWMPulse Width Modulator	DMA	Direct Memory Access				
InternationIrDAInfrared Data AssociationJTAGJoint Test Action GroupLCDLiquid Crystal DisplayLSBLeast Significant BitMACMedia Access ControlMCUMicroController UnitMIIMMedia Independent Interface Managementn.c.not connectedOHCIOpen Host Controller InterfaceOTGOn-The-GoPHYPhysical LayerPLLPhase-Locked LoopPMCPower Mode ControlPWMPulse Width Modulator	GPIO	General Purpose Input/Output				
JTAGJoint Test Action GroupLCDLiquid Crystal DisplayLSBLeast Significant BitMACMedia Access ControlMCUMicroController UnitMIIMMedia Independent Interface Managementn.c.not connectedOHCIOpen Host Controller InterfaceOTGOn-The-GoPHYPhysical LayerPLLPhase-Locked LoopPMCPower Mode ControlPWMPulse Width Modulator	IRC	Internal RC				
LCDLiquid Crystal DisplayLSBLeast Significant BitMACMedia Access ControlMCUMicroController UnitMIIMMedia Independent Interface Managementn.c.not connectedOHCIOpen Host Controller InterfaceOTGOn-The-GoPHYPhysical LayerPLLPhase-Locked LoopPMCPower Mode ControlPWMPulse Width Modulator	IrDA	Infrared Data Association				
LSBLeast Significant BitMACMedia Access ControlMCUMicroController UnitMIIMMedia Independent Interface Managementn.c.not connectedOHCIOpen Host Controller InterfaceOTGOn-The-GoPHYPhysical LayerPLLPhase-Locked LoopPMCPower Mode ControlPWMPulse Width Modulator	JTAG	Joint Test Action Group				
MACMedia Access ControlMCUMicroController UnitMIIMMedia Independent Interface Managementn.c.not connectedOHCIOpen Host Controller InterfaceOTGOn-The-GoPHYPhysical LayerPLLPhase-Locked LoopPMCPower Mode ControlPWMPulse Width Modulator	LCD	Liquid Crystal Display				
MCUMicroController UnitMIIMMedia Independent Interface Managementn.c.not connectedOHCIOpen Host Controller InterfaceOTGOn-The-GoPHYPhysical LayerPLLPhase-Locked LoopPMCPower Mode ControlPWMPulse Width Modulator	LSB	Least Significant Bit				
MIIMMedia Independent Interface Managementn.c.not connectedOHCIOpen Host Controller InterfaceOTGOn-The-GoPHYPhysical LayerPLLPhase-Locked LoopPMCPower Mode ControlPWMPulse Width Modulator	MAC	Media Access Control				
n.c.not connectedOHCIOpen Host Controller InterfaceOTGOn-The-GoPHYPhysical LayerPLLPhase-Locked LoopPMCPower Mode ControlPWMPulse Width Modulator	MCU	MicroController Unit				
OHCI Open Host Controller Interface OTG On-The-Go PHY Physical Layer PLL Phase-Locked Loop PMC Power Mode Control PWM Pulse Width Modulator	MIIM	Media Independent Interface Management				
OTG On-The-Go PHY Physical Layer PLL Phase-Locked Loop PMC Power Mode Control PWM Pulse Width Modulator	n.c.	not connected				
PHY Physical Layer PLL Phase-Locked Loop PMC Power Mode Control PWM Pulse Width Modulator	OHCI	Open Host Controller Interface				
PLL Phase-Locked Loop PMC Power Mode Control PWM Pulse Width Modulator	OTG	On-The-Go				
PMC Power Mode Control PWM Pulse Width Modulator	PHY	Physical Layer				
PWM Pulse Width Modulator	PLL	Phase-Locked Loop				
	PMC	Power Mode Control				
	PWM	Pulse Width Modulator				
RII Repetitive Interrupt Timer	RIT	Repetitive Interrupt Timer				
RMII Reduced Media Independent Interface	RMII	Reduced Media Independent Interface				
SDRAM Synchronous Dynamic Random Access Memory	SDRAM	Synchronous Dynamic Random Access Memory				
SIMD Single Instruction Multiple Data	SIMD	Single Instruction Multiple Data				
SPI Serial Peripheral Interface	SPI					
SSI Serial Synchronous Interface	SSI	Serial Synchronous Interface				
SSP Synchronous Serial Port	SSP	Synchronous Serial Port				
UART Universal Asynchronous Receiver/Transmitter	UART	Universal Asynchronous Receiver/Transmitter				
ULPI UTMI+ Low Pin Interface	ULPI	UTMI+ Low Pin Interface				
USART Universal Synchronous Asynchronous Receiver/Transmitter	USART	Universal Synchronous Asynchronous Receiver/Transmitter				
USB Universal Serial Bus	USB	Universal Serial Bus				
UTMI USB2.0 Transceiver Macrocell Interface	UTMI	USB2.0 Transceiver Macrocell Interface				

LPC435X_3X_2X_1X

© NXP Semiconductors N.V. 2016. All rights reserved.

32-bit ARM Cortex-M4/M0 microcontroller

Document ID	Release date	Data sheet status	Change notice	Supersedes				
Modifications:	Updated Section 1 "General description".							
	 Minimum operating voltage changed from 2.2 V to 2.4 V for V_{DD(REG)(3V3)}, V_{DD(IO)}, V_{DDA(3V3)}, V_{BAT} in Table 11. 							
	 Operating 	temperature corrected in Tal	ble 27. Tamb = T _{ar}	_{mb} = -40 °C to 105 °C.				
	 Max and r Table 27. 	nin values of parameters t _{lag}	and t _{lead} corrected	d for SSP master mode in				
	Figure 32	"SSP in SPI mode and SPI s	alave timing" updat	ted.				
		lues for parameters t _{DS} , t _{DH} , numbers in Table 25.	$t_{v(Q)}, t_{h(Q)}$ for SSP	slave mode replaced by min				
	Paramete	rs t_{lead} , t_{lag} , and t_{d} added to S	SSP slave mode in	Table 27.				
	 SPIFI timing data restated for CL = 20 pF in Table 29 "Dynamic characteristics: SPIFI". 							
	 USART tir 	ning added for master and sl	lave mode in Figur	re 30 "USART timing".				
	 USB0_VB 	scription".						
	Changed	5.						
	 Updated I 	Dynamic characteristics: SD/MMC table. See Table 37.						
	 Added Ba 							
	 Updated 1 	nstead of PWM.						
	 Updated I 	(full-speed). See Table 34.						
	 Added a ta 0x0 in STA 	alculated with WAITTURN =						
	 Added a read 	 Added a remark to Table 34. 						
	 Updated Table 13 "BOD static characteristics[1]". Removed BOD in and 1; removed Reset levels 0 and 1. Not applicable. 							
LPC435X_3X_2X_1X v.4	20140819	Product data sheet	-	LPC435X_3X_2X_1X v.3				

 Table 47.
 Revision history ...continued

32-bit ARM Cortex-M4/M0 microcontroller

19. Legal information

19.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

19.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

19.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

© NXP Semiconductors N.V. 2016. All rights reserved.

LPC435X 3X 2X 1X