

Welcome to E-XFL.COM

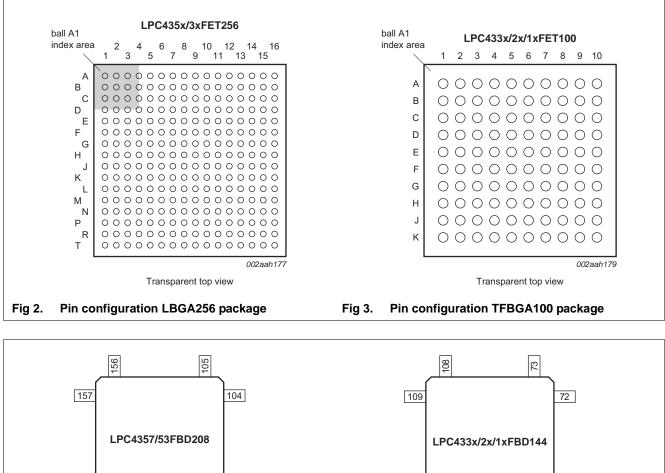
What is "Embedded - Microcontrollers"?

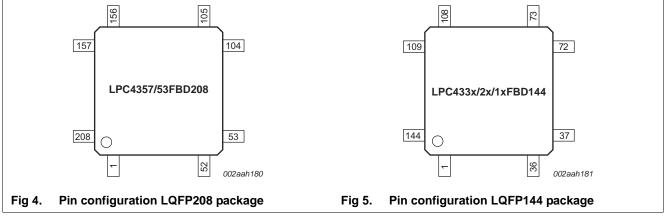
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4/M0
Core Size	32-Bit Dual-Core
Speed	204MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, Microwire, SD, SPI, SSI, SSP, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	83
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	16K x 8
RAM Size	136К х 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 8x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/lpc4327jbd144e


Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

32-bit ARM Cortex-M4/M0 microcontroller

Pinning information 6.

6.1 Pinning

32-bit ARM Cortex-M4/M0 microcontroller

Pin name	LBGA256	TFBGA100	LQFP208	LQFP144		Reset state [1]	Type	Description
P1_12	R9	K7	78	56	[2]	N;	I/O	GPI01[5] — General purpose digital input/output pin.
						PU	I	U1_DCD — Data Carrier Detect input for UART1.
							-	R — Function reserved.
							I/O	EMC_D5 — External memory data line 5.
							I	T0_CAP1 — Capture input 1 of timer 0.
							-	R — Function reserved.
							I/O	SGPIO8 — General purpose digital input/output pin.
							I/O	SD_DAT3 — SD/MMC data bus line 3.
P1_13	R10	H8	83	60	[2]	N;	I/O	GPIO1[6] — General purpose digital input/output pin.
						PU	0	U1_TXD — Transmitter output for UART1.
							-	R — Function reserved.
							I/O	EMC_D6 — External memory data line 6.
							I	T0_CAP0 — Capture input 0 of timer 0.
							-	R — Function reserved.
							I/O	SGPIO9 — General purpose digital input/output pin.
							I	SD_CD — SD/MMC card detect input.
P1_14	R11	J8	85	61	[2]	N;	I/O	GPIO1[7] — General purpose digital input/output pin.
						PU	I	U1_RXD — Receiver input for UART1.
							-	R — Function reserved.
							I/O	EMC_D7 — External memory data line 7.
							0	T0_MAT2 — Match output 2 of timer 0.
							-	R — Function reserved.
							I/O	SGPIO10 — General purpose digital input/output pin.
							-	R — Function reserved.
P1_15	T12	K8	87	62	[2]	N;	I/O	GPIO0[2] — General purpose digital input/output pin.
						PU	0	U2_TXD — Transmitter output for USART2.
							I/O	SGPIO2 — General purpose digital input/output pin.
							I	ENET_RXD0 — Ethernet receive data 0 (RMII/MII interface).
							0	T0_MAT1 — Match output 1 of timer 0.
							-	R — Function reserved.
							I/O	EMC_D8 — External memory data line 8.
							-	R — Function reserved.

 Table 3.
 Pin description ...continued

32-bit ARM Cortex-M4/M0 microcontroller

Pin name	LBGA256	TFBGA100	LQFP208	LQFP144		Reset state [1]	Type	Description
P6_0	M12	H7	105	73	[2]	N;	-	R — Function reserved.
						PU	0	I2S0_RX_MCLK — I2S receive master clock.
							-	R — Function reserved.
							-	R — Function reserved.
							I/O	I2S0_RX_SCK — Receive Clock. It is driven by the master and received by the slave. Corresponds to the signal SCK in the l^2S -bus specification.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.
P6_1	R15	G5	107	74	[2]	N;	I/O	GPIO3[0] — General purpose digital input/output pin.
						PU	0	EMC_DYCS1 — SDRAM chip select 1.
							I/O	U0_UCLK — Serial clock input/output for USART0 in synchronous mode.
							I/O	I2S0_RX_WS — Receive Word Select. It is driven by the master and received by the slave. Corresponds to the signal WS in the PS -bus specification.
							-	R — Function reserved.
							I	T2_CAP0 — Capture input 2 of timer 2.
							-	R — Function reserved.
							-	R — Function reserved.
P6_2	L13	J9	111	78	[2]	N;	I/O	GPIO3[1] — General purpose digital input/output pin.
						PU	0	EMC_CKEOUT1 — SDRAM clock enable 1.
							I/O	U0_DIR — RS-485/EIA-485 output enable/direction control for USART0.
							I/O	I2S0_RX_SDA — I2S Receive data. It is driven by the transmitter and read by the receiver. Corresponds to the signal SD in the PS -bus specification.
							-	R — Function reserved.
							I	T2_CAP1 — Capture input 1 of timer 2.
							-	R — Function reserved.
1							-	R — Function reserved.

 Table 3.
 Pin description ...continued

32-bit ARM Cortex-M4/M0 microcontroller

Table 3.	Pin de	Pin descriptioncontinued							
Pin name		LBGA256	TFBGA100	LQFP208	LQFP144		Reset state	Type	Description
PB_1		A14	-	175	-	[2]	N;	-	R — Function reserved.
							PU	I	USB1_ULPI_DIR — ULPI link DIR signal. Controls the ULP data line direction.
								0	LCD_VD22 — LCD data.
								-	R — Function reserved.
								I/O	GPIO5[21] — General purpose digital input/output pin.
								0	CTOUT_6 — SCT output 6. Match output 2 of timer 1.
								-	R — Function reserved.
								-	R — Function reserved.
PB_2		B12	-	177	-	[2]	N;	-	R — Function reserved.
							PU	I/O	USB1_ULPI_D7 — ULPI link bidirectional data line 7.
								0	LCD_VD21 — LCD data.
								-	R — Function reserved.
								I/O	GPIO5[22] — General purpose digital input/output pin.
							0	CTOUT_7 — SCT output 7. Match output 3 of timer 1.	
								-	R — Function reserved.
								-	R — Function reserved.
PB_3		A13	-	178	-	[2]	N;	-	R — Function reserved.
							PU	I/O	USB1_ULPI_D6 — ULPI link bidirectional data line 6.
								0	LCD_VD20 — LCD data.
								-	R — Function reserved.
								I/O	GPIO5[23] — General purpose digital input/output pin.
								0	CTOUT_8 — SCT output 8. Match output 0 of timer 2.
								-	R — Function reserved.
								-	R — Function reserved.
PB_4		B11	-	180	-	[2]	N;	-	R — Function reserved.
							PU	I/O	USB1_ULPI_D5 — ULPI link bidirectional data line 5.
								0	LCD_VD15 — LCD data.
								-	R — Function reserved.
								I/O	GPIO5[24] — General purpose digital input/output pin.
								I	CTIN_5 — SCT input 5. Capture input 2 of timer 2.
								-	R — Function reserved.
								-	R — Function reserved.

 Table 3.
 Pin description ...continued

32-bit ARM Cortex-M4/M0 microcontroller

Pin name	LBGA256	TFBGA100	LQFP208	LQFP144		Reset state [1]	Type	Description
		Ë		Ľ	[2]		Ł	P. Evention accorded
PB_5	A12	-	181	-	<u>[2]</u>	N; PU	-	R — Function reserved.
							I/O	USB1_ULPI_D4 — ULPI link bidirectional data line 4.
							0	LCD_VD14 — LCD data.
							-	R — Function reserved.
							I/O	GPI05[25] — General purpose digital input/output pin.
								CTIN_7 — SCT input 7.
							0	LCD_PWR — LCD panel power enable.
							-	R — Function reserved.
PB_6	A6	-	-	-	[5]	N; PU	-	R — Function reserved.
						PU	I/O	USB1_ULPI_D3 — ULPI link bidirectional data line 3.
							0	LCD_VD13 — LCD data.
							-	R — Function reserved.
							I/O	GPIO5[26] — General purpose digital input/output pin.
							I	CTIN_6 — SCT input 6. Capture input 1 of timer 3.
							0	LCD_VD19 — LCD data.
							-	R — Function reserved.
							AI	ADC0_6 — ADC0 and ADC1, input channel 6. Configure the pin as GPIO input and use the ADC function select register in the SCU to select the ADC.
PC_0	D4	-	7	-	[5]	N;	-	R — Function reserved.
						PU	I	USB1_ULPI_CLK — ULPI link CLK signal. 60 MHz clock generated by the PHY.
							-	R — Function reserved.
							I/O	ENET_RX_CLK — Ethernet Receive Clock (MII interface).
							0	LCD_DCLK — LCD panel clock.
							-	R — Function reserved.
							-	R — Function reserved.
							I/O	SD_CLK — SD/MMC card clock.
							AI	ADC1_1 — ADC1 and ADC0, input channel 1. Configure the pin as input (USB_ULPI_CLK) and use the ADC function select register in the SCU to select the ADC.
PC_1	E4	-	9	-	[2]	N;	I/O	USB1_ULPI_D7 — ULPI link bidirectional data line 7.
						PU	-	R — Function reserved.
							I	U1_RI — Ring Indicator input for UART 1.
							0	ENET_MDC — Ethernet MIIM clock.
							I/O	GPIO6[0] — General purpose digital input/output pin.
							-	R — Function reserved.
							1	T3_CAP0 — Capture input 0 of timer 3.
							O	SD_VOLT0 — SD/MMC bus voltage select output 0.
							Ŭ	

Table 3. Pin description ...continued

32-bit ARM Cortex-M4/M0 microcontroller

Pin name	LBGA256	TFBGA100	LQFP208	LQFP144		Reset state [1]	Type	Description
WAKEUP0	A9	A4	187	130	[11]	I; IA	1	External wake-up input; can raise an interrupt and can cause wake-up from any of the low power modes. A pulse with a duration of at least 45 ns wakes up the part.
								Input 0 of the event monitor.No internal pull-up is enabled when this pin is configured as input.
WAKEUP1	A10	-	-	-	[11]	I; IA	I	External wake-up input; can raise an interrupt and can cause wake-up from any of the low power modes. A pulse with a duration of at least 45 ns wakes up the part. Input 1 of the event monitor. No internal pull-up is enabled when this pin is configured as input.
WAKEUP2	C9	-	-	-	[11]	I; IA	1	External wake-up input; can raise an interrupt and can cause wake-up from any of the low power modes. A pulse with a duration of at least 45 ns wakes up the part. Input 2 of the event monitor. This pin does not have an internal pull-up.
WAKEUP3	D8	-	-	-	<u>[11]</u>	I; IA	I	External wake-up input; can raise an interrupt and can cause wake-up from any of the low power modes. A pulse with a duration of at least 45 ns wakes up the part. This pin does not have an internal pull-up.
ADC pins								
ADC0_0/ ADC1_0/DAC	E3	A2	8	6	[8]	I; IA	I	ADC input channel 0. Shared between 10-bit ADC0/1 and DAC.
ADC0_1/ ADC1_1	C3	A1	4	2	<u>[8]</u>	I; IA	I	ADC input channel 1. Shared between 10-bit ADC0/1.
ADC0_2/ ADC1_2	A4	B3	206	143	[8]	I; IA	I	ADC input channel 2. Shared between 10-bit ADC0/1.
ADC0_3/ ADC1_3	B5	A3	200	139	<u>[8]</u>	I; IA	I	ADC input channel 3. Shared between 10-bit ADC0/1.
ADC0_4/ ADC1_4	C6	-	199	138	[8]	I; IA	I	ADC input channel 4. Shared between 10-bit ADC0/1.
ADC0_5/ ADC1_5	B3	-	208	144	[8]	I; IA	I	ADC input channel 5. Shared between 10-bit ADC0/1.
ADC0_6/ ADC1_6	A5	-	204	142	<u>[8]</u>	I; IA	I	ADC input channel 6. Shared between 10-bit ADC0/1.
ADC0_7/ ADC1_7	C5	-	197	136	[8]	I; IA	I	ADC input channel 7. Shared between 10-bit ADC0/1.
RTC								
RTC_ALARM	A11	C3	186	129	[11]	-	0	RTC controlled output.
RTCX1	A8	A5	182	125	[8]	-	I	Input to the RTC 32 kHz ultra-low power oscillator circuit.
RTCX2	B8	B5	183	126	<u>[8]</u>	-	0	Output from the RTC 32 kHz ultra-low power oscillator circuit.
SAMPLE	B9	-	-	-	[11]	0	0	Event monitor sample output.
Crystal oscillat	or pins	6			.11			

 Table 3.
 Pin description ...continued

32-bit ARM Cortex-M4/M0 microcontroller

7. Functional description

7.1 Architectural overview

The ARM Cortex-M4 includes three AHB-Lite buses: the system bus, the I-CODE bus, and the D-code bus. The I-CODE and D-code core buses allow for concurrent code and data accesses from different slave ports.

The LPC435x/3x/2x/1x use a multi-layer AHB matrix to connect the ARM Cortex-M4 buses and other bus masters to peripherals in a flexible manner that optimizes performance by allowing peripherals that are on different slaves ports of the matrix to be accessed simultaneously by different bus masters.

An ARM Cortex-M0 co-processor is included in the LPC435x/3x/2x/1x, capable of off-loading the main ARM Cortex-M4 application processor. Most peripheral interrupts are connected to both processors. The processors communicate with each other via an interprocessor communication protocol.

7.2 ARM Cortex-M4 processor

The ARM Cortex-M4 CPU incorporates a 3-stage pipeline, uses a Harvard architecture with separate local instruction and data buses as well as a third bus for peripherals, and includes an internal prefetch unit that supports speculative branching. The ARM Cortex-M4 supports single-cycle digital signal processing and SIMD instructions. A hardware floating-point processor is integrated in the core. The processor includes an NVIC with up to 53 interrupts.

7.3 ARM Cortex-M0 co-processor

The ARM Cortex-M0 is a general purpose, 32-bit microprocessor, which offers high performance and very low power consumption. The ARM Cortex-M0 co-processor uses a 3-stage pipeline von Neumann architecture and a small but powerful instruction set providing high-end processing hardware. In LPC43xx, the Cortex-M0 coprocessor hardware multiply is implemented as a 32-cycle iterative multiplier. The co-processor incorporates an NVIC with 32 interrupts.

7.4 Interprocessor communication

The ARM Cortex-M4 and ARM Cortex-M0 interprocessor communication is based on using shared SRAM as mailbox and one processor raising an interrupt on the other processor's NVIC, for example after it has delivered a new message in the mailbox. The receiving processor can reply by raising an interrupt on the sending processor's NVIC to acknowledge the message.

32-bit ARM Cortex-M4/M0 microcontroller

Boot mode	Pins				Description
	P2_9	P2_8	P1_2	P1_1	
USB1	LOW	HIGH	HIGH	LOW	Boot from USB1.
SPI (SSP)	LOW	HIGH	HIGH	HIGH	Boot from SPI flash connected to the SSP0 interface on P3_3 (function SSP0_SCK), P3_6 (function SSP0_SSEL), P3_7 (function SSP0_MISO), and P3_8 (function SSP0_MOSI) ^[1]
USART3	HIGH	LOW	LOW	LOW	Enter ISP mode using USART3 pins P2_3 and P2_4.

Table 5. Boot mode when OPT BOOT_SRC bits are zero

[1] The boot loader programs the appropriate pin function at reset to boot using either SSP0 or SPIFI. **Remark:** Pin functions for SPIFI and SSP0 boot are different.

7.14 Memory mapping

The memory map shown in Figure 7 and Figure 8 is global to both the Cortex-M4 and the Cortex-M0 processors and all SRAM, flash, and EEPROM memory is shared between both processors. Each processor uses its own ARM private bus memory map for the NVIC and other system functions.

32-bit ARM Cortex-M4/M0 microcontroller

• Each slice has a 32-bit pattern match filter.

7.18 AHB peripherals

7.18.1 General Purpose DMA

The DMA controller allows peripheral-to memory, memory-to-peripheral, peripheral-to-peripheral, and memory-to-memory transactions. Each DMA stream provides unidirectional serial DMA transfers for a single source and destination. For example, a bidirectional port requires one stream for transmit and one for receives. The source and destination areas can each be either a memory region or a peripheral for master 1, but only memory for master 0.

7.18.1.1 Features

- Eight DMA channels. Each channel can support a unidirectional transfer.
- 16 DMA request lines.
- Single DMA and burst DMA request signals. Each peripheral connected to the DMA Controller can assert either a burst DMA request or a single DMA request. The DMA burst size is set by programming the DMA Controller.
- Memory-to-memory, memory-to-peripheral, peripheral-to-memory, and peripheral-to-peripheral transfers are supported.
- Scatter or gather DMA is supported through the use of linked lists. This means that the source and destination areas do not have to occupy contiguous areas of memory.
- Hardware DMA channel priority.
- AHB slave DMA programming interface. The DMA Controller is programmed by writing to the DMA control registers over the AHB slave interface.
- Two AHB bus masters for transferring data. These interfaces transfer data when a DMA request goes active. Master 1 can access memories and peripherals, master 0 can access memories only.
- 32-bit AHB master bus width.
- Incrementing or non-incrementing addressing for source and destination.
- Programmable DMA burst size. The DMA burst size can be programmed to more efficiently transfer data.
- Internal four-word FIFO per channel.
- Supports 8, 16, and 32-bit wide transactions.
- Big-endian and little-endian support. The DMA Controller defaults to little-endian mode on reset.
- An interrupt to the processor can be generated on a DMA completion or when a DMA error has occurred.
- Raw interrupt status. The DMA error and DMA count raw interrupt status can be read prior to masking.

7.18.2 SPI Flash Interface (SPIFI)

The SPI Flash Interface allows low-cost serial flash memories to be connected to the ARM Cortex-M4 processor with little performance penalty compared to parallel flash devices with higher pin count.

32-bit ARM Cortex-M4/M0 microcontroller

After a few commands configure the interface at startup, the entire flash content is accessible as normal memory using byte, halfword, and word accesses by the processor and/or DMA channels. Simple sequences of commands handle erasing and programming.

Many serial flash devices use a half-duplex command-driven SPI protocol for device setup and initialization and then move to a half-duplex, command-driven 4-bit protocol for normal operation. Different serial flash vendors and devices accept or require different commands and command formats. SPIFI provides sufficient flexibility to be compatible with common flash devices and includes extensions to help insure compatibility with future devices.

7.18.2.1 Features

- Interfaces to serial flash memory in the main memory map.
- Supports classic and 4-bit bidirectional serial protocols.
- Half-duplex protocol compatible with various vendors and devices.
- Quad SPI Flash Interface (SPIFI) with 1-, 2-, or 4-bit data at rates of up to 52 MB per second.
- Supports DMA access.

7.18.3 SD/MMC card interface

The SD/MMC card interface supports the following modes to control:

- Secure Digital memory (SD version 3.0)
- Secure Digital I/O (SDIO version 2.0)
- Consumer Electronics Advanced Transport Architecture (CE-ATA version 1.1)
- MultiMedia Cards (MMC version 4.4)

7.18.4 External Memory Controller (EMC)

Remark: The EMC is available on all LPC435x/3x/2x/1x parts. The following memory bus widths are supported:

- LBGA256 packages: 32 bit
- TFBGA100 packages: 16 bit
- LQFP208 packages: 16 bit
- LQFP144 packages: 16 bit

The LPC435x/3x/2x/1x EMC is a Memory Controller peripheral offering support for asynchronous static memory devices such as RAM, ROM, and NOR flash. In addition, it can be used as an interface with off-chip memory-mapped devices and peripherals.

Function	LBGA256	TFBGA100	LQFP208	LQFP144
A	EMC_A[23:0]	EMC_A[13:0]	EMC_A[23:0]	EMC_A[15:0]
D	EMC_D[31:0]	EMC_D[7:0]	EMC_D[15:0]	EMC_D[15:0]
BLS	EMC_BLS[3:0]	EMC_BLS0	EMC_BLS[1:0]	EMC_BLS[1:0]
CS	EMC_CS[3:0]	EMC_CS0	EMC_CS[3:0]	EMC_CS[1:0]

Table 6. EMC pinout for different packages

32-bit ARM Cortex-M4/M0 microcontroller

• Alarm interrupt can be generated for a specific date/time.

7.22.1.2 Event monitor/recorder

The event monitor/recorder allows recording and creating a time stamp of events related to the WAKEUP pins. Sensors report changes to the state of the WAKEUP pins, and the event monitor/recorder stores records of such events. The event recorder can be powered by the backup battery.

The event monitor/recorder can monitor the integrity of the device and record any tampering events.

Features

- Supports three digital event inputs in the VBAT power domain.
- An event is defined as a level change at the digital event inputs.
- For each event channel, two timestamps mark the first and the last occurrence of an event. Each channel also has a dedicated counter tracking the total number of events. Timestamp values are taken from the RTC.
- Runs in VBAT power domain, independent of system power supply. The event/recorder/monitor can therefore operate in Deep power-down mode.
- Low power consumption.
- Interrupt available if system is running.
- A qualified event can be used as a wake-up trigger.
- State of event interrupts accessible by software through GPIO.

7.22.2 Alarm timer

The alarm timer is a 16-bit timer and counts down at 1 kHz from a preset value generating alarms in intervals of up to 1 min. The counter triggers a status bit when it reaches 0x00 and asserts an interrupt if enabled.

The alarm timer is part of the RTC power domain and can be battery powered.

7.23 System control

7.23.1 Configuration registers (CREG)

The following settings are controlled in the configuration register block:

- BOD trip settings
- Oscillator output
- DMA-to-peripheral muxing
- Ethernet mode
- Memory mapping
- Timer/USART inputs
- Enabling the USB controllers

In addition, the CREG block contains the part identification and part configuration information.

32-bit ARM Cortex-M4/M0 microcontroller

9. Thermal characteristics

The average chip junction temperature, $T_{j}\,(^{\circ}C),$ can be calculated using the following equation:

$$T_j = T_{amb} + (P_D \times R_{th(j-a)}) \tag{1}$$

- T_{amb} = ambient temperature (°C),
- R_{th(j-a)} = the package junction-to-ambient thermal resistance (°C/W)
- P_D = sum of internal and I/O power dissipation

The internal power dissipation is the product of I_{DD} and V_{DD} . The I/O power dissipation of the I/O pins is often small and many times can be negligible. However it can be significant in some applications.

Table 8. Thermal characteristics

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
T _{j(max)}	maximum junction	-	-	-	125	°C
	temperature					

Table 9. Thermal resistance (LQFP packages)

Symbol	Parameter	Conditions	Thermal resista ±15 %	ance in °C/W
			LQFP144	LQFP208
R _{th(j-a)}	thermal resistance from junction to ambient	JEDEC (4.5 in \times 4 in); still air	38	31
		Single-layer (4.5 in \times 3 in); still air	50	39
R _{th(j-c)}	thermal resistance from junction to case	-	11	10

Table 10. Thermal resistance value (BGA packages)

Symbol	Parameter	Conditions	Thermal resistance in °C/W ±15 %			
			LBGA256	TFBGA100		
R _{th(j-a)}	thermal resistance from junction to ambient	JEDEC (4.5 in × 4 in); still air	29	46		
		8-layer (4.5 in × 3 in); still air	24	37		
R _{th(j-c)}	thermal resistance from junction to case		14	11		

32-bit ARM Cortex-M4/M0 microcontroller

10. Static characteristics

Table 11. Static characteristics

 $T_{amb} = -40$ °C to +105 °C, unless otherwise specified.

Symbol	Parameter	Conditions		Min	Typ <u>[1]</u>	Max	Unit
Supply pins							
V _{DD(IO)}	input/output supply voltage		[17]	2.4	-	3.6	V
V _{DD(REG)(3V3)}	regulator supply voltage (3.3 V)		[2]	2.4	-	3.6	V
V _{DDA(3V3)}	analog supply voltage	on pin VDDA		2.4	-	3.6	V
	(3.3 V)	on pins USB0_VDDA3V3_ DRIVER and USB0_VDDA3V3		3.0	3.3	3.6	V
V _{BAT}	battery supply voltage		[2]	2.4	-	3.6	V
V _{prog(pf)}	polyfuse programming voltage	on pin VPP (for OTP)	[3]	2.7	-	3.6	V
I _{prog(pf)}	polyfuse programming current	on pin VPP; OTP programming time ≤ 1.6 ms		-	-	30	mA
IDD(REG)(3V3)	regulator supply current (3.3 V)	Active mode; ARM Cortex-M0 core in reset; code					
		while(1){}					
		executed from RAM; all peripherals disabled; PLL1 enabled					
		CCLK = 12 MHz	[4]	-	10	-	mA
		CCLK = 60 MHz	[4]		28	-	mA
		CCLK = 120 MHz	[4]	-	51	-	mA
		CCLK = 180 MHz	[4]	-	74	-	mA
		CCLK = 204 MHz	[4]	-	83	-	mA
I _{DD(REG)(3V3)}	regulator supply current (3.3 V)	after WFE/WFI instruction executed from RAM; all peripherals disabled; ARM Cortex-M0 core in reset					
		sleep mode	[4][5]	-	8.8	-	mA
		deep-sleep mode	[4]	-	145	-	μA
		power-down mode	[4]	-	23	-	μA
		deep power-down mode	[4][6]	-	0.05	-	μA
		deep power-down mode; VBAT floating	<u>[4]</u>	-	3.0	-	μA
I _{BAT}	battery supply current	V _{BAT} = 3.0 V; V _{DD(REG)(3V3)} = 3.3 V	<u>[7]</u>	-		0.1	nA

32-bit ARM Cortex-M4/M0 microcontroller

Symbol	Parameter	Conditions	Min	Typ[1]	Max	Unit	
Vo	output voltage	output active		0	-	V _{DD(IO)}	V
V _{IH}	HIGH-level input voltage			$0.7 \times V_{DD(IO)}$	-	5.5	V
V _{IL}	LOW-level input voltage			-0.5	-	$0.3 \times V_{DD(IO)}$	V
V _{hys}	hysteresis voltage			$0.1 \times V_{DD(IO)}$	-	-	V
V _{OH}	HIGH-level output voltage	I _{OH} = -6 mA		V _{DD(IO)} - 0.4	-	-	V
V _{OL}	LOW-level output voltage	I _{OL} = 6 mA		-	-	0.4	V
I _{OH}	HIGH-level output current	$V_{OH} = V_{DD(IO)} - 0.4 \text{ V}$		-6	-	-	mA
I _{OL}	LOW-level output current	V _{OL} = 0.4 V		6	-	-	mA
I _{OHS}	HIGH-level short-circuit output current	drive HIGH; connected to ground	<u>[11]</u>	-	-	86.5	mA
I _{OLS}	LOW-level short-circuit output current	drive LOW; connected to $V_{DD(IO)}$	<u>[11]</u>	-	-	76.5	mA
I _{pd}	pull-down current	V ₁ = 5 V	[13] [14] [15]	-	93	-	μA
I _{pu}	pull-up current	V ₁ = 0 V	[13] [14] [15]	-	-62	-	μA
		$V_{DD(IO)} < V_I \le 5 V$		-	10	-	μA
R _s	series resistance	on I/O pins with analog function; analog function enabled			200		Ω
I/O pins - hi	gh drive strength						
CI	input capacitance			-	-	5.2	pF
ILL	LOW-level leakage current	V _I = 0 V; on-chip pull-up resistor disabled		-	3	-	nA
I _{OZ}	OFF-state output current	$V_O = 0 V$ to $V_{DD(IO)}$; on-chip pull-up/down resistors disabled; absolute value		-	3	-	nA
VI	input voltage	pin configured to provide a digital function;					
		$V_{DD(IO)} \ge 2.4 \text{ V}$ $V_{DD(IO)} = 0 \text{ V}$		0	-	5.5 3.6	V V
Vo	output voltage	output active		0	-	V _{DD(IO)}	V
VIH	HIGH-level input voltage			$0.7 \times V_{DD(IO)}$	-	5.5	V
V _{IL}	LOW-level input voltage			-0.5	-	$0.3 \times V_{DD(IO)}$	V

Table 11. Static characteristics ... continued T 10 °C to : 105 °C uplace otherwise and oifind

32-bit ARM Cortex-M4/M0 microcontroller

- [2] Simulated using 10 cm of 50 Ω PCB trace with 5 pF receiver input. Rise and fall times measured between 80 % and 20 % of the full output signal level.
- [3] The slew rate is configured in the system control block in the SFSP registers using the EHS bit. See the LPC43xx user manual.
- [4] $C_L = 20$ pF. Rise and fall times measured between 90 % and 10 % of the full input signal level.
- [5] The drive modes are configured in the system control block in the SFSP registers using the EHD bit. See the LPC43xx user manual.

11.9 I²C-bus

Table 24. Dynamic characteristic: I²C-bus pins

 $T_{amb} = -40 \text{ °C to } +105 \text{ °C}; 2.4 \text{ V} \le V_{DD(REG)(3V3)} \le 3.6 \text{ V}.$ [1]

Symbol	Parameter		Conditions	Min	Max	Unit
f _{SCL}	SCL clock frequency		Standard-mode	0	100	kHz
			Fast-mode	0	400	kHz
			Fast-mode Plus	0	1	MHz
t _f	fall time	[3][4][5][6]	of both SDA and SCL signals Standard-mode	-	300	ns
			Fast-mode	20 + 0.1 × C _b	300	ns
			Fast-mode Plus	-	120	ns
t _{LOW}	LOW period of the SCL clock		Standard-mode	4.7	-	μs
			Fast-mode	1.3	-	μs
			Fast-mode Plus	0.5	-	μS
t _{HIGH}	HIGH period of the SCL clock		Standard-mode	4.0	-	μS
			Fast-mode	0.6	-	μs
			Fast-mode Plus	0.26	-	μs
t _{HD;DAT}	data hold time	[2][3][7]	Standard-mode	0	-	μs
			Fast-mode	0	-	μs
			Fast-mode Plus	0	-	μs
t _{SU;DAT}	data set-up time	[8][9]	Standard-mode	250	-	ns
			Fast-mode	100	-	ns
			Fast-mode Plus	50	-	ns

[1] Parameters are valid over operating temperature range unless otherwise specified. See the I²C-bus specification UM10204 for details.

[2] tHD;DAT is the data hold time that is measured from the falling edge of SCL; applies to data in transmission and the acknowledge.

[3] A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the V_{IH}(min) of the SCL signal) to bridge the undefined region of the falling edge of SCL.

[4] C_b = total capacitance of one bus line in pF. If mixed with Hs-mode devices, faster fall times are allowed.

- [5] The maximum t_f for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA output stage t_f is specified at 250 ns. This allows series protection resistors to be connected in between the SDA and the SCL pins and the SDA/SCL bus lines without exceeding the maximum specified t_f.
- [6] In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors are used, designers should allow for this when considering bus timing.
- [7] The maximum t_{HD;DAT} could be 3.45 μs and 0.9 μs for Standard-mode and Fast-mode but must be less than the maximum of t_{VD;DAT} or t_{VD;ACK} by a transition time. This maximum must only be met if the device does not stretch the LOW period (t_{LOW}) of the SCL signal. If the clock stretches the SCL, the data must be valid by the set-up time before it releases the clock.
- [8] tSU;DAT is the data set-up time that is measured with respect to the rising edge of SCL; applies to data in transmission and the acknowledge.

LPC435X 3X 2X 1X

© NXP Semiconductors N.V. 2016. All rights reserved.

32-bit ARM Cortex-M4/M0 microcontroller

Table 27. Dynamic characteristics: SSP pins in SPI mode

 $T_{amb} = -40$ °C to +105 °C; 2.4 V $\leq V_{DD(REG)(3V3)} \leq 3.6$ V; 2.7 V $\leq V_{DD(IO)} \leq 3.6$ V; $C_L = 20$ pF; sampled at 10 % and 90 % of the signal level; EHS = 1 for all pins. Simulated values.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
t _d	delay time	continuous transfer mode		-	$0.5 imes T_{cy(clk)}$	-	ns
		SPI mode; CPOL = 0; CPHA = 0					
		SPI mode; CPOL = 0; CPHA = 1		-	n/a	-	ns
		SPI mode; CPOL = 1; CPHA = 0		-	$0.5 \times T_{\text{cy(clk)}}$	-	ns
		SPI mode; CPOL = 1; CPHA = 1		-	n/a	-	ns
		synchronous serial frame mode		-	T _{cy(clk)}	-	ns
		microwire frame format		-	n/a	-	ns
SSP slav	'e						
PCLK	Peripheral clock frequency			-	-	204	MHz
T _{cy(clk)}	clock cycle time		[2]	1/(11 × 10 ⁶)	-	-	s
t _{DS}	data set-up time	in SPI mode		1.5	-	-	ns
t _{DH}	data hold time	in SPI mode		2	-	-	ns
t _{v(Q)}	data output valid time	in SPI mode		-	-	[4 × (1/PCLK)] + 1	ns
t _{h(Q)}	data output hold time	in SPI mode		4.5	-	-	ns
t _{lead}	lead time	continuous transfer mode SPI mode; CPOL = 0; CPHA = 0		T _{cy(clk)}	-	-	ns
		SPI mode; CPOL = 0; CPHA = 1		$0.5 \times T_{\text{cy(clk)}}$	-	-	ns
		SPI mode; CPOL = 1; CPHA = 0		T _{cy(clk)}	-	-	ns
		SPI mode; CPOL = 1; CPHA = 1		$0.5 \times T_{cy(clk)}$	-	-	ns
		synchronous serial frame mode		$0.5 imes T_{cy(clk)}$	-	-	ns
		microwire frame format		T _{cy(clk)}	-	-	ns

32-bit ARM Cortex-M4/M0 microcontroller

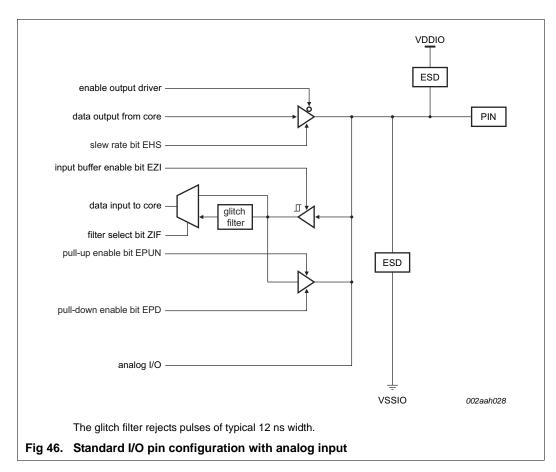
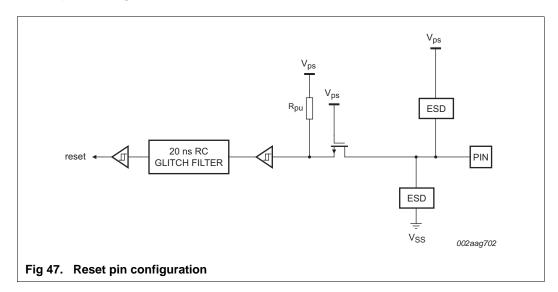

11.17 External memory interface

Table 31. Dynamic characteristics: Static asynchronous external memory interface


 $C_L = 22 \text{ pF}$ for EMC_Dn $C_L = 20 \text{ pF}$ for all others; $T_{amb} = -40 \text{ °C}$ to 105 °C; 2.4 V $\leq V_{DD(REG)(3V3)} \leq 3.6 \text{ V}$; 2.7 V $\leq V_{DD(IO)} \leq 3.6 \text{ V}$; values guaranteed by design; the values in the table have been calculated with WAITTURN = 0x0 in STATICWAITTURN register. Timing parameters are given for single memory access cycles. In a normal read operation, the EMC changes the address while CS is asserted which results in multiple memory accesses.

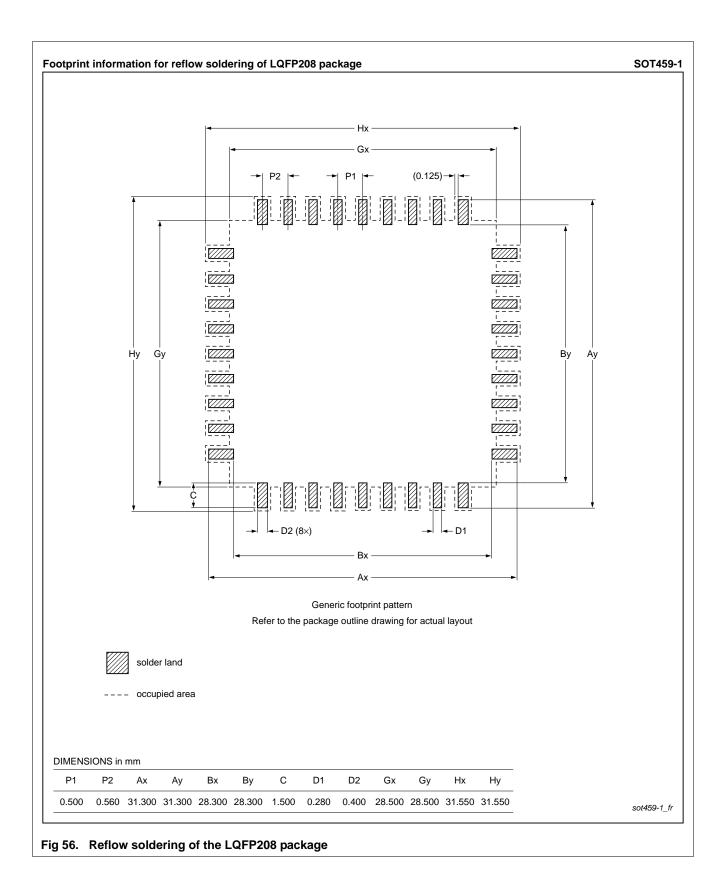
Symbol	Parameter[1]	Conditions		Min	Тур	Max	Unit
Read cycl	le parameters						
t _{CSLAV}	CS LOW to address valid time			-3.1	-	1.6	ns
t _{CSLOEL}	CS LOW to OE LOW time		[2] [2]	-0.6 + T _{cy(clk)} × WAITOEN	-	1.3 + T _{cy(clk)} × WAITOEN	ns
t _{CSLBLSL}	CS LOW to BLS LOW time	PB = 1		-0.7	-	1.8	ns
t _{oeloeh}	OE LOW to OE HIGH time		[2]	$\begin{matrix} -0.6 + \\ (WAITRD - \\ WAITOEN + 1) \times \\ T_{cy(clk)} \end{matrix}$	-	$\begin{array}{c} -0.4 + \\ (WAITRD - \\ WAITOEN + 1) \times \\ T_{cy(clk)} \end{array}$	ns
t _{am}	memory access time			-	-	−16 + (WAITRD − WAITOEN +1) × T _{cy(clk)}	ns
t _{h(D)}	data input hold time			-16	-	-	ns
t _{CSHBLSH}	CS HIGH to BLS HIGH time	PB = 1		-0.4	-	1.9	ns
t _{CSHOEH}	CS HIGH to OE HIGH time			-0.4	-	1.4	ns
t _{OEHANV}	OE HIGH to address invalid	PB = 1		-2.0	-	2.6	ns
t _{CSHEOR}	CS HIGH to end of read time		[3]	-2.0	-	0	ns
t _{CSLSOR}	CS LOW to start of read time		[4]	0	-	1.8	ns
Write cyc	le parameters		ļ				
t _{CSLAV}	CS LOW to address valid time			-3.1	-	1.6	ns
t _{CSLDV}	CS LOW to data valid time			-3.1	-	1.5	ns
t _{CSLWEL}	CS LOW to WE LOW time	PB = 1		−1.5 + (WAITWEN + 1) × T _{cy(clk)}	-	0.2 + (WAITWEN + 1) × T _{cy(clk)}	ns
t _{CSLBLSL}	CS LOW to BLS LOW time	PB = 1		-0.7	-	1.8	ns
t _{WELWEH}	WE LOW to WE HIGH time	PB = 1	[2]	$\begin{array}{c} -0.6 + \\ (WAITWR - \\ WAITWEN + 1) \times \\ T_{cy(clk)} \end{array}$	-	$\begin{matrix} -0.4 + \\ (WAITWR - \\ WAITWEN + 1) \times \\ T_{cy(clk)} \end{matrix}$	ns
t _{WEHDNV}	WE HIGH to data invalid time	PB = 1	[2]	$-0.9 + T_{cy(clk)}$	-	$2.3 + T_{cy(clk)}$	ns
t _{WEHEOW}	WE HIGH to end of write time	PB = 1	[2] [5]	-0.4 + T _{cy(clk)}	-	-0.3 + T _{cy(clk)}	ns
t _{CSLBLSL}	CS LOW to BLS LOW	PB = 0		-0.7 + (WAITWEN + 1) × T _{cy(clk)}	-	1.8 + (WAITWEN + 1) × T _{cy(clk)}	ns

32-bit ARM Cortex-M4/M0 microcontroller

13.5.1 Reset pin configuration

13.5.2 Suggested USB interface solutions

The USB device can be connected to the USB as self-powered device (see <u>Figure 48</u>) or bus-powered device (see <u>Figure 49</u>).


All information provided in this document is subject to legal disclaimers.

LPC435X 3X 2X 1X

NXP Semiconductors

LPC435x/3x/2x/1x

32-bit ARM Cortex-M4/M0 microcontroller

32-bit ARM Cortex-M4/M0 microcontroller

7 00 5	
7.23.5	PLLOUSB (for USB0)
7.23.6 7.23.7	PLL0AUDIO (for audio)
7.23.8	Reset Generation Unit (RGU)
7.23.0	Power Management Controller (PMC) 85
7.23.9	•
7.23.10	
7.23.11	Serial Wire Debug/JTAG
7.24 8	Limiting values
9	Thermal characteristics
10	Static characteristics
10.1	Power consumption
10.2	Peripheral power consumption
10.3	Electrical pin characteristics
10.4	BOD and band gap static characteristics 107
11	Dynamic characteristics 108
11.1	Flash/EEPROM memory 108
11.2	Wake-up times 109
11.3	External clock for oscillator in slave mode 109
11.4	Crystal oscillator 110
11.5	IRC oscillator 110
11.6	RTC oscillator 110
11.7	GPCLKIN
11.8	I/O pins
11.9	I ² C-bus
11.10	I ² S-bus interface 113
11.11	USART interface 114
11.12	SSP interface 116
11.13	SPI interface
11.14	SSP/SPI timing diagrams
11.15	SPIFI
11.16 11.17	SGPIO timing 122 External memory interface 124
11.17	USB interface
11.10	Ethernet
11.20	SD/MMC
11.21	LCD
12	ADC/DAC electrical characteristics 133
13	Application information
	••
13.1 13.2	LCD panel signal usage
13.2	RTC oscillator
13.4	XTAL and RTCX Printed Circuit Board (PCB)
10.7	layout guidelines
13.5	Standard I/O pin configuration
13.5.1	Reset pin configuration
13.5.2	Suggested USB interface solutions 141
14	Package outline 144
15	Soldering

16	Abbreviations	152
17	References	153
18	Revision history	154
19	Legal information	159
19.1	Data sheet status	159
19.2	Definitions	159
19.3	Disclaimers	159
19.4	Trademarks	160
20	Contact information	160
21	Contents	161

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP Semiconductors N.V. 2016.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 15 March 2016 Document identifier: LPC435X_3X_2X_1X

All rights reserved.