

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	126
Number of Logic Elements/Cells	1008
Total RAM Bits	-
Number of I/O	148
Number of Gates	12000
Voltage - Supply	4.75V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf81188aqc208-3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

...and More Features

- Peripheral register for fast setup and clock-to-output delay
- Fabricated on an advanced SRAM process
- Available in a variety of packages with 84 to 304 pins (see Table 2)
- Software design support and automatic place-and-route provided by the Altera® MAX+PLUS® II development system for Windows-based PCs, as well as Sun SPARCstation, HP 9000 Series 700/800, and IBM RISC System/6000 workstations
- Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, and Veribest

Table 2. FLEX 8000 Package Options & I/O Pin Count Note (1)												
Device	84- Pin PLCC	100- Pin TQFP	144- Pin TQFP	160- Pin PQFP	160- Pin PGA	192- Pin PGA	208- Pin PQFP	225- Pin BGA	232- Pin PGA	240- Pin PQFP	280- Pin PGA	304- Pin RQFP
EPF8282A	68	78										
EPF8282AV		78										
EPF8452A	68	68		120	120							
EPF8636A	68			118		136	136					
EPF8820A			112	120		152	152	152				
EPF81188A							148		184	184		
EPF81500A										181	208	208

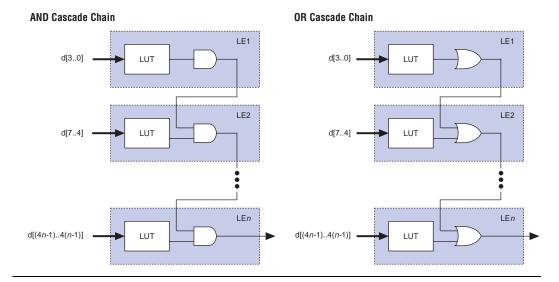
Note:

General Description

Altera's Flexible Logic Element MatriX (FLEX®) family combines the benefits of both erasable programmable logic devices (EPLDs) and field-programmable gate arrays (FPGAs). The FLEX 8000 device family is ideal for a variety of applications because it combines the fine-grained architecture and high register count characteristics of FPGAs with the high speed and predictable interconnect delays of EPLDs. Logic is implemented in LEs that include compact 4-input look-up tables (LUTs) and programmable registers. High performance is provided by a fast, continuous network of routing resources.

⁽¹⁾ FLEX 8000 device package types include plastic J-lead chip carrier (PLCC), thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat pack (RQFP), ball-grid array (BGA), and pin-grid array (PGA) packages.

Figure 1 shows a block diagram of the FLEX 8000 architecture. Each group of eight LEs is combined into an LAB; LABs are arranged into rows and columns. The I/O pins are supported by I/O elements (IOEs) located at the ends of rows and columns. Each IOE contains a bidirectional I/O buffer and a flipflop that can be used as either an input or output register.

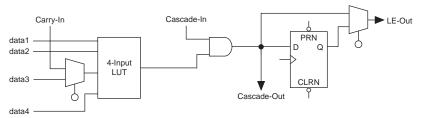

Figure 1. FLEX 8000 Device Block Diagram

Signal interconnections within FLEX 8000 devices and between device pins are provided by the FastTrack Interconnect, a series of fast, continuous channels that run the entire length and width of the device. IOEs are located at the end of each row (horizontal) and column (vertical) FastTrack Interconnect path.

The MAX+PLUS II Compiler can create cascade chains automatically during design processing; designers can also insert cascade chain logic manually during design entry. Cascade chains longer than eight LEs are automatically implemented by linking LABs together. The last LE of an LAB cascades to the first LE of the next LAB.

Figure 5 shows how the cascade function can connect adjacent LEs to form functions with a wide fan-in. These examples show functions of 4n variables implemented with n LEs. For a device with an A-2 speed grade, the LE delay is 2.4 ns; the cascade chain delay is 0.6 ns. With the cascade chain, 4.2 ns is needed to decode a 16-bit address.

Figure 5. FLEX 8000 Cascade Chain Operation



LE Operating Modes

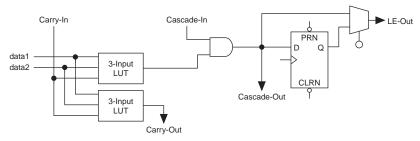
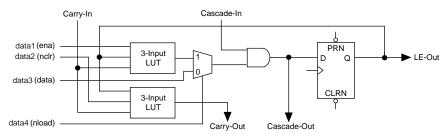
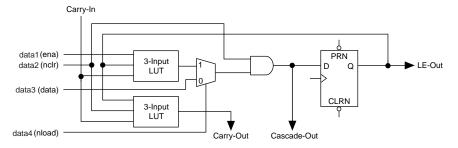

The FLEX 8000 LE can operate in one of four modes, each of which uses LE resources differently. See Figure 6. In each mode, seven of the ten available inputs to the LE—the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE—are directed to different destinations to implement the desired logic function. The three remaining inputs to the LE provide clock, clear, and preset control for the register. The MAX+PLUS II software automatically chooses the appropriate mode for each application. Design performance can also be enhanced by designing for the operating mode that supports the desired application.

Figure 6. FLEX 8000 LE Operating Modes


Normal Mode


Arithmetic Mode

Up/Down Counter Mode

Clearable Counter Mode

Internal Tri-State Emulation

Internal tri-state emulation provides internal tri-stating without the limitations of a physical tri-state bus. In a physical tri-state bus, the tri-state buffers' output enable signals select the signal that drives the bus. However, if multiple output enable signals are active, contending signals can be driven onto the bus. Conversely, if no output enable signals are active, the bus will float. Internal tri-state emulation resolves contending tri-state buffers to a low value and floating buses to a high value, thereby eliminating these problems. The MAX+PLUS II software automatically implements tri-state bus functionality with a multiplexer.

Clear & Preset Logic Control

Logic for the programmable register's clear and preset functions is controlled by the DATA3, LABCTRL1, and LABCTRL2 inputs to the LE. The clear and preset control structure of the LE is used to asynchronously load signals into a register. The register can be set up so that LABCTRL1 implements an asynchronous load. The data to be loaded is driven to DATA3; when LABCTRL1 is asserted, DATA3 is loaded into the register.

During compilation, the MAX+PLUS II Compiler automatically selects the best control signal implementation. Because the clear and preset functions are active-low, the Compiler automatically assigns a logic high to an unused clear or preset.

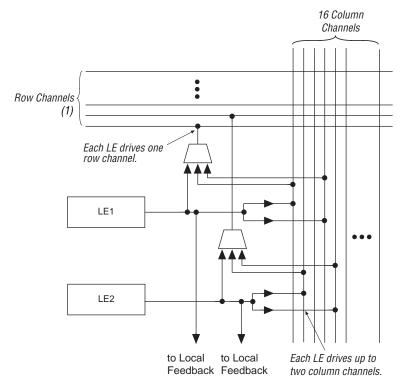
The clear and preset logic is implemented in one of the following six asynchronous modes, which are chosen during design entry. LPM functions that use registers will automatically use the correct asynchronous mode. See Figure 7.

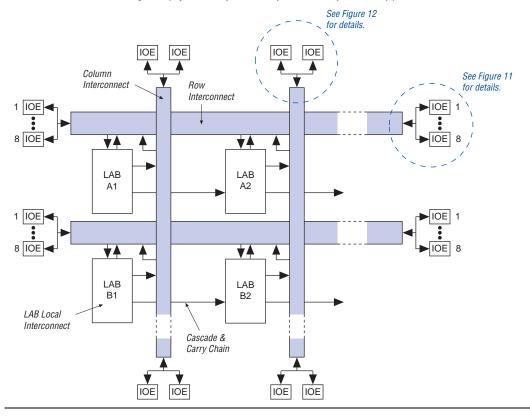
- Clear only
- Preset only
- Clear and preset
- Load with clear
- Load with preset
- Load without clear or preset

FastTrack Interconnect

In the FLEX 8000 architecture, connections between LEs and device I/O pins are provided by the FastTrack Interconnect, a series of continuous horizontal (row) and vertical (column) routing channels that traverse the entire FLEX 8000 device. This device-wide routing structure provides predictable performance even in complex designs. In contrast, the segmented routing structure in FPGAs requires switch matrices to connect a variable number of routing paths, which increases the delays between logic resources and reduces performance.

The LABs within FLEX 8000 devices are arranged into a matrix of columns and rows. Each row of LABs has a dedicated row interconnect that routes signals both into and out of the LABs in the row. The row interconnect can then drive I/O pins or feed other LABs in the device. Figure 8 shows how an LE drives the row and column interconnect.



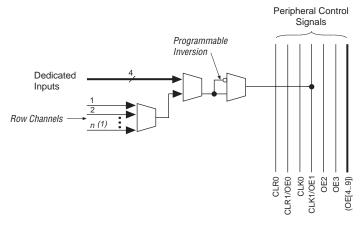

Figure 8. FLEX 8000 LAB Connections to Row & Column Interconnect

Note:

(1) See Table 4 for the number of row channels.

Figure 9. FLEX 8000 Device Interconnect Resources

Each LAB is named according to its physical row (A, B, C, etc.) and column (1, 2, 3, etc.) position within the device.


I/O Element

An IOE contains a bidirectional I/O buffer and a register that can be used either as an input register for external data that requires a fast setup time, or as an output register for data that requires fast clock-to-output performance. IOEs can be used as input, output, or bidirectional pins. The MAX+PLUS II Compiler uses the programmable inversion option to automatically invert signals from the row and column interconnect where appropriate. Figure 10 shows the IOE block diagram.

The signals for the peripheral bus can be generated by any of the four dedicated inputs or signals on the row interconnect channels, as shown in Figure 13. The number of row channels in a row that can drive the peripheral bus correlates to the number of columns in the FLEX 8000 device. EPF8282A and EPF8282AV devices use 13 channels; EPF8452A, EPF8636A, EPF8820A, and EPF81188A devices use 21 channels; and EPF81500A devices use 27 channels. The first LE in each LAB is the source of the row channel signal. The six peripheral control signals (12 in EPF81500A devices) can be accessed by each IOE.

Figure 13. FLEX 8000 Peripheral Bus

Numbers in parentheses are for EPF81500A devices.

Note:

(1) n = 13 for EPF8282A and EPF8282AV devices. n = 21 for EPF8452A, EPF8636A, EPF8820A, and EPF81188A devices. n = 27 for EPF81500A devices.

Table 5 lists the source of the peripheral control signal for each FLEX 8000 device by row.

Peripheral Control Signal	EPF8282A EPF8282AV	EPF8452A	EPF8636A	EPF8820A	EPF81188A	EPF81500A
CLK0	Row A	Row A	Row A	Row A	Row E	Row E
CLK1/OE1	Row B	Row B	Row C	Row C	Row B	Row B
CLR0	Row A	Row A	Row B	Row B	Row F	Row F
CLR1/OE0	Row B	Row B	Row C	Row D	Row C	Row C
OE2	Row A	Row A	Row A	Row A	Row D	Row A
OE3	Row B	Row B	Row B	Row B	Row A	Row A
OE4	_	_	-	_	-	Row B
OE5	_	_	-	_	-	Row C
OE6	-	-	-	-	-	Row D
OE7	-	-	-	-	-	Row D
OE8	-	-	-	-	-	Row E
OE9	_	_	_	_	-	Row F

Output Configuration

This section discusses slew-rate control and MultiVolt I/O interface operation for FLEX 8000 devices.

Slew-Rate Control

The output buffer in each IOE has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A slow slew rate reduces system noise by slowing signal transitions, adding a maximum delay of 3.5 ns. The slow slew-rate setting affects only the falling edge of a signal. The fast slew rate should be used for speed-critical outputs in systems that are adequately protected against noise. Designers can specify the slew rate on a pin-by-pin basis during design entry or assign a default slew rate to all pins on a global basis.

For more information on high-speed system design, go to *Application Note 75 (High-Speed Board Designs)*.

The instruction register length for FLEX 8000 devices is three bits. Table 7 shows the boundary-scan register length for FLEX 8000 devices.

Table 7. FLEX 8000 Boundary-Scan Register Length					
Device Boundary-Scan Register Length					
EPF8282A, EPF8282AV	273				
EPF8636A	417				
EPF8820A	465				
EPF81500A	645				

FLEX 8000 devices that support JTAG include weak pull-ups on the JTAG pins. Figure 14 shows the timing requirements for the JTAG signals.

TDI

TCK

TDO

Signal to Be Captured
Signal to Be Driven

Figure 14. EPF8282A, EPF8282AV, EPF8636A, EPF8820A & EPF81500A JTAG Waveforms

Table 8 shows the timing parameters and values for EPF8282A, EPF8282AV, EPF8636A, EPF8820A, and EPF81500A devices.

Table 8	Table 8. JTAG Timing Parameters & Values							
Symbol	Parameter	EPF8	EPF8282A EPF8282AV EPF8636A EPF8820A EPF81500A					
		Min	Max					
t _{JCP}	TCK clock period	100		ns				
t _{JCH}	TCK clock high time	50		ns				
t _{JCL}	TCK clock low time	50		ns				
t _{JPSU}	JTAG port setup time	20		ns				
t _{JPH}	JTAG port hold time	45		ns				
t _{JPCO}	JTAG port clock to output		25	ns				
t _{JPZX}	JTAG port high-impedance to valid output		25	ns				
t _{JPXZ}	JTAG port valid output to high-impedance		25	ns				
t _{JSSU}	Capture register setup time	20		ns				
t _{JSH}	Capture register hold time	45		ns				
t _{JSCO}	Update register clock to output		35	ns				
t _{JSZX}	Update register high-impedance to valid output		35	ns				
t _{JSXZ}	Update register valid output to high-impedance		35	ns				

For detailed information on JTAG operation in FLEX 8000 devices, refer to *Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices*).

Generic Testing

Each FLEX 8000 device is functionally tested and specified by Altera. Complete testing of each configurable SRAM bit and all logic functionality ensures 100% configuration yield. AC test measurements for FLEX 8000 devices are made under conditions equivalent to those shown in Figure 15. Designers can use multiple test patterns to configure devices during all stages of the production flow.

Table 1	Table 15. FLEX 8000 3.3-V Device DC Operating Conditions Note (4)										
Symbol	Parameter	Conditions	Min	Тур	Max	Unit					
V_{IH}	High-level input voltage		2.0		V _{CC} + 0.3	V					
V_{IL}	Low-level input voltage		-0.3		0.8	V					
V_{OH}	High-level output voltage	$I_{OH} = -0.1 \text{ mA DC } (5)$	V _{CC} - 0.2			V					
V_{OL}	Low-level output voltage	I _{OL} = 4 mA DC <i>(5)</i>			0.45	V					
I _I	Input leakage current	$V_I = V_{CC}$ or ground	-10		10	μΑ					
I_{OZ}	Tri-state output off-state current	$V_O = V_{CC}$ or ground	-40		40	μΑ					
I_{CC0}	V _{CC} supply current (standby)	V _I = ground, no load (6)		0.3	10	mA					

Table 16. FLEX 8000 3.3-V Device Capacitance Note (7)							
Symbol	Parameter	Conditions	Min	Max	Unit		
C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF		
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		10	pF		

Notes to tables:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input voltage is –0.3 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to 5.3 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) The maximum V_{CC} rise time is 100 ms. V_{CC} must rise monotonically.
- (4) These values are specified in Table 14 on page 29.
- (5) The I_{OH} parameter refers to high-level TTL output current; the I_{OL} parameter refers to low-level TTL output current.
- (6) Typical values are for $T_A = 25^{\circ}$ C and $V_{CC} = 3.3$ V.
- (7) Capacitance is sample-tested only.

Figure 16 shows the typical output drive characteristics of 5.0-V FLEX 8000 devices. The output driver is compliant with *PCI Local Bus Specification, Revision 2.2*.

Table 19. FLEX 8000 Interconnect Timing Parameters Note (1)						
Symbol	Parameter					
t _{LABCASC}	Cascade delay between LEs in different LABs					
t _{LABCARRY}	Carry delay between LEs in different LABs					
t _{LOCAL}	LAB local interconnect delay					
t _{ROW}	Row interconnect routing delay (4)					
t _{COL}	Column interconnect routing delay					
t _{DIN_C}	Dedicated input to LE control delay					
t _{DIN_D}	Dedicated input to LE data delay (4)					
t _{DIN_IO}	Dedicated input to IOE control delay					

Table 20. FLEX 8	2000 External Reference Timing Characteristics Note (5)				
Symbol	Parameter				
t _{DRR}	Register-to-register delay via 4 LEs, 3 row interconnects, and 4 local interconnects (6)				
t _{ODH}	Output data hold time after clock (7)				

Notes to tables:

- (1) Internal timing parameters cannot be measured explicitly. They are worst-case delays based on testable and external parameters specified by Altera. Internal timing parameters should be used for estimating device performance. Post-compilation timing simulation or timing analysis is required to determine actual worst-case performance.
- (2) These values are specified in Table 10 on page 28 or Table 14 on page 29.
- (3) For the t_{OD3} and t_{ZX3} parameters, $V_{CCIO} = 3.3 \text{ V or } 5.0 \text{ V}$.
- (4) The t_{ROW} and t_{DIN_D} delays are worst-case values for typical applications. Post-compilation timing simulation or timing analysis is required to determine actual worst-case performance.
- (5) External reference timing characteristics are factory-tested, worst-case values specified by Altera. A representative subset of signal paths is tested to approximate typical device applications.
- (6) For more information on test conditions, see *Application Note 76* (*Understanding FLEX 8000 Timing*).
- (7) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies to global and non-global clocking, and for LE and I/O element registers.

The FLEX 8000 timing model shows the delays for various paths and functions in the circuit. See Figure 19. This model contains three distinct parts: the LE; the IOE; and the interconnect, including the row and column FastTrack Interconnect, LAB local interconnect, and carry and cascade interconnect paths. Each parameter shown in Figure 19 is expressed as a worst-case value in Tables 22 through 49. Hand-calculations that use the FLEX 8000 timing model and these timing parameters can be used to estimate FLEX 8000 device performance. Timing simulation or timing analysis after compilation is required to determine the final worst-case performance. Table 21 summarizes the interconnect paths shown in Figure 19.

For more information on timing parameters, go to *Application Note 76* (*Understanding FLEX 8000 Timing*).

Symbol			Speed	Grade			Unit
	А	-2	А	-3	А	1	
	Min	Max	Min	Max	Min	Max	1
t _{LABCASC}		0.3		0.3		0.4	ns
t _{LABCARRY}		0.3		0.3		0.4	ns
t _{LOCAL}		0.5		0.6		0.8	ns
t _{ROW}		4.2		4.2		4.2	ns
t_{COL}		2.5		2.5		2.5	ns
t _{DIN_C}		5.0		5.0		5.5	ns
t _{DIN_D}		7.2		7.2		7.2	ns
t _{DIN_IO}		5.0		5.0		5.5	ns

Table 34. EPF8636A I/O Element Timing Parameters									
Symbol	Speed Grade								
	A-2		A	A-3		1-4	7		
	Min	Max	Min	Max	Min	Max			
t_{IOD}		0.7		0.8		0.9	ns		
t _{IOC}		1.7		1.8		1.9	ns		
t _{IOE}		1.7		1.8		1.9	ns		
t _{IOCO}		1.0		1.0		1.0	ns		
t _{IOCOMB}		0.3		0.2		0.1	ns		
t _{IOSU}	1.4		1.6		1.8		ns		
t _{IOH}	0.0		0.0		0.0		ns		
t _{IOCLR}		1.2		1.2		1.2	ns		
t _{IN}		1.5		1.6		1.7	ns		
t _{OD1}		1.1		1.4		1.7	ns		
t _{OD2}		1.6		1.9		2.2	ns		
t _{OD3}		4.6		4.9		5.2	ns		
t_{XZ}		1.4		1.6		1.8	ns		
t_{ZX1}		1.4		1.6		1.8	ns		
t_{ZX2}		1.9		2.1		2.3	ns		
t_{ZX3}		4.9		5.1		5.3	ns		

Symbol		Speed Grade							
	A	-2	A-3 A-4		-4				
	Min	Max	Min	Max	Min	Max	1		
t _{LABCASC}		0.3		0.4		0.4	ns		
t _{LABCARRY}		0.3		0.4		0.4	ns		
t _{LOCAL}		0.5		0.5		0.7	ns		
t _{ROW}		5.0		5.0		5.0	ns		
t_{COL}		3.0		3.0		3.0	ns		
t _{DIN_C}		5.0		5.0		5.5	ns		
t _{DIN_D}		7.0		7.0		7.5	ns		
t _{DIN IO}		5.0		5.0		5.5	ns		

Table 40. EPF8820A LE Timing Parameters								
Symbol	Speed Grade							
	А	-2	A-3		A-4			
	Min	Max	Min	Max	Min	Max		
t_{LUT}		2.0		2.5		3.2	ns	
t _{CLUT}		0.0		0.0		0.0	ns	
t _{RLUT}		0.9		1.1		1.5	ns	
t_{GATE}		0.0		0.0		0.0	ns	
t _{CASC}		0.6		0.7		0.9	ns	
t _{CICO}		0.4		0.5		0.6	ns	
t _{CGEN}		0.4		0.5		0.7	ns	
t _{CGENR}		0.9		1.1		1.5	ns	
t_C		1.6		2.0		2.5	ns	
t _{CH}	4.0		4.0		4.0		ns	
t _{CL}	4.0		4.0		4.0		ns	
t_{CO}		0.4		0.5		0.6	ns	
t _{COMB}		0.4		0.5		0.6	ns	
t _{SU}	0.8		1.1		1.2		ns	
t _H	0.9		1.1		1.5		ns	
t _{PRE}		0.6		0.7		0.8	ns	
t _{CLR}		0.6		0.7		0.8	ns	

Table 41. EPF882	?OA External T	iming Parame	ters				
Symbol		Speed Grade					
	А	-2	A-3		A-4		1
	Min	Max	Min	Max	Min	Max	
t _{DRR}		16.0		20.0		25.0	ns
t _{ODH}	1.0		1.0		1.0		ns

Operating Modes

The FLEX 8000 architecture uses SRAM elements that require configuration data to be loaded whenever the device powers up and begins operation. The process of physically loading the SRAM programming data into the device is called *configuration*. During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. The I/O pins are tri-stated during power-up, and before and during configuration. The configuration and initialization processes together are called *command mode*; normal device operation is called *user mode*.

SRAM elements allow FLEX 8000 devices to be reconfigured in-circuit with new programming data that is loaded into the device. Real-time reconfiguration is performed by forcing the device into command mode with a device pin, loading different programming data, reinitializing the device, and resuming user-mode operation. The entire reconfiguration process requires less than 100 ms and can be used to dynamically reconfigure an entire system. In-field upgrades can be performed by distributing new configuration files.

Configuration Schemes

The configuration data for a FLEX 8000 device can be loaded with one of six configuration schemes, chosen on the basis of the target application. Both active and passive schemes are available. In the active configuration schemes, the FLEX 8000 device functions as the controller, directing the loading operation, controlling external configuration devices, and completing the loading process. The clock source for all active configuration schemes is an oscillator on the FLEX 8000 device that operates between 2 MHz and 6 MHz. In the passive configuration schemes, an external controller guides the FLEX 8000 device. Table 51 shows the data source for each of the six configuration schemes.

Table 51. Data Source for Configuration							
Configuration Scheme	Data Source						
Active serial	AS	Altera configuration device					
Active parallel up	APU	Parallel configuration device					
Active parallel down	APD	Parallel configuration device					
Passive serial	PS	Serial data path					
Passive parallel synchronous	PPS	Intelligent host					
Passive parallel asynchronous	PPA	Intelligent host					

Pin Name	84-Pin	84-Pin	100-Pin	100-Pin	144-Pin	160-Pin	160-Pin
	PLCC EPF8282A	PLCC EPF8452A EPF8636A	TQFP EPF8282A EPF8282AV	TQFP EPF8452A	TQFP EPF8820A	PGA EPF8452A	PQFP EPF8820A (1)
ADD0	78	76	78	77	106	N3	6
DATA7	3	2	90	89	131	P8	140
DATA6	4	4	91	91	132	P10	139
DATA5	6	6	92	95	133	R12	138
DATA4	7	7	95	96	134	R13	136
DATA3	8	8	97	97	135	P13	135
DATA2	9	9	99	98	137	R14	133
DATA1	13	13	4	4	138	N15	132
DATA0	14	14	5	5	140	K13	129
SDOUT (3)	79	78	79	79	23	P4	97
TDI (4)	55	45 (5)	54	_	96	_	17
TDO (4)	27	27 (5)	18	_	18	_	102
TCK (4), (6)	72	44 (5)	72	_	88	_	27
TMS (4)	20	43 (5)	11	_	86	_	29
TRST (7)	52	52 (8)	50	_	71	_	45
Dedicated	12, 31, 54,	12, 31, 54,	3, 23, 53, 73	3, 24, 53,	9, 26, 82,	C3, D14,	14, 33, 94,
Inputs (10)	73	73		74	99	N2, R15	113
VCCINT	17, 38, 59, 80	17, 38, 59, 80	6, 20, 37, 56, 70, 87	9, 32, 49, 59, 82	8, 28, 70, 90, 111	B2, C4, D3, D8, D12, G3, G12, H4, H13, J3, J12, M4, M7, M9, M13, N12	3, 24, 46, 92, 114, 160
VCCIO	-	_	_	_	16, 40, 60, 69, 91, 112, 122, 141	_	23, 47, 57, 69, 79, 104, 127, 137, 149, 159

Pin Name	225-Pin BGA	232-Pin PGA	240-Pin PQFP	240-Pin PQFP	280-Pin PGA	304-Pin RQFP
	EPF8820A	EPF81188A	EPF81188A	EPF81500A	EPF81500A	EPF81500A
nSP <i>(2)</i>	A15	C14	237	237	W1	304
MSEL0 (2)	B14	G15	21	19	N1	26
MSEL1 (2)	R15	L15	40	38	H3	51
nSTATUS (2)	P2	L3	141	142	G19	178
nCONFIG (2)	R1	R4	117	120	B18	152
DCLK (2)	B2	C4	184	183	U18	230
CONF_DONE (2)	A1	G3	160	161	M16	204
nWS	L4	P1	133	134	F18	167
nRS	K5	N1	137	138	G18	171
RDCLK	F1	G2	158	159	M17	202
nCS	D1	E2	166	167	N16	212
CS	C1	E3	169	170	N18	215
RDYnBUSY	J3	K2	146	147	J17	183
CLKUSR	G2	H2	155	156	K19	199
ADD17	M14	R15	58	56	E3	73
ADD16	L12	T17	56	54	E2	71
ADD15	M15	P15	54	52	F4	69
ADD14	L13	M14	47	45	G1	60
ADD13	L14	M15	45	43	H2	58
ADD12	K13	M16	43	41	H1	56
ADD11	K15	K15	36	34	J3	47
ADD10	J13	K17	34	32	K3	45
ADD9	J15	J14	32	30	K4	43
ADD8	G14	J15	29	27	L1	34
ADD7	G13	H17	27	25	L2	32
ADD6	G11	H15	25	23	M1	30
ADD5	F14	F16	18	16	N2	20
ADD4	E13	F15	16	14	N3	18
ADD3	D15	F14	14	12	N4	16
ADD2	D14	D15	7	5	U1	8
ADD1	E12	B17	5	3	U2	6
ADD0	C15	C15	3	1	V1	4
DATA7	A7	A7	205	199	W13	254
DATA6	D7	D8	203	197	W14	252
DATA5	A6	B7	200	196	W15	250

Pin Name	225-Pin BGA EPF8820A	232-Pin PGA EPF81188A	240-Pin PQFP	240-Pin PQFP	280-Pin PGA EPF81500A	304-Pin RQFP
			EPF81188A	EPF81500A		EPF81500A
DATA4	A5	C7	198	194	W16	248
DATA3	B5	D7	196	193	W17	246
DATA2	E6	B5	194	190	V16	243
DATA1	D5	А3	191	189	U16	241
DATA0	C4	A2	189	187	V17	239
SDOUT (3)	K1	N2	135	136	F19	169
TDI	F15 (4)	_	_	63 (14)	B1 (14)	80 (14)
TDO	J2 (4)	_	_	117	C17	149
TCK (6)	J14 (4)	_	_	116 <i>(14)</i>	A19 (14)	148 (14)
TMS	J12 (4)	_	_	64 (14)	C2 (14)	81 (14)
TRST (7)	P14	_	_	115 <i>(14)</i>	A18 (14)	145 (14)
Dedicated Inputs	F4, L1, K12,	C1, C17, R1,	10, 51, 130,	8, 49, 131,	F1, F16, P3,	12, 64, 164,
(10)	E15	R17	171	172	P19	217
VCCINT	F5, F10, E1,	E4, H4, L4,	20, 42, 64, 66,	18, 40, 60, 62,	B17, D3, D15,	24, 54, 77,
(5.0 V)	L2, K4, M12,	P12, L14,	114, 128, 150,	91, 114, 129,	E8, E10, E12,	144, 79, 115,
	P15, H13,	H14, E14,	172, 236		E14, R7, R9,	162, 191, 218,
	H14, B15,	R14, U1		236	R11, R13,	266, 301
	C13				R14, T14	
VCCIO	H3, H2, P6,	N10, M13,	19, 41, 65, 81,	17, 39, 61, 78,	D14, E7, E9,	22, 53, 78, 99,
(5.0 V or 3.3 V)	R6, P10, N10,	M5, K13, K5,	99, 116, 140,	94, 108, 130,	E11, E13, R6,	
	R14, N13,	H13, H5, F5,	162, 186, 202,		R8, R10, R12,	
	H15, H12,	E10, E8, N8,	220, 235	205, 221, 235	T13, T15	262, 282, 300
	D12, A14,	F13				
	B10, A10, B6,					
	C6, A2, C3,					
Ì	M4, R2					