E·XFL

Intel - EPF81188AQC240-2 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	126
Number of Logic Elements/Cells	1008
Total RAM Bits	-
Number of I/O	184
Number of Gates	12000
Voltage - Supply	4.75V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	240-BFQFP
Supplier Device Package	240-PQFP (32x32)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf81188aqc240-2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

JTAG BST circuitry	Yes	No	Yes	Yes	No	Yes

...and More Features

Peripheral register for fast setup and clock-to-output delay
 Fabricated on an educated CDAM succession

- Fabricated on an advanced SRAM process
 - Available in a variety of packages with 84 to 304 pins (see Table 2)
 Software design support and automatic place-and-route provided by the Altera[®] MAX+PLUS[®] II development system for Windows-based PCs, as well as Sun SPARCstation, HP 9000 Series 700/800, and IBM RISC System/6000 workstations
 - Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, and Veribest

Table 2. FLE	Table 2. FLEX 8000 Package Options & I/O Pin Count Note (1)											
Device	84- Pin PLCC	100- Pin TQFP	144- Pin TQFP	160- Pin PQFP	160- Pin PGA	192- Pin PGA	208- Pin PQFP	225- Pin BGA	232- Pin PGA	240- Pin PQFP	280- Pin PGA	304- Pin RQFP
EPF8282A	68	78										
EPF8282AV		78										
EPF8452A	68	68		120	120							
EPF8636A	68			118		136	136					
EPF8820A			112	120		152	152	152				
EPF81188A							148		184	184		
EPF81500A										181	208	208

Note:

(1) FLEX 8000 device package types include plastic J-lead chip carrier (PLCC), thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat pack (RQFP), ball-grid array (BGA), and pin-grid array (PGA) packages.

General Description

Altera's Flexible Logic Element MatriX (FLEX[®]) family combines the benefits of both erasable programmable logic devices (EPLDs) and fieldprogrammable gate arrays (FPGAs). The FLEX 8000 device family is ideal for a variety of applications because it combines the fine-grained architecture and high register count characteristics of FPGAs with the high speed and predictable interconnect delays of EPLDs. Logic is implemented in LEs that include compact 4-input look-up tables (LUTs) and programmable registers. High performance is provided by a fast, continuous network of routing resources. FLEX 8000 devices provide a large number of storage elements for applications such as digital signal processing (DSP), wide-data-path manipulation, and data transformation. These devices are an excellent choice for bus interfaces, TTL integration, coprocessor functions, and high-speed controllers. The high-pin-count packages can integrate multiple 32-bit buses into a single device. Table 3 shows FLEX 8000 performance and LE requirements for typical applications.

Table 3. FLEX 8000 Performance										
Application	LEs Used		Speed Grade							
		A-2	A-3	A-4						
16-bit loadable counter	16	125	95	83	MHz					
16-bit up/down counter	16	125	95	83	MHz					
24-bit accumulator	24	87	67	58	MHz					
16-bit address decode	4	4.2	4.9	6.3	ns					
16-to-1 multiplexer	10	6.6	7.9	9.5	ns					

All FLEX 8000 device packages provide four dedicated inputs for synchronous control signals with large fan-outs. Each I/O pin has an associated register on the periphery of the device. As outputs, these registers provide fast clock-to-output times; as inputs, they offer quick setup times.

The logic and interconnections in the FLEX 8000 architecture are configured with CMOS SRAM elements. FLEX 8000 devices are configured at system power-up with data stored in an industry-standard parallel EPROM or an Altera serial configuration devices, or with data provided by a system controller. Altera offers the EPC1, EPC1213, EPC1064, and EPC1441 configuration devices, which configure FLEX 8000 devices via a serial data stream. Configuration data can also be stored in an industry-standard 32 K × 8 bit or larger configuration device, or downloaded from system RAM. After a FLEX 8000 device has been configured, it can be reconfigured in-circuit by resetting the device and loading new data. Because reconfiguration requires less than 100 ms, realtime changes can be made during system operation. For information on how to configure FLEX 8000 devices, go to the following documents:

- Configuration Devices for APEX & FLEX Devices Data Sheet
- BitBlaster Serial Download Cable Data Sheet
- ByteBlasterMV Parallel Port Download Cable Data Sheet
- *Application Note 33 (Configuring FLEX 8000 Devices)*
- Application Note 38 (Configuring Multiple FLEX 8000 Devices)

Figure 1 shows a block diagram of the FLEX 8000 architecture. Each group of eight LEs is combined into an LAB; LABs are arranged into rows and columns. The I/O pins are supported by I/O elements (IOEs) located at the ends of rows and columns. Each IOE contains a bidirectional I/O buffer and a flipflop that can be used as either an input or output register.

Signal interconnections within FLEX 8000 devices and between device pins are provided by the FastTrack Interconnect, a series of fast, continuous channels that run the entire length and width of the device. IOEs are located at the end of each row (horizontal) and column (vertical) FastTrack Interconnect path.

Altera Corporation

Logic Array Block

A logic array block (LAB) consists of eight LEs, their associated carry and cascade chains, LAB control signals, and the LAB local interconnect. The LAB provides the coarse-grained structure of the FLEX 8000 architecture. This structure enables FLEX 8000 devices to provide efficient routing, high device utilization, and high performance. Figure 2 shows a block diagram of the FLEX 8000 LAB.

Altera Corporation

Internal Tri-State Emulation

Internal tri-state emulation provides internal tri-stating without the limitations of a physical tri-state bus. In a physical tri-state bus, the tri-state buffers' output enable signals select the signal that drives the bus. However, if multiple output enable signals are active, contending signals can be driven onto the bus. Conversely, if no output enable signals are active, the bus will float. Internal tri-state emulation resolves contending tri-state buffers to a low value and floating buses to a high value, thereby eliminating these problems. The MAX+PLUS II software automatically implements tri-state bus functionality with a multiplexer.

Clear & Preset Logic Control

Logic for the programmable register's clear and preset functions is controlled by the DATA3, LABCTRL1, and LABCTRL2 inputs to the LE. The clear and preset control structure of the LE is used to asynchronously load signals into a register. The register can be set up so that LABCTRL1 implements an asynchronous load. The data to be loaded is driven to DATA3; when LABCTRL1 is asserted, DATA3 is loaded into the register.

During compilation, the MAX+PLUS II Compiler automatically selects the best control signal implementation. Because the clear and preset functions are active-low, the Compiler automatically assigns a logic high to an unused clear or preset.

The clear and preset logic is implemented in one of the following six asynchronous modes, which are chosen during design entry. LPM functions that use registers will automatically use the correct asynchronous mode. See Figure 7.

- Clear only
- Preset only
- Clear and preset
- Load with clear
- Load with preset
- Load without clear or preset

Figure 7. FLEX 8000 LE Asynchronous Clear & Preset Modes

Asynchronous Load with Clear

Asynchronous Load with Preset

Asynchronous Load without Clear or Preset

FastTrack Interconnect

In the FLEX 8000 architecture, connections between LEs and device I/O pins are provided by the FastTrack Interconnect, a series of continuous horizontal (row) and vertical (column) routing channels that traverse the entire FLEX 8000 device. This device-wide routing structure provides predictable performance even in complex designs. In contrast, the segmented routing structure in FPGAs requires switch matrices to connect a variable number of routing paths, which increases the delays between logic resources and reduces performance.

The LABs within FLEX 8000 devices are arranged into a matrix of columns and rows. Each row of LABs has a dedicated row interconnect that routes signals both into and out of the LABs in the row. The row interconnect can then drive I/O pins or feed other LABs in the device. Figure 8 shows how an LE drives the row and column interconnect.

Figure 8. FLEX 8000 LAB Connections to Row & Column Interconnect

Figure 9. FLEX 8000 Device Interconnect Resources

Each LAB is named according to its physical row (A, B, C, etc.) and column (1, 2, 3, etc.) position within the device.

I/O Element

An IOE contains a bidirectional I/O buffer and a register that can be used either as an input register for external data that requires a fast setup time, or as an output register for data that requires fast clock-to-output performance. IOEs can be used as input, output, or bidirectional pins. The MAX+PLUS II Compiler uses the programmable inversion option to automatically invert signals from the row and column interconnect where appropriate. Figure 10 shows the IOE block diagram.

Figure 12. FLEX 8000 Column-to-IOE Connections

In addition to general-purpose I/O pins, FLEX 8000 devices have four dedicated input pins. These dedicated inputs provide low-skew, device-wide signal distribution, and are typically used for global clock, clear, and preset control signals. The signals from the dedicated inputs are available as control signals for all LABs and I/O elements in the device. The dedicated inputs can also be used as general-purpose data inputs because they can feed the local interconnect of each LAB in the device.

Signals enter the FLEX 8000 device either from the I/O pins that provide general-purpose input capability or from the four dedicated inputs. The IOEs are located at the ends of the row and column interconnect channels.

I/O pins can be used as input, output, or bidirectional pins. Each I/O pin has a register that can be used either as an input register for external data that requires fast setup times, or as an output register for data that requires fast clock-to-output performance. The MAX+PLUS II Compiler uses the programmable inversion option to invert signals automatically from the row and column interconnect when appropriate.

The clock, clear, and output enable controls for the IOEs are provided by a network of I/O control signals. These signals can be supplied by either the dedicated input pins or by internal logic. The IOE control-signal paths are designed to minimize the skew across the device. All control-signal sources are buffered onto high-speed drivers that drive the signals around the periphery of the device. This "peripheral bus" can be configured to provide up to four output enable signals (10 in EPF81500A devices), and up to two clock or clear signals. Figure 13 on page 22 shows how two output enable signals are shared with one clock and one clear signal. Table 5 lists the source of the peripheral control signal for each FLEX 8000 device by row.

Table 5. Row S	Table 5. Row Sources of FLEX 8000 Peripheral Control Signals								
Peripheral Control Signal	EPF8282A EPF8282AV	EPF8452A	EPF8636A	EPF8820A	EPF81188A	EPF81500A			
CLK0	Row A	Row A	Row A	Row A	Row E	Row E			
CLK1/OE1	Row B	Row B	Row C	Row C	Row B	Row B			
CLR0	Row A	Row A	Row B	Row B	Row F	Row F			
CLR1/OE0	Row B	Row B	Row C	Row D	Row C	Row C			
OE2	Row A	Row A	Row A	Row A	Row D	Row A			
OE 3	Row B	Row B	Row B	Row B	Row A	Row A			
OE4	-	-	-	-	-	Row B			
OE5	-	-	-	-	-	Row C			
OE6	-	-	-	-	-	Row D			
OE7	-	-	-	-	-	Row D			
OE8	-	-	-	-	-	Row E			
OE9	-	-	-	-	-	Row F			

Output Configuration

This section discusses slew-rate control and MultiVolt I/O interface operation for FLEX 8000 devices.

Slew-Rate Control

The output buffer in each IOE has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A slow slew rate reduces system noise by slowing signal transitions, adding a maximum delay of 3.5 ns. The slow slew-rate setting affects only the falling edge of a signal. The fast slew rate should be used for speed-critical outputs in systems that are adequately protected against noise. Designers can specify the slew rate on a pin-by-pin basis during design entry or assign a default slew rate to all pins on a global basis.

For more information on high-speed system design, go to *Application Note* 75 (*High-Speed Board Designs*).

Table 1	2. FLEX 8000 5.0-V Device Ca	pacitance Note (8)			
Symbol	Parameter	Conditions	Min	Max	Unit
CIN	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		10	pF

Notes to tables:

(1) See the Operating Requirements for Altera Devices Data Sheet.

- (2) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 7.0 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) The maximum V_{CC} rise time is 100 ms.
- (4) Numbers in parentheses are for industrial-temperature-range devices.
- (5) Typical values are for $T_A = 25^{\circ} \text{ C}$ and $V_{CC} = 5.0 \text{ V}$.
- (6) These values are specified in Table 10 on page 28.
- (7) The I_{OH} parameter refers to high-level TTL or CMOS output current; the I_{OL} parameter refers to low-level TTL or CMOS output current.
- (8) Capacitance is sample-tested only.

Tables 13 through 16 provide information on absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for 3.3-V FLEX 8000 devices.

Table 1	able 13. FLEX 8000 3.3-V Device Absolute Maximum Ratings Note (1)									
Symbol	Parameter	Conditions	Min	Max	Unit					
V _{CC}	Supply voltage	With respect to ground (2)	-2.0	5.3	V					
VI	DC input voltage		-2.0	5.3	V					
I _{OUT}	DC output current, per pin		-25	25	mA					
T _{STG}	Storage temperature	No bias	-65	150	°C					
T _{AMB}	Ambient temperature	Under bias	-65	135	°C					
TJ	Junction temperature	Plastic packages, under bias		135	°C					

Table 1	Table 14. FLEX 8000 3.3-V Device Recommended Operating Conditions									
Symbol	Parameter	Conditions	Min	Max	Unit					
V _{CC}	Supply voltage	(3)	3.0	3.6	V					
VI	Input voltage		-0.3	V _{CC} + 0.3	V					
Vo	Output voltage		0	V _{CC}	V					
Τ _Α	Operating temperature	For commercial use	0	70	°C					
t _R	Input rise time			40	ns					
t _F	Input fall time			40	ns					

Figure 16. Output Drive Characteristics of 5.0-V FLEX 8000 Devices (Except EPF8282A)

Figure 17 shows the typical output drive characteristics of 5.0-V EPF8282A devices. The output driver is compliant with *PCI Local Bus Specification, Revision 2.2.*

Figure 18 shows the typical output drive characteristics of EPF8282AV devices.

Symbol			Speed	d Grade			Unit
	A	-2	A	A-3 A-4			
	Min	Max	Min	Max	Min	Max	
t _{LABCASC}		0.3		0.3		0.4	ns
t _{LABCARRY}		0.3		0.3		0.4	ns
t _{LOCAL}		0.5		0.6		0.8	ns
t _{ROW}		4.2		4.2		4.2	ns
t _{COL}		2.5		2.5		2.5	ns
t _{DIN_C}		5.0		5.0		5.5	ns
t _{DIN_D}		7.2		7.2		7.2	ns
t _{DIN_IO}		5.0		5.0		5.5	ns

Table 24. EPF82	Table 24. EPF8282A LE Timing Parameters									
Symbol			Speed	l Grade		Unit				
	A	-2	A	-3	A	-4				
	Min	Max	Min	Max	Min	Max				
t _{LUT}		2.0		2.5		3.2	ns			
t _{CLUT}		0.0		0.0		0.0	ns			
t _{RLUT}		0.9		1.1		1.5	ns			
t _{GATE}		0.0		0.0		0.0	ns			
t _{CASC}		0.6		0.7		0.9	ns			
t _{CICO}		0.4		0.5		0.6	ns			
t _{CGEN}		0.4		0.5		0.7	ns			
t _{CGENR}		0.9		1.1		1.5	ns			
t _C		1.6		2.0		2.5	ns			
t _{CH}	4.0		4.0		4.0		ns			
t _{CL}	4.0		4.0		4.0		ns			
t _{CO}		0.4		0.5		0.6	ns			
t _{COMB}		0.4		0.5		0.6	ns			
t _{SU}	0.8		1.1		1.2		ns			
t _H	0.9		1.1		1.5		ns			
t _{PRE}		0.6		0.7		0.8	ns			
t _{CLR}		0.6		0.7		0.8	ns			

Table 25. EPF8282A External Timing Parameters

Symbol			Speed	Grade			Unit
	A	-2	A	-3	A	A-4	
	Min	Max	Min	Max	Min	Max	
t _{DRR}		15.8		19.8		24.8	ns
t _{ODH}	1.0		1.0		1.0		ns

T

Symbol		Speed	l Grade		Unit
İ	A	-3	A	-4	
-	Min	Мах	Min	Мах	
t _{LUT}		3.2		7.3	ns
t _{CLUT}		0.0		1.4	ns
t _{RLUT}		1.5		5.1	ns
t _{GATE}		0.0		0.0	ns
t _{CASC}		0.9		2.8	ns
t _{CICO}		0.6		1.5	ns
t _{CGEN}		0.7		2.2	ns
t _{CGENR}		1.5		3.7	ns
t _C		2.5		4.7	ns
t _{CH}	4.0		6.0		ns
t _{CL}	4.0		6.0		ns
t _{CO}		0.6		0.9	ns
t _{COMB}		0.6		0.9	ns
t _{SU}	1.2		2.4		ns
t _H	1.5		4.6		ns
t _{PRE}		0.8		1.3	ns
t _{CLR}		0.8		1.3	ns

Table 29. EPF8282AV External Timing Parameters								
Symbol	Speed Grade Un							
	A	-3	-4					
	Min	Max	Min	Max]			
t _{DRR}		24.8		50.1	ns			
t _{ODH}	1.0		1.0		ns			

Table 36. EPF8636A LE Timing Parameters									
Symbol	Speed Grade								
	A	-2	A	A-3		-4			
	Min	Max	Min	Max	Min	Max			
t _{LUT}		2.0		2.3		3.0	ns		
t _{CLUT}		0.0		0.2		0.1	ns		
t _{RLUT}		0.9		1.6		1.6	ns		
t _{GATE}		0.0		0.0		0.0	ns		
t _{CASC}		0.6		0.7		0.9	ns		
t _{CICO}		0.4		0.5		0.6	ns		
t _{CGEN}		0.4		0.9		0.8	ns		
t _{CGENR}		0.9		1.4		1.5	ns		
t _C		1.6		1.8		2.4	ns		
t _{CH}	4.0		4.0		4.0		ns		
t _{CL}	4.0		4.0		4.0		ns		
t _{CO}		0.4		0.5		0.6	ns		
t _{COMB}		0.4		0.5		0.6	ns		
t _{SU}	0.8		1.0		1.1		ns		
t _H	0.9		1.1		1.4		ns		
t _{PRE}		0.6		0.7		0.8	ns		
t _{CLR}		0.6		0.7		0.8	ns		

Table 37. EPF8636A External Timing Parameters

Symbol	Speed Grade									
	A-2 A-3					A-4				
	Min	Max	Min	Max	Min	Max				
t _{DRR}		16.0		20.0		25.0	ns			
t _{ODH}	1.0		1.0		1.0		ns			

Symbol			Speed	Grade			Unit
	A-2		A-3		A-4		
	Min	Мах	Min	Мах	Min	Max	1
t _{IOD}		0.7		0.8		0.9	ns
t _{IOC}		1.7		1.8		1.9	ns
t _{IOE}		1.7		1.8		1.9	ns
t _{IOCO}		1.0		1.0		1.0	ns
t _{IOCOMB}		0.3		0.2		0.1	ns
t _{IOSU}	1.4		1.6		1.8		ns
t _{IOH}	0.0		0.0		0.0		ns
t _{IOCLR}		1.2		1.2		1.2	ns
t _{IN}		1.5		1.6		1.7	ns
t _{OD1}		1.1		1.4		1.7	ns
t _{OD2}		1.6		1.9		2.2	ns
t _{OD3}		4.6		4.9		5.2	ns
t _{XZ}		1.4		1.6		1.8	ns
t _{ZX1}		1.4		1.6		1.8	ns
t _{ZX2}		1.9		2.1		2.3	ns
t _{ZX3}		4.9		5.1		5.3	ns

Table 43. EPF81188A Interconnect Timing Parameters										
Symbol			Speed	l Grade			Unit			
	ļ	-2	A	A-3 A-4		-4				
	Min	Max	Min	Max	Min	Max	1			
t _{LABCASC}		0.3		0.3		0.4	ns			
t _{LABCARRY}		0.3		0.3		0.4	ns			
t _{LOCAL}		0.5		0.6		0.8	ns			
t _{ROW}		5.0		5.0		5.0	ns			
t _{COL}		3.0		3.0		3.0	ns			
t _{DIN_C}		5.0		5.0		5.5	ns			
t _{DIN_D}		7.0		7.0		7.5	ns			
t _{DIN_IO}		5.0		5.0		5.5	ns			

٦

Device Pin-Outs

Tables 52 through 54 show the pin names and numbers for the dedicated pins in each FLEX 8000 device package.

Table 52. FLEX 8000 84-, 100-, 144- & 160-Pin Package Pin-Outs (Part 1 of 3)									
Pin Name	84-Pin PLCC EPF8282A	84-Pin PLCC EPF8452A EPF8636A	100-Pin TQFP EPF8282A EPF8282AV	100-Pin TQFP EPF8452A	144-Pin TQFP EPF8820A	160-Pin PGA EPF8452A	160-Pin PQFP EPF8820A (1)		
nSP <i>(</i> 2 <i>)</i>	75	75	75	76	110	R1	1		
MSELO (2)	74	74	74	75	109	P2	2		
MSEL1 (2)	53	53	51	51	72	A1	44		
nSTATUS (2)	32	32	24	25	37	C13	82		
nCONFIG (2)	33	33	25	26	38	A15	81		
DCLK (2)	10	10	100	100	143	P14	125		
CONF_DONE (2)	11	11	1	1	144	N13	124		
nWS	30	30	22	23	33	F13	87		
nRS	48	48	42	45	31	C6	89		
RDCLK	49	49	45	46	12	B5	110		
nCS	29	29	21	22	4	D15	118		
CS	28	28	19	21	3	E15	121		
RDYnBUSY	77	77	77	78	20	P3	100		
CLKUSR	50	50	47	47	13	C5	107		
ADD17	51	51	49	48	75	B4	40		
ADD16	36	55	28	54	76	E2	39		
ADD15	56	56	55	55	77	D1	38		
ADD14	57	57	57	57	78	E1	37		
ADD13	58	58	58	58	79	F3	36		
ADD12	60	60	59	60	83	F2	32		
ADD11	61	61	60	61	85	F1	30		
ADD10	62	62	61	62	87	G2	28		
ADD9	63	63	62	64	89	G1	26		
ADD8	64	64	64	65	92	H1	22		
ADD7	65	65	65	66	94	H2	20		
ADD6	66	66	66	67	95	J1	18		
ADD5	67	67	67	68	97	J2	16		
ADD4	69	69	68	70	102	K2	11		
ADD3	70	70	69	71	103	K1	10		
ADD2	71	71	71	72	104	K3	8		
ADD1	76	72	76	73	105	M1	7		

Pin Name	84-Pin PLCC EPF8282A	84-Pin PLCC EPF8452A EPF8636A	100-Pin TQFP EPF8282A EPF8282AV	100-Pin TQFP EPF8452A	144-Pin TQFP EPF8820A	160-Pin PGA EPF8452A	160-Pin PQFP EPF8820A (1)		
ADD0	78	76	78	77	106	N3	6		
DATA7	3	2	90	89	131	P8	140		
DATA6	4	4	91	91	132	P10	139		
DATA5	6	6	92	95	133	R12	138		
DATA4	7	7	95	96	134	R13	136		
DATA3	8	8	97	97	135	P13	135		
DATA2	9	9	99	98	137	R14	133		
DATA1	13	13	4	4	138	N15	132		
DATA0	14	14	5	5	140	K13	129		
SDOUT (3)	79	78	79	79	23	P4	97		
TDI <i>(4)</i>	55	45 (5)	54	-	96	-	17		
TDO (4)	27	27 (5)	18	-	18	-	102		
TCK (4), (6)	72	44 (5)	72	-	88	-	27		
TMS (4)	20	43 (5)	11	-	86	-	29		
TRST (7)	52	52 (8)	50	-	71	-	45		
Dedicated	12, 31, 54,	12, 31, 54,	3, 23, 53, 73	3, 24, 53,	9, 26, 82,	C3, D14,	14, 33, 94,		
Inputs (10)	73	73		74	99	N2, R15	113		
VCCINT	17, 38, 59, 80	17, 38, 59, 80	6, 20, 37, 56, 70, 87	9, 32, 49, 59, 82	8, 28, 70, 90, 111	B2, C4, D3, D8, D12, G3, G12, H4, H13, J3, J12, M4, M7, M9, M13, N12	3, 24, 46, 92, 114, 160		
VCCIO	-	_	-	-	16, 40, 60, 69, 91, 112, 122, 141	_	23, 47, 57, 69, 79, 104, 127, 137, 149, 159		

Г

Table 54. FLEX 8000 225-, 232-, 240-, 280- & 304-Pin Package Pin-Outs (Part 2 of 3)									
Pin Name	225-Pin BGA EPF8820A	232-Pin PGA EPF81188A	240-Pin PQFP EPF81188A	240-Pin PQFP EPF81500A	280-Pin PGA EPF81500A	304-Pin RQFP EPF81500A			
DATA4	A5	C7	198	194	W16	248			
data3	B5	D7	196	193	W17	246			
DATA2	E6	B5	194	190	V16	243			
DATA1	D5	A3	191	189	U16	241			
DATA0	C4	A2	189	187	V17	239			
SDOUT (3)	K1	N2	135	136	F19	169			
TDI	F15 <i>(4)</i>	-	-	63 (14)	B1 (14)	80 (14)			
TDO	J2 (4)	-	-	117	C17	149			
TCK (6)	J14 <i>(4)</i>	-	-	116 (14)	A19 (14)	148 (14)			
TMS	J12 <i>(4)</i>	-	-	64 (14)	C2 (14)	81 (14)			
TRST (7)	P14	-	-	115 (14)	A18 (14)	145 (14)			
Dedicated Inputs (10)	F4, L1, K12, E15	C1, C17, R1, R17	10, 51, 130, 171	8, 49, 131, 172	F1, F16, P3, P19	12, 64, 164, 217			
VCCINT (5.0 V)	F5, F10, E1, L2, K4, M12, P15, H13, H14, B15, C13	E4, H4, L4, P12, L14, H14, E14, R14, U1	20, 42, 64, 66, 114, 128, 150, 172, 236	18, 40, 60, 62, 91, 114, 129, 151, 173, 209, 236	B17, D3, D15, E8, E10, E12, E14, R7, R9, R11, R13, R14, T14	24, 54, 77, 144, 79, 115, 162, 191, 218, 266, 301			
VCCIO (5.0 V or 3.3 V)	H3, H2, P6, R6, P10, N10, R14, N13, H15, H12, D12, A14, B10, A10, B6, C6, A2, C3, M4, R2	N10, M13, M5, K13, K5, H13, H5, F5, E10, E8, N8, F13	19, 41, 65, 81, 99, 116, 140, 162, 186, 202, 220, 235	17, 39, 61, 78, 94, 108, 130, 152, 174, 191, 205, 221, 235	D14, E7, E9, E11, E13, R6, R8, R10, R12, T13, T15	22, 53, 78, 99, 119, 137, 163, 193, 220, 244, 262, 282, 300			

-