
# E·XFL

### Altera - EPF81188ARC240-2 Datasheet



Welcome to <u>E-XFL.COM</u>

#### Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

#### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

| Details                        |                                                               |
|--------------------------------|---------------------------------------------------------------|
| Product Status                 | Obsolete                                                      |
| Number of LABs/CLBs            | 126                                                           |
| Number of Logic Elements/Cells | 1008                                                          |
| Total RAM Bits                 | -                                                             |
| Number of I/O                  | 184                                                           |
| Number of Gates                | 12000                                                         |
| Voltage - Supply               | 4.75V ~ 5.25V                                                 |
| Mounting Type                  | Surface Mount                                                 |
| Operating Temperature          | 0°C ~ 70°C (TA)                                               |
| Package / Case                 | 240-BFQFP                                                     |
| Supplier Device Package        | 240-RQFP (32x32)                                              |
| Purchase URL                   | https://www.e-xfl.com/pro/item?MUrl=&PartUrl=epf81188arc240-2 |
|                                |                                                               |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| JTAG BST circuitry | Yes | No | Yes | Yes | No | Yes |
|--------------------|-----|----|-----|-----|----|-----|

# ...and More Features

Peripheral register for fast setup and clock-to-output delay
 Fabricated on an educated CDAM succession

- Fabricated on an advanced SRAM process
  - Available in a variety of packages with 84 to 304 pins (see Table 2)
    Software design support and automatic place-and-route provided by the Altera<sup>®</sup> MAX+PLUS<sup>®</sup> II development system for Windows-based PCs, as well as Sun SPARCstation, HP 9000 Series 700/800, and IBM RISC System/6000 workstations
  - Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, and Veribest

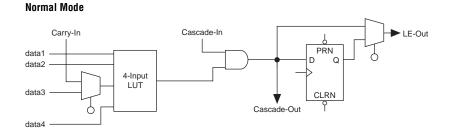
| Table 2. FLE | Table 2. FLEX 8000 Package Options & I/O Pin Count  Note (1) |                     |                     |                     |                    |                    |                     |                    |                    |                     |                    |                     |  |
|--------------|--------------------------------------------------------------|---------------------|---------------------|---------------------|--------------------|--------------------|---------------------|--------------------|--------------------|---------------------|--------------------|---------------------|--|
| Device       | 84-<br>Pin<br>PLCC                                           | 100-<br>Pin<br>TQFP | 144-<br>Pin<br>TQFP | 160-<br>Pin<br>PQFP | 160-<br>Pin<br>PGA | 192-<br>Pin<br>PGA | 208-<br>Pin<br>PQFP | 225-<br>Pin<br>BGA | 232-<br>Pin<br>PGA | 240-<br>Pin<br>PQFP | 280-<br>Pin<br>PGA | 304-<br>Pin<br>RQFP |  |
| EPF8282A     | 68                                                           | 78                  |                     |                     |                    |                    |                     |                    |                    |                     |                    |                     |  |
| EPF8282AV    |                                                              | 78                  |                     |                     |                    |                    |                     |                    |                    |                     |                    |                     |  |
| EPF8452A     | 68                                                           | 68                  |                     | 120                 | 120                |                    |                     |                    |                    |                     |                    |                     |  |
| EPF8636A     | 68                                                           |                     |                     | 118                 |                    | 136                | 136                 |                    |                    |                     |                    |                     |  |
| EPF8820A     |                                                              |                     | 112                 | 120                 |                    | 152                | 152                 | 152                |                    |                     |                    |                     |  |
| EPF81188A    |                                                              |                     |                     |                     |                    |                    | 148                 |                    | 184                | 184                 |                    |                     |  |
| EPF81500A    |                                                              |                     |                     |                     |                    |                    |                     |                    |                    | 181                 | 208                | 208                 |  |

#### Note:

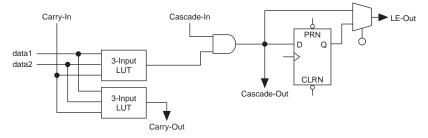
(1) FLEX 8000 device package types include plastic J-lead chip carrier (PLCC), thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat pack (RQFP), ball-grid array (BGA), and pin-grid array (PGA) packages.

# General Description

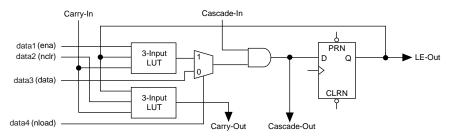
Altera's Flexible Logic Element MatriX (FLEX<sup>®</sup>) family combines the benefits of both erasable programmable logic devices (EPLDs) and fieldprogrammable gate arrays (FPGAs). The FLEX 8000 device family is ideal for a variety of applications because it combines the fine-grained architecture and high register count characteristics of FPGAs with the high speed and predictable interconnect delays of EPLDs. Logic is implemented in LEs that include compact 4-input look-up tables (LUTs) and programmable registers. High performance is provided by a fast, continuous network of routing resources. FLEX 8000 devices provide a large number of storage elements for applications such as digital signal processing (DSP), wide-data-path manipulation, and data transformation. These devices are an excellent choice for bus interfaces, TTL integration, coprocessor functions, and high-speed controllers. The high-pin-count packages can integrate multiple 32-bit buses into a single device. Table 3 shows FLEX 8000 performance and LE requirements for typical applications.


| Application             | LEs Used |     |     | Units |     |
|-------------------------|----------|-----|-----|-------|-----|
|                         |          | A-2 | A-3 | A-4   |     |
| 16-bit loadable counter | 16       | 125 | 95  | 83    | MHz |
| 16-bit up/down counter  | 16       | 125 | 95  | 83    | MHz |
| 24-bit accumulator      | 24       | 87  | 67  | 58    | MHz |
| 16-bit address decode   | 4        | 4.2 | 4.9 | 6.3   | ns  |
| 16-to-1 multiplexer     | 10       | 6.6 | 7.9 | 9.5   | ns  |

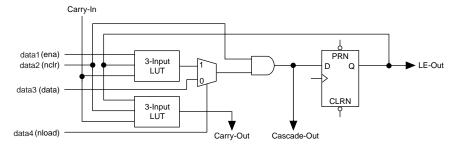
All FLEX 8000 device packages provide four dedicated inputs for synchronous control signals with large fan-outs. Each I/O pin has an associated register on the periphery of the device. As outputs, these registers provide fast clock-to-output times; as inputs, they offer quick setup times.


The logic and interconnections in the FLEX 8000 architecture are configured with CMOS SRAM elements. FLEX 8000 devices are configured at system power-up with data stored in an industry-standard parallel EPROM or an Altera serial configuration devices, or with data provided by a system controller. Altera offers the EPC1, EPC1213, EPC1064, and EPC1441 configuration devices, which configure FLEX 8000 devices via a serial data stream. Configuration data can also be stored in an industry-standard 32 K × 8 bit or larger configuration device, or downloaded from system RAM. After a FLEX 8000 device has been configured, it can be reconfigured in-circuit by resetting the device and loading new data. Because reconfiguration requires less than 100 ms, realtime changes can be made during system operation. For information on how to configure FLEX 8000 devices, go to the following documents:

- Configuration Devices for APEX & FLEX Devices Data Sheet
- BitBlaster Serial Download Cable Data Sheet
- ByteBlasterMV Parallel Port Download Cable Data Sheet
- *Application Note 33 (Configuring FLEX 8000 Devices)*
- Application Note 38 (Configuring Multiple FLEX 8000 Devices)


Figure 6. FLEX 8000 LE Operating Modes




#### **Arithmetic Mode**



#### **Up/Down Counter Mode**



#### **Clearable Counter Mode**

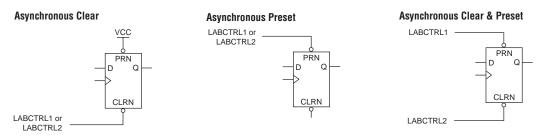


#### Normal Mode

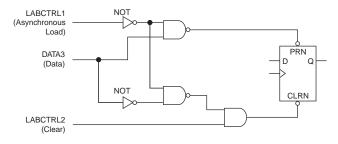
The normal mode is suitable for general logic applications and wide decoding functions that can take advantage of a cascade chain. In normal mode, four data inputs from the LAB local interconnect and the carry-in signal are the inputs to a 4-input LUT. Using a configurable SRAM bit, the MAX+PLUS II Compiler automatically selects the carry-in or the DATA3 signal as an input. The LUT output can be combined with the cascade-in signal to form a cascade chain through the cascade-out signal. The LE-Out signal—the data output of the LE—is either the combinatorial output of the LUT and cascade chain, or the data output (Q) of the programmable register.

#### Arithmetic Mode

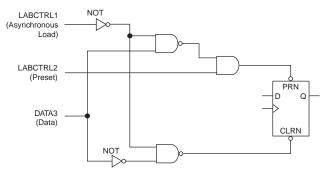
The arithmetic mode offers two 3-input LUTs that are ideal for implementing adders, accumulators, and comparators. One LUT provides a 3-bit function; the other generates a carry bit. As shown in Figure 6, the first LUT uses the carry-in signal and two data inputs from the LAB local interconnect to generate a combinatorial or registered output. For example, in an adder, this output is the sum of three bits: a, b, and the carry-in. The second LUT uses the same three signals to generate a carry-out signal, thereby creating a carry chain. The arithmetic mode also supports a cascade chain.


#### Up/Down Counter Mode

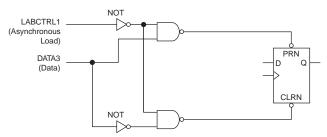
The up/down counter mode offers counter enable, synchronous up/down control, and data loading options. These control signals are generated by the data inputs from the LAB local interconnect, the carry-in signal, and output feedback from the programmable register. Two 3-input LUTs are used: one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading. Data can also be loaded asynchronously with the clear and preset register control signals, without using the LUT resources.


#### **Clearable Counter Mode**

The clearable counter mode is similar to the up/down counter mode, but supports a synchronous clear instead of the up/down control; the clear function is substituted for the cascade-in signal in the up/down counter mode. Two 3-input LUTs are used: one generates the counter data, and the other generates the fast carry bit. Synchronous loading is provided by a 2-to-1 multiplexer, and the output of this multiplexer is ANDed with a synchronous clear.


## Figure 7. FLEX 8000 LE Asynchronous Clear & Preset Modes



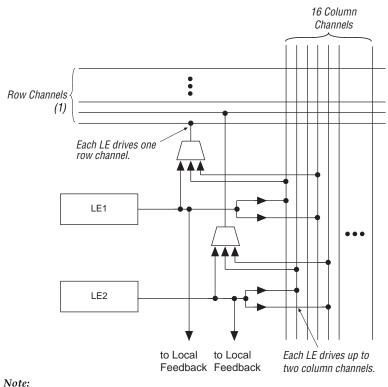

#### Asynchronous Load with Clear



#### Asynchronous Load with Preset



#### Asynchronous Load without Clear or Preset




#### FastTrack Interconnect

In the FLEX 8000 architecture, connections between LEs and device I/O pins are provided by the FastTrack Interconnect, a series of continuous horizontal (row) and vertical (column) routing channels that traverse the entire FLEX 8000 device. This device-wide routing structure provides predictable performance even in complex designs. In contrast, the segmented routing structure in FPGAs requires switch matrices to connect a variable number of routing paths, which increases the delays between logic resources and reduces performance.

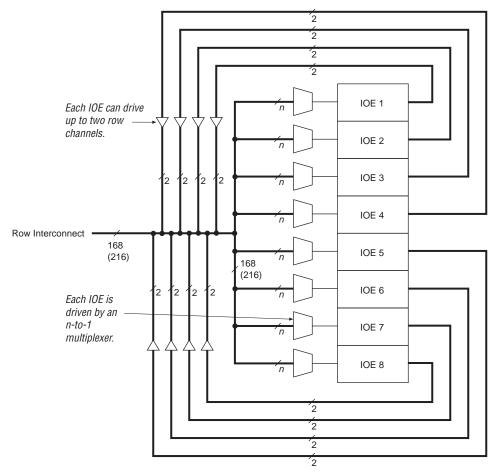
The LABs within FLEX 8000 devices are arranged into a matrix of columns and rows. Each row of LABs has a dedicated row interconnect that routes signals both into and out of the LABs in the row. The row interconnect can then drive I/O pins or feed other LABs in the device. Figure 8 shows how an LE drives the row and column interconnect.

Figure 8. FLEX 8000 LAB Connections to Row & Column Interconnect





Each LE in an LAB can drive up to two separate column interconnect channels. Therefore, all 16 available column channels can be driven by the LAB. The column channels run vertically across the entire device, and share access to LABs in the same column but in different rows. The MAX+PLUS II Compiler chooses which LEs must be connected to a column channel. A row interconnect channel can be fed by the output of the LE or by two column channels. These three signals feed a multiplexer that connects to a specific row channel. Each LE is connected to one 3-to-1 multiplexer. In an LAB, the multiplexers provide all 16 column channels with access to 8 row channels.


Each column of LABs has a dedicated column interconnect that routes signals out of the LABs into the column. The column interconnect can then drive I/O pins or feed into the row interconnect to route the signals to other LABs in the device. A signal from the column interconnect, which can be either the output of an LE or an input from an I/O pin, must transfer to the row interconnect before it can enter an LAB. Table 4 summarizes the FastTrack Interconnect resources available in each FLEX 8000 device.

| Table 4. FLE          | Table 4. FLEX 8000 FastTrack Interconnect Resources |                  |         |                     |  |  |  |  |  |  |  |
|-----------------------|-----------------------------------------------------|------------------|---------|---------------------|--|--|--|--|--|--|--|
| Device                | Rows                                                | Channels per Row | Columns | Channels per Column |  |  |  |  |  |  |  |
| EPF8282A<br>EPF8282AV | 2                                                   | 168              | 13      | 16                  |  |  |  |  |  |  |  |
| EPF8452A              | 2                                                   | 168              | 21      | 16                  |  |  |  |  |  |  |  |
| EPF8636A              | 3                                                   | 168              | 21      | 16                  |  |  |  |  |  |  |  |
| EPF8820A              | 4                                                   | 168              | 21      | 16                  |  |  |  |  |  |  |  |
| EPF81188A             | 6                                                   | 168              | 21      | 16                  |  |  |  |  |  |  |  |
| EPF81500A             | 6                                                   | 216              | 27      | 16                  |  |  |  |  |  |  |  |

Figure 9 shows the interconnection of four adjacent LABs, with row, column, and local interconnects, as well as the associated cascade and carry chains.

#### Figure 11. FLEX 8000 Row-to-IOE Connections

Numbers in parentheses are for EPF81500A devices. See Note (1).



#### Note:

- (1) n = 13 for EPF8282A and EPF8282AV devices.
  - *n* = 21 for EPF8452A, EPF8636A, EPF8820A, and EPF81188A devices.
    - n = 27 for EPF81500A devices.

Column-to-IOE Connections

Two IOEs are located at the top and bottom of the column channels (see Figure 12). When an IOE is used as an input, it can drive up to two separate column channels. The output signal to an IOE can choose from 8 of the 16 column channels through an 8-to-1 multiplexer.

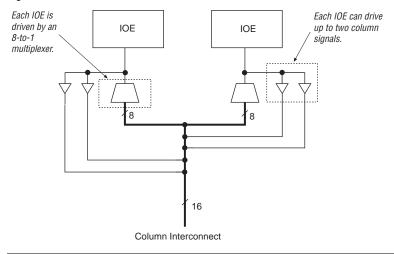
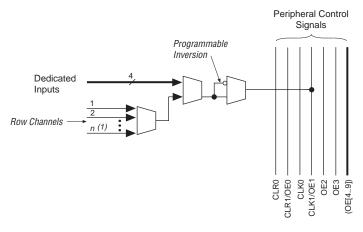



Figure 12. FLEX 8000 Column-to-IOE Connections


In addition to general-purpose I/O pins, FLEX 8000 devices have four dedicated input pins. These dedicated inputs provide low-skew, device-wide signal distribution, and are typically used for global clock, clear, and preset control signals. The signals from the dedicated inputs are available as control signals for all LABs and I/O elements in the device. The dedicated inputs can also be used as general-purpose data inputs because they can feed the local interconnect of each LAB in the device.

Signals enter the FLEX 8000 device either from the I/O pins that provide general-purpose input capability or from the four dedicated inputs. The IOEs are located at the ends of the row and column interconnect channels.

I/O pins can be used as input, output, or bidirectional pins. Each I/O pin has a register that can be used either as an input register for external data that requires fast setup times, or as an output register for data that requires fast clock-to-output performance. The MAX+PLUS II Compiler uses the programmable inversion option to invert signals automatically from the row and column interconnect when appropriate.

The clock, clear, and output enable controls for the IOEs are provided by a network of I/O control signals. These signals can be supplied by either the dedicated input pins or by internal logic. The IOE control-signal paths are designed to minimize the skew across the device. All control-signal sources are buffered onto high-speed drivers that drive the signals around the periphery of the device. This "peripheral bus" can be configured to provide up to four output enable signals (10 in EPF81500A devices), and up to two clock or clear signals. Figure 13 on page 22 shows how two output enable signals are shared with one clock and one clear signal. The signals for the peripheral bus can be generated by any of the four dedicated inputs or signals on the row interconnect channels, as shown in Figure 13. The number of row channels in a row that can drive the peripheral bus correlates to the number of columns in the FLEX 8000 device. EPF8282A and EPF8282AV devices use 13 channels; EPF8452A, EPF8636A, EPF8820A, and EPF81188A devices use 21 channels; and EPF81500A devices use 27 channels. The first LE in each LAB is the source of the row channel signal. The six peripheral control signals (12 in EPF81500A devices) can be accessed by each IOE.

#### Figure 13. FLEX 8000 Peripheral Bus



Numbers in parentheses are for EPF81500A devices.

#### Note:

- (1) n = 13 for EPF8282A and EPF8282AV devices.
  - *n* = 21 for EPF8452A, EPF8636A, EPF8820A, and EPF81188A devices.
  - n = 27 for EPF81500A devices.

# MultiVolt I/O Interface

The FLEX 8000 device architecture supports the MultiVolt I/O interface feature, which allows EPF81500A, EPF81188A, EPF8820A, and EPF8636A devices to interface with systems with differing supply voltages. These devices in all packages—except for EPF8636A devices in 84-pin PLCC packages—can be set for 3.3-V or 5.0-V I/O pin operation. These devices have one set of V<sub>CC</sub> pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

The VCCINT pins must always be connected to a 5.0-V power supply. With a 5.0-V V<sub>CCINT</sub> level, input voltages are at TTL levels and are therefore compatible with 3.3-V and 5.0-V inputs.

The VCCIO pins can be connected to either a 3.3-V or 5.0-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 5.0-V power supply, the output levels are compatible with 5.0-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is at 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with V<sub>CCIO</sub> levels lower than 4.75 V incur a nominally greater timing delay of  $t_{OD2}$  instead of  $t_{OD1}$ . See Table 8 on page 26.

# IEEE Std. 1149.1 (JTAG) Boundary-Scan Support

The EPF8282A, EPF8282AV, EPF8636A, EPF8820A, and EPF81500A devices provide JTAG BST circuitry. FLEX 8000 devices with JTAG circuitry support the JTAG instructions shown in Table 6.

| Table 6. EPF8282A, | EPF8282AV, EPF8636A, EPF8820A & EPF81500A JTAG Instructions                                                                                                                                    |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JTAG Instruction   | Description                                                                                                                                                                                    |
| SAMPLE/PRELOAD     | Allows a snapshot of the signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern to be output at the device pins.           |
| EXTEST             | Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins.                         |
| BYPASS             | Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through the selected device to adjacent devices during normal device operation. |

The instruction register length for FLEX 8000 devices is three bits. Table 7 shows the boundary-scan register length for FLEX 8000 devices.

| Table 7. FLEX 8000 Boundary-Scan | able 7. FLEX 8000 Boundary-Scan Register Length |  |  |  |  |  |  |
|----------------------------------|-------------------------------------------------|--|--|--|--|--|--|
| Device                           | Boundary-Scan Register Length                   |  |  |  |  |  |  |
| EPF8282A, EPF8282AV              | 273                                             |  |  |  |  |  |  |
| EPF8636A                         | 417                                             |  |  |  |  |  |  |
| EPF8820A                         | 465                                             |  |  |  |  |  |  |
| EPF81500A                        | 645                                             |  |  |  |  |  |  |

FLEX 8000 devices that support JTAG include weak pull-ups on the JTAG pins. Figure 14 shows the timing requirements for the JTAG signals.

#### Figure 14. EPF8282A, EPF8282AV, EPF8636A, EPF8820A & EPF81500A JTAG Waveforms

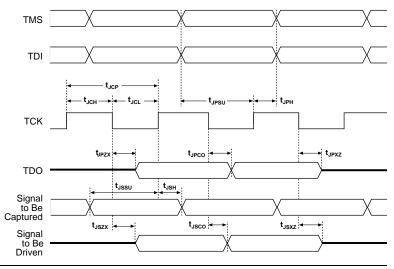



Table 8 shows the timing parameters and values for EPF8282A, EPF8282AV, EPF8636A, EPF8820A, and EPF81500A devices.

#### FLEX 8000 Programmable Logic Device Family Data Sheet

| Source        | Destination                   | Total Delay                     |
|---------------|-------------------------------|---------------------------------|
| LE-Out        | LE in same LAB                | t <sub>LOCAL</sub>              |
| LE-Out        | LE in same row, different LAB | $t_{ROW} + t_{LOCAL}$           |
| LE-Out        | LE in different row           | $t_{COL} + t_{ROW} + t_{LOCAL}$ |
| LE-Out        | IOE on column                 | t <sub>COL</sub>                |
| LE-Out        | IOE on row                    | t <sub>ROW</sub>                |
| IOE on row    | LE in same row                | $t_{ROW} + t_{LOCAL}$           |
| IOE on column | Any LE                        | $t_{COL} + t_{ROW} + t_{LOCAL}$ |

Tables 22 through 49 show the FLEX 8000 internal and external timing parameters.

| Symbol<br>-<br>-    |     | Speed Grade |     |     |     |     |    |  |  |  |  |
|---------------------|-----|-------------|-----|-----|-----|-----|----|--|--|--|--|
|                     | A   | A-2         |     | -3  | A   | 1   |    |  |  |  |  |
|                     | Min | Max         | Min | Мах | Min | Max |    |  |  |  |  |
| t <sub>IOD</sub>    |     | 0.7         |     | 0.8 |     | 0.9 | ns |  |  |  |  |
| t <sub>IOC</sub>    |     | 1.7         |     | 1.8 |     | 1.9 | ns |  |  |  |  |
| t <sub>IOE</sub>    |     | 1.7         |     | 1.8 |     | 1.9 | ns |  |  |  |  |
| t <sub>IOCO</sub>   |     | 1.0         |     | 1.0 |     | 1.0 | ns |  |  |  |  |
| t <sub>IOCOMB</sub> |     | 0.3         |     | 0.2 |     | 0.1 | ns |  |  |  |  |
| t <sub>IOSU</sub>   | 1.4 |             | 1.6 |     | 1.8 |     | ns |  |  |  |  |
| t <sub>IOH</sub>    | 0.0 |             | 0.0 |     | 0.0 |     | ns |  |  |  |  |
| t <sub>IOCLR</sub>  |     | 1.2         |     | 1.2 |     | 1.2 | ns |  |  |  |  |
| t <sub>IN</sub>     |     | 1.5         |     | 1.6 |     | 1.7 | ns |  |  |  |  |
| t <sub>OD1</sub>    |     | 1.1         |     | 1.4 |     | 1.7 | ns |  |  |  |  |
| t <sub>OD2</sub>    |     | -           |     | -   |     | -   | ns |  |  |  |  |
| t <sub>OD3</sub>    |     | 4.6         |     | 4.9 |     | 5.2 | ns |  |  |  |  |
| t <sub>XZ</sub>     |     | 1.4         |     | 1.6 |     | 1.8 | ns |  |  |  |  |
| t <sub>ZX1</sub>    |     | 1.4         |     | 1.6 |     | 1.8 | ns |  |  |  |  |
| t <sub>ZX2</sub>    |     | -           |     | -   |     | -   | ns |  |  |  |  |
| t <sub>ZX3</sub>    |     | 4.9         |     | 5.1 |     | 5.3 | ns |  |  |  |  |

| Symbol              | Speed Grade |     |     |     |     |     |    |  |  |
|---------------------|-------------|-----|-----|-----|-----|-----|----|--|--|
|                     | A           | A-2 |     | -3  | A   | -4  | 1  |  |  |
|                     | Min         | Max | Min | Max | Min | Max |    |  |  |
| t <sub>IOD</sub>    |             | 0.7 |     | 0.8 |     | 0.9 | ns |  |  |
| t <sub>IOC</sub>    |             | 1.7 |     | 1.8 |     | 1.9 | ns |  |  |
| t <sub>IOE</sub>    |             | 1.7 |     | 1.8 |     | 1.9 | ns |  |  |
| t <sub>IOCO</sub>   |             | 1.0 |     | 1.0 |     | 1.0 | ns |  |  |
| t <sub>IOCOMB</sub> |             | 0.3 |     | 0.2 |     | 0.1 | ns |  |  |
| t <sub>IOSU</sub>   | 1.4         |     | 1.6 |     | 1.8 |     | ns |  |  |
| t <sub>IOH</sub>    | 0.0         |     | 0.0 |     | 0.0 |     | ns |  |  |
| t <sub>IOCLR</sub>  |             | 1.2 |     | 1.2 |     | 1.2 | ns |  |  |
| t <sub>IN</sub>     |             | 1.5 |     | 1.6 |     | 1.7 | ns |  |  |
| t <sub>OD1</sub>    |             | 1.1 |     | 1.4 |     | 1.7 | ns |  |  |
| t <sub>OD2</sub>    |             | 1.6 |     | 1.9 |     | 2.2 | ns |  |  |
| t <sub>OD3</sub>    |             | 4.6 |     | 4.9 |     | 5.2 | ns |  |  |
| t <sub>XZ</sub>     |             | 1.4 |     | 1.6 |     | 1.8 | ns |  |  |
| t <sub>ZX1</sub>    |             | 1.4 |     | 1.6 |     | 1.8 | ns |  |  |
| t <sub>ZX2</sub>    |             | 1.9 |     | 2.1 |     | 2.3 | ns |  |  |
| t <sub>ZX3</sub>    |             | 4.9 |     | 5.1 |     | 5.3 | ns |  |  |

| Symbol                |     | Speed Grade |     |     |     |     |    |  |  |  |
|-----------------------|-----|-------------|-----|-----|-----|-----|----|--|--|--|
|                       | A   | A-2         |     | -3  | A   | -4  | ]  |  |  |  |
|                       | Min | Max         | Min | Max | Min | Max | -  |  |  |  |
| t <sub>LABCASC</sub>  |     | 0.3         |     | 0.4 |     | 0.4 | ns |  |  |  |
| t <sub>LABCARRY</sub> |     | 0.3         |     | 0.4 |     | 0.4 | ns |  |  |  |
| t <sub>LOCAL</sub>    |     | 0.5         |     | 0.5 |     | 0.7 | ns |  |  |  |
| t <sub>ROW</sub>      |     | 5.0         |     | 5.0 |     | 5.0 | ns |  |  |  |
| t <sub>COL</sub>      |     | 3.0         |     | 3.0 |     | 3.0 | ns |  |  |  |
| t <sub>DIN_C</sub>    |     | 5.0         |     | 5.0 |     | 5.5 | ns |  |  |  |
| t <sub>DIN_D</sub>    |     | 7.0         |     | 7.0 |     | 7.5 | ns |  |  |  |
| t <sub>DIN_IO</sub>   |     | 5.0         |     | 5.0 |     | 5.5 | ns |  |  |  |

Г

٦

| Symbol              | Speed Grade |     |     |     |     |     |    |  |  |  |
|---------------------|-------------|-----|-----|-----|-----|-----|----|--|--|--|
|                     | A-2         |     | A   | -3  | A   |     |    |  |  |  |
|                     | Min         | Max | Min | Max | Min | Max |    |  |  |  |
| t <sub>IOD</sub>    |             | 0.7 |     | 0.8 |     | 0.9 | ns |  |  |  |
| t <sub>IOC</sub>    |             | 1.7 |     | 1.8 |     | 1.9 | ns |  |  |  |
| t <sub>IOE</sub>    |             | 1.7 |     | 1.8 |     | 1.9 | ns |  |  |  |
| t <sub>IOCO</sub>   |             | 1.0 |     | 1.0 |     | 1.0 | ns |  |  |  |
| t <sub>IOCOMB</sub> |             | 0.3 |     | 0.2 |     | 0.1 | ns |  |  |  |
| t <sub>IOSU</sub>   | 1.4         |     | 1.6 |     | 1.8 |     | ns |  |  |  |
| t <sub>IOH</sub>    | 0.0         |     | 0.0 |     | 0.0 |     | ns |  |  |  |
| t <sub>IOCLR</sub>  |             | 1.2 |     | 1.2 |     | 1.2 | ns |  |  |  |
| t <sub>IN</sub>     |             | 1.5 |     | 1.6 |     | 1.7 | ns |  |  |  |
| t <sub>OD1</sub>    |             | 1.1 |     | 1.4 |     | 1.7 | ns |  |  |  |
| t <sub>OD2</sub>    |             | 1.6 |     | 1.9 |     | 2.2 | ns |  |  |  |
| t <sub>OD3</sub>    |             | 4.6 |     | 4.9 |     | 5.2 | ns |  |  |  |
| t <sub>XZ</sub>     |             | 1.4 |     | 1.6 |     | 1.8 | ns |  |  |  |
| t <sub>ZX1</sub>    |             | 1.4 |     | 1.6 |     | 1.8 | ns |  |  |  |
| t <sub>ZX2</sub>    |             | 1.9 |     | 2.1 |     | 2.3 | ns |  |  |  |
| t <sub>ZX3</sub>    |             | 4.9 |     | 5.1 |     | 5.3 | ns |  |  |  |

| Symbol                | Speed Grade |     |     |     |     |     |    |  |
|-----------------------|-------------|-----|-----|-----|-----|-----|----|--|
|                       | A-2         |     | A-3 |     | A-4 |     |    |  |
|                       | Min         | Max | Min | Max | Min | Max | 1  |  |
| t <sub>LABCASC</sub>  |             | 0.3 |     | 0.3 |     | 0.4 | ns |  |
| t <sub>LABCARRY</sub> |             | 0.3 |     | 0.3 |     | 0.4 | ns |  |
| t <sub>LOCAL</sub>    |             | 0.5 |     | 0.6 |     | 0.8 | ns |  |
| t <sub>ROW</sub>      |             | 5.0 |     | 5.0 |     | 5.0 | ns |  |
| t <sub>COL</sub>      |             | 3.0 |     | 3.0 |     | 3.0 | ns |  |
| t <sub>DIN_C</sub>    |             | 5.0 |     | 5.0 |     | 5.5 | ns |  |
| t <sub>DIN_D</sub>    |             | 7.0 |     | 7.0 |     | 7.5 | ns |  |
| t <sub>DIN IO</sub>   |             | 5.0 |     | 5.0 |     | 5.5 | ns |  |

٦

| Symbol             | Speed Grade |     |     |     |     |     |    |  |
|--------------------|-------------|-----|-----|-----|-----|-----|----|--|
|                    | A-2         |     | A-3 |     | A-4 |     |    |  |
|                    | Min         | Мах | Min | Мах | Min | Max | -  |  |
| t <sub>LUT</sub>   |             | 2.0 |     | 2.5 |     | 3.2 | ns |  |
| t <sub>CLUT</sub>  |             | 0.0 |     | 0.0 |     | 0.0 | ns |  |
| t <sub>RLUT</sub>  |             | 0.9 |     | 1.1 |     | 1.5 | ns |  |
| t <sub>GATE</sub>  |             | 0.0 |     | 0.0 |     | 0.0 | ns |  |
| t <sub>CASC</sub>  |             | 0.6 |     | 0.7 |     | 0.9 | ns |  |
| t <sub>CICO</sub>  |             | 0.4 |     | 0.5 |     | 0.6 | ns |  |
| t <sub>CGEN</sub>  |             | 0.4 |     | 0.5 |     | 0.7 | ns |  |
| t <sub>CGENR</sub> |             | 0.9 |     | 1.1 |     | 1.5 | ns |  |
| t <sub>C</sub>     |             | 1.6 |     | 2.0 |     | 2.5 | ns |  |
| t <sub>CH</sub>    | 4.0         |     | 4.0 |     | 4.0 |     | ns |  |
| t <sub>CL</sub>    | 4.0         |     | 4.0 |     | 4.0 |     | ns |  |
| t <sub>CO</sub>    |             | 0.4 |     | 0.5 |     | 0.6 | ns |  |
| t <sub>COMB</sub>  |             | 0.4 |     | 0.5 |     | 0.6 | ns |  |
| t <sub>SU</sub>    | 0.8         |     | 1.1 |     | 1.2 |     | ns |  |
| t <sub>H</sub>     | 0.9         |     | 1.1 |     | 1.5 |     | ns |  |
| t <sub>PRE</sub>   |             | 0.6 |     | 0.7 |     | 0.8 | ns |  |
| t <sub>CLR</sub>   |             | 0.6 |     | 0.7 |     | 0.8 | ns |  |

| Symbol           |     | Speed Grade |     |      |     |      |    |  |
|------------------|-----|-------------|-----|------|-----|------|----|--|
|                  | A   | -2          | A-3 |      | A-4 |      |    |  |
|                  | Min | Max         | Min | Max  | Min | Max  |    |  |
| t <sub>DRR</sub> |     | 16.0        |     | 20.0 |     | 25.0 | ns |  |
| t <sub>ODH</sub> | 1.0 |             | 1.0 |      | 1.0 |      | ns |  |

| Symbol              | Speed Grade |     |     |     |     |     |    |  |
|---------------------|-------------|-----|-----|-----|-----|-----|----|--|
|                     | A-2         |     | A-3 |     | A-4 |     | 1  |  |
|                     | Min         | Max | Min | Max | Min | Max | _  |  |
| t <sub>IOD</sub>    |             | 0.7 |     | 0.8 |     | 0.9 | ns |  |
| t <sub>IOC</sub>    |             | 1.7 |     | 1.8 |     | 1.9 | ns |  |
| t <sub>IOE</sub>    |             | 1.7 |     | 1.8 |     | 1.9 | ns |  |
| t <sub>IOCO</sub>   |             | 1.0 |     | 1.0 |     | 1.0 | ns |  |
| t <sub>IOCOMB</sub> |             | 0.3 |     | 0.2 |     | 0.1 | ns |  |
| t <sub>IOSU</sub>   | 1.4         |     | 1.6 |     | 1.8 |     | ns |  |
| t <sub>IOH</sub>    | 0.0         |     | 0.0 |     | 0.0 |     | ns |  |
| t <sub>IOCLR</sub>  |             | 1.2 |     | 1.2 |     | 1.2 | ns |  |
| t <sub>IN</sub>     |             | 1.5 |     | 1.6 |     | 1.7 | ns |  |
| t <sub>OD1</sub>    |             | 1.1 |     | 1.4 |     | 1.7 | ns |  |
| t <sub>OD2</sub>    |             | 1.6 |     | 1.9 |     | 2.2 | ns |  |
| t <sub>OD3</sub>    |             | 4.6 |     | 4.9 |     | 5.2 | ns |  |
| t <sub>XZ</sub>     |             | 1.4 |     | 1.6 |     | 1.8 | ns |  |
| t <sub>ZX1</sub>    |             | 1.4 |     | 1.6 |     | 1.8 | ns |  |
| t <sub>ZX2</sub>    |             | 1.9 |     | 2.1 |     | 2.3 | ns |  |
| t <sub>ZX3</sub>    |             | 4.9 |     | 5.1 |     | 5.3 | ns |  |

| Symbol                |     | Speed Grade |     |     |     |     |    |  |  |
|-----------------------|-----|-------------|-----|-----|-----|-----|----|--|--|
|                       | A-2 |             | A-3 |     | A-4 |     | 1  |  |  |
|                       | Min | Max         | Min | Max | Min | Max |    |  |  |
| t <sub>LABCASC</sub>  |     | 0.3         |     | 0.3 |     | 0.4 | ns |  |  |
| t <sub>LABCARRY</sub> |     | 0.3         |     | 0.3 |     | 0.4 | ns |  |  |
| t <sub>LOCAL</sub>    |     | 0.5         |     | 0.6 |     | 0.8 | ns |  |  |
| t <sub>ROW</sub>      |     | 6.2         |     | 6.2 |     | 6.2 | ns |  |  |
| t <sub>COL</sub>      |     | 3.0         |     | 3.0 |     | 3.0 | ns |  |  |
| t <sub>DIN_C</sub>    |     | 5.0         |     | 5.0 |     | 5.5 | ns |  |  |
| t <sub>DIN_D</sub>    |     | 8.2         |     | 8.2 |     | 8.7 | ns |  |  |
| t <sub>DIN_IO</sub>   |     | 5.0         |     | 5.0 |     | 5.5 | ns |  |  |

ſ

1

## **Operating Modes**

The FLEX 8000 architecture uses SRAM elements that require configuration data to be loaded whenever the device powers up and begins operation. The process of physically loading the SRAM programming data into the device is called *configuration*. During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. The I/O pins are tri-stated during power-up, and before and during configuration. The configuration and initialization processes together are called *command mode*; normal device operation is called *user mode*.

SRAM elements allow FLEX 8000 devices to be reconfigured in-circuit with new programming data that is loaded into the device. Real-time reconfiguration is performed by forcing the device into command mode with a device pin, loading different programming data, reinitializing the device, and resuming user-mode operation. The entire reconfiguration process requires less than 100 ms and can be used to dynamically reconfigure an entire system. In-field upgrades can be performed by distributing new configuration files.

# **Configuration Schemes**

The configuration data for a FLEX 8000 device can be loaded with one of six configuration schemes, chosen on the basis of the target application. Both active and passive schemes are available. In the active configuration schemes, the FLEX 8000 device functions as the controller, directing the loading operation, controlling external configuration devices, and completing the loading process. The clock source for all active configuration schemes is an oscillator on the FLEX 8000 device that operates between 2 MHz and 6 MHz. In the passive configuration schemes, an external controller guides the FLEX 8000 device. Table 51 shows the data source for each of the six configuration schemes.

| Table 51. Data Source for Configuration |                              |                               |  |  |  |  |  |
|-----------------------------------------|------------------------------|-------------------------------|--|--|--|--|--|
| Configuration Scheme                    | Configuration Scheme Acronym |                               |  |  |  |  |  |
| Active serial                           | AS                           | Altera configuration device   |  |  |  |  |  |
| Active parallel up                      | APU                          | Parallel configuration device |  |  |  |  |  |
| Active parallel down                    | APD                          | Parallel configuration device |  |  |  |  |  |
| Passive serial                          | PS                           | Serial data path              |  |  |  |  |  |
| Passive parallel synchronous            | PPS                          | Intelligent host              |  |  |  |  |  |
| Passive parallel asynchronous           | PPA                          | Intelligent host              |  |  |  |  |  |

| Pin Name       | 225-Pin<br>BGA<br>EPF8820A | 232-Pin<br>PGA<br>EPF81188A | 240-Pin<br>PQFP<br>EPF81188A | 240-Pin<br>PQFP<br>EPF81500A | 280-Pin<br>PGA<br>EPF81500A | 304-Pin<br>RQFP<br>EPF81500A |
|----------------|----------------------------|-----------------------------|------------------------------|------------------------------|-----------------------------|------------------------------|
| nSP <i>(2)</i> | A15                        | C14                         | 237                          | 237                          | W1                          | 304                          |
| MSELO (2)      | B14                        | G15                         | 21                           | 19                           | N1                          | 26                           |
| MSEL1 (2)      | R15                        | L15                         | 40                           | 38                           | H3                          | 51                           |
| nSTATUS (2)    | P2                         | L3                          | 141                          | 142                          | G19                         | 178                          |
| nCONFIG (2)    | R1                         | R4                          | 117                          | 120                          | B18                         | 152                          |
| DCLK (2)       | B2                         | C4                          | 184                          | 183                          | U18                         | 230                          |
| CONF_DONE (2)  | A1                         | G3                          | 160                          | 161                          | M16                         | 204                          |
| nWS            | L4                         | P1                          | 133                          | 134                          | F18                         | 167                          |
| nRS            | K5                         | N1                          | 137                          | 138                          | G18                         | 171                          |
| RDCLK          | F1                         | G2                          | 158                          | 159                          | M17                         | 202                          |
| nCS            | D1                         | E2                          | 166                          | 167                          | N16                         | 212                          |
| CS             | C1                         | E3                          | 169                          | 170                          | N18                         | 215                          |
| RDYnBUSY       | J3                         | K2                          | 146                          | 147                          | J17                         | 183                          |
| CLKUSR         | G2                         | H2                          | 155                          | 156                          | K19                         | 199                          |
| ADD17          | M14                        | R15                         | 58                           | 56                           | E3                          | 73                           |
| ADD16          | L12                        | T17                         | 56                           | 54                           | E2                          | 71                           |
| ADD15          | M15                        | P15                         | 54                           | 52                           | F4                          | 69                           |
| ADD14          | L13                        | M14                         | 47                           | 45                           | G1                          | 60                           |
| ADD13          | L14                        | M15                         | 45                           | 43                           | H2                          | 58                           |
| ADD12          | K13                        | M16                         | 43                           | 41                           | H1                          | 56                           |
| ADD11          | K15                        | K15                         | 36                           | 34                           | J3                          | 47                           |
| ADD10          | J13                        | K17                         | 34                           | 32                           | К3                          | 45                           |
| ADD9           | J15                        | J14                         | 32                           | 30                           | K4                          | 43                           |
| ADD8           | G14                        | J15                         | 29                           | 27                           | L1                          | 34                           |
| ADD7           | G13                        | H17                         | 27                           | 25                           | L2                          | 32                           |
| ADD6           | G11                        | H15                         | 25                           | 23                           | M1                          | 30                           |
| ADD5           | F14                        | F16                         | 18                           | 16                           | N2                          | 20                           |
| ADD4           | E13                        | F15                         | 16                           | 14                           | N3                          | 18                           |
| ADD3           | D15                        | F14                         | 14                           | 12                           | N4                          | 16                           |
| ADD2           | D14                        | D15                         | 7                            | 5                            | U1                          | 8                            |
| ADD1           | E12                        | B17                         | 5                            | 3                            | U2                          | 6                            |
| ADD0           | C15                        | C15                         | 3                            | 1                            | V1                          | 4                            |
| DATA7          | A7                         | A7                          | 205                          | 199                          | W13                         | 254                          |
| DATA6          | D7                         | D8                          | 203                          | 197                          | W14                         | 252                          |
| DATA5          | A6                         | B7                          | 200                          | 196                          | W15                         | 250                          |

#### FLEX 8000 Programmable Logic Device Family Data Sheet

#### Notes to tables:

- Perform a complete thermal analysis before committing a design to this device package. See Application Note 74 (Evaluating Power for Altera Devices) for more information.
- (2) This pin is a dedicated pin and is not available as a user I/O pin.
- (3) SDOUT will drive out during configuration. After configuration, it may be used as a user I/O pin. By default, the MAX+PLUS II software will not use SDOUT as a user I/O pin; the user can override the MAX+PLUS II software and use SDOUT as a user I/O pin.
- (4) If the device is not configured to use the JTAG BST circuitry, this pin is available as a user I/O pin.
- (5) JTAG pins are available for EPF8636A devices only. These pins are dedicated user I/O pins.
- (6) If this pin is used as an input in user mode, ensure that it does not toggle before or during configuration.
- (7) TRST is a dedicated input pin for JTAG use. This pin must be grounded if JTAG BST is not used.
- (8) Pin 52 is a  $V_{CC}$  pin on EPF8452A devices only.
- (9) The user I/O pin count includes dedicated input pins and all I/O pins.
- (10) Unused dedicated inputs should be tied to ground on the board.
- (11) SDOUT does not exist in the EPF8636GC192 device.
- (12) These pins are no connect (N.C.) pins for EPF8636A devices only. They are user I/O pins in EPF8820A devices.
- (13) EPF8636A devices have 132 user I/O pins; EPF8820A devices have 148 user I/O pins.
- (14) For EPF81500A devices, these pins are dedicated JTAG pins and are not available as user I/O pins. If JTAG BST is not used, TDI, TCK, TMS, and TRST should be tied to GND.

Revision History The information contained in the *FLEX 8000 Programmable Logic Device Family Data Sheet* version 11.1 supersedes information published in previous versions. The *FLEX 8000 Programmable Logic Device Family Data Sheet* version 11.1 contains the following change: minor textual updates.