
E·XFL

Altera - EPF81500AQC240-3 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Deta	ails

Details	
Product Status	Active
Number of LABs/CLBs	162
Number of Logic Elements/Cells	1296
Total RAM Bits	-
Number of I/O	181
Number of Gates	16000
Voltage - Supply	4.75V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	240-BFQFP
Supplier Device Package	240-PQFP (32x32)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=epf81500aqc240-3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The FLEX 8000 architecture provides two dedicated high-speed data paths—carry chains and cascade chains—that connect adjacent LEs without using local interconnect paths. The carry chain supports highspeed counters and adders; the cascade chain implements wide-input functions with minimum delay. Carry and cascade chains connect all LEs in an LAB and all LABs in the same row. Heavy use of carry and cascade chains can reduce routing flexibility. Therefore, the use of carry and cascade chains should be limited to speed-critical portions of a design.

Carry Chain

The carry chain provides a very fast (less than 1 ns) carry-forward function between LEs. The carry-in signal from a lower-order bit moves forward into the higher-order bit via the carry chain, and feeds into both the LUT and the next portion of the carry chain. This feature allows the FLEX 8000 architecture to implement high-speed counters and adders of arbitrary width. The MAX+PLUS II Compiler can create carry chains automatically during design processing; designers can also insert carry chain logic manually during design entry.

Figure 4 shows how an *n*-bit full adder can be implemented in n + 1 LEs with the carry chain. One portion of the LUT generates the sum of two bits using the input signals and the carry-in signal; the sum is routed to the output of the LE. The register is typically bypassed for simple adders, but can be used for an accumulator function. Another portion of the LUT and the carry chain logic generate the carry-out signal, which is routed directly to the carry-in signal of the next-higher-order bit. The final carry-out signal is routed to another LE, where it can be used as a general-purpose signal. In addition to mathematical functions, carry chain logic supports very fast counters and comparators.

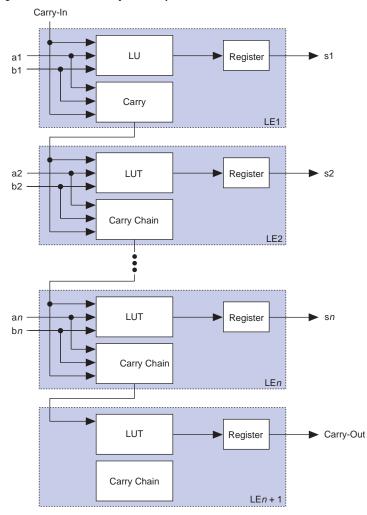


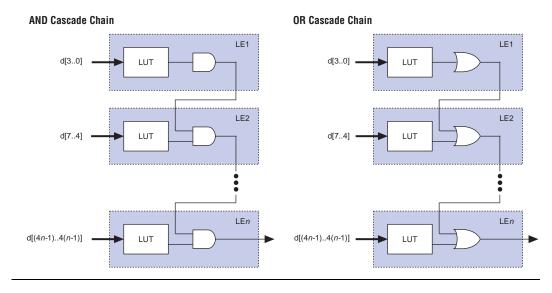
Figure 4. FLEX 8000 Carry Chain Operation

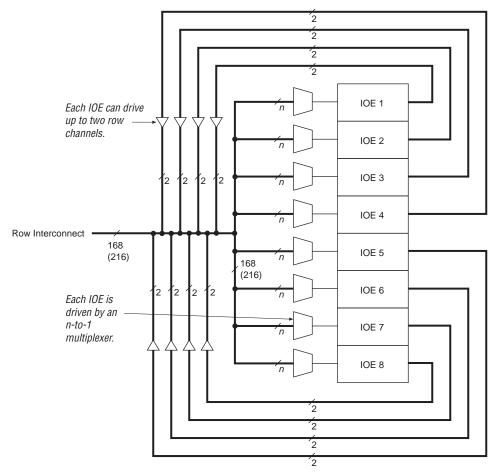
Cascade Chain

With the cascade chain, the FLEX 8000 architecture can implement functions that have a very wide fan-in. Adjacent LUTs can be used to compute portions of the function in parallel; the cascade chain serially connects the intermediate values. The cascade chain can use a logical AND or logical OR (via De Morgan's inversion) to connect the outputs of adjacent LEs. Each additional LE provides four more inputs to the effective width of a function, with a delay as low as 0.6 ns per LE.

The MAX+PLUS II Compiler can create cascade chains automatically during design processing; designers can also insert cascade chain logic manually during design entry. Cascade chains longer than eight LEs are automatically implemented by linking LABs together. The last LE of an LAB cascades to the first LE of the next LAB.

Figure 5 shows how the cascade function can connect adjacent LEs to form functions with a wide fan-in. These examples show functions of 4n variables implemented with n LEs. For a device with an A-2 speed grade, the LE delay is 2.4 ns; the cascade chain delay is 0.6 ns. With the cascade chain, 4.2 ns is needed to decode a 16-bit address.




Figure 5. FLEX 8000 Cascade Chain Operation

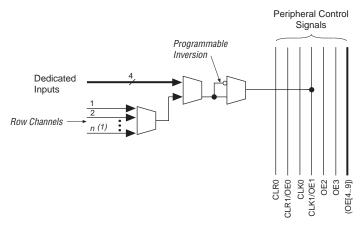
LE Operating Modes

The FLEX 8000 LE can operate in one of four modes, each of which uses LE resources differently. See Figure 6. In each mode, seven of the ten available inputs to the LE—the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE—are directed to different destinations to implement the desired logic function. The three remaining inputs to the LE provide clock, clear, and preset control for the register. The MAX+PLUS II software automatically chooses the appropriate mode for each application. Design performance can also be enhanced by designing for the operating mode that supports the desired application.

Figure 11. FLEX 8000 Row-to-IOE Connections

Numbers in parentheses are for EPF81500A devices. See Note (1).

Note:


- (1) n = 13 for EPF8282A and EPF8282AV devices.
 - *n* = 21 for EPF8452A, EPF8636A, EPF8820A, and EPF81188A devices.
 - n = 27 for EPF81500A devices.

Column-to-IOE Connections

Two IOEs are located at the top and bottom of the column channels (see Figure 12). When an IOE is used as an input, it can drive up to two separate column channels. The output signal to an IOE can choose from 8 of the 16 column channels through an 8-to-1 multiplexer.

The signals for the peripheral bus can be generated by any of the four dedicated inputs or signals on the row interconnect channels, as shown in Figure 13. The number of row channels in a row that can drive the peripheral bus correlates to the number of columns in the FLEX 8000 device. EPF8282A and EPF8282AV devices use 13 channels; EPF8452A, EPF8636A, EPF8820A, and EPF81188A devices use 21 channels; and EPF81500A devices use 27 channels. The first LE in each LAB is the source of the row channel signal. The six peripheral control signals (12 in EPF81500A devices) can be accessed by each IOE.

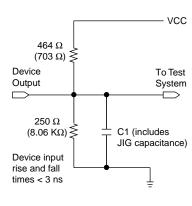
Figure 13. FLEX 8000 Peripheral Bus

Numbers in parentheses are for EPF81500A devices.

Note:

- (1) n = 13 for EPF8282A and EPF8282AV devices.
 - *n* = 21 for EPF8452A, EPF8636A, EPF8820A, and EPF81188A devices.
 - n = 27 for EPF81500A devices.

Symbol	Parameter	EPF82 EPF82 EPF80 EPF80 EPF82 EPF82	Unit	
		Min	Мах	
t _{JCP}	TCK clock period	100		ns
t _{JCH}	TCK clock high time	50		ns
t _{JCL}	TCK clock low time	50		ns
t _{JPSU}	JTAG port setup time	20		ns
t _{JPH}	JTAG port hold time	45		ns
t _{JPCO}	JTAG port clock to output		25	ns
t _{JPZX}	JTAG port high-impedance to valid output		25	ns
t _{JPXZ}	JTAG port valid output to high-impedance		25	ns
t _{JSSU}	Capture register setup time	20		ns
t _{JSH}	Capture register hold time	45		ns
t _{JSCO}	Update register clock to output		35	ns
t _{JSZX}	Update register high-impedance to valid output		35	ns
t _{JSXZ}	Update register valid output to high-impedance		35	ns


For detailed information on JTAG operation in FLEX 8000 devices, refer to *Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices)*.

Generic Testing

Each FLEX 8000 device is functionally tested and specified by Altera. Complete testing of each configurable SRAM bit and all logic functionality ensures 100% configuration yield. AC test measurements for FLEX 8000 devices are made under conditions equivalent to those shown in Figure 15. Designers can use multiple test patterns to configure devices during all stages of the production flow.

Figure 15. FLEX 8000 AC Test Conditions

Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-groundcurrent transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Numbers in parentheses are for 3.3-V devices or outputs. Numbers without parentheses are for 5.0-V devices or outputs.

Operating Conditions

Tables 9 through 12 provide information on absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for 5.0-V FLEX 8000 devices.

Table 9	Table 9. FLEX 8000 5.0-V Device Absolute Maximum Ratings Note (1)									
Symbol	Parameter	Conditions	Min	Max	Unit					
V _{CC}	Supply voltage	With respect to ground (2)	-2.0	7.0	V					
VI	DC input voltage		-2.0	7.0	V					
IOUT	DC output current, per pin		-25	25	mA					
T _{STG}	Storage temperature	No bias	-65	150	°C					
T _{AMB}	Ambient temperature	Under bias	-65	135	°C					
Τ _J	Junction temperature	Ceramic packages, under bias		150	°C					
		PQFP and RQFP, under bias		135	°C					

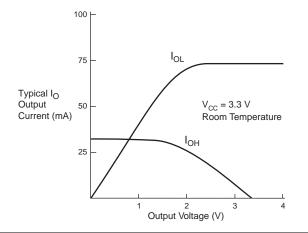


Figure 18. Output Drive Characteristics of EPF8282AV Devices

Timing Model

The continuous, high-performance FastTrack Interconnect routing structure ensures predictable performance and accurate simulation and timing analysis. This predictable performance contrasts with that of FPGAs, which use a segmented connection scheme and hence have unpredictable performance. Timing simulation and delay prediction are available with the MAX+PLUS II Simulator and Timing Analyzer, or with industry-standard EDA tools. The Simulator offers both pre-synthesis functional simulation to evaluate logic design accuracy and post-synthesis timing simulation with 0.1-ns resolution. The Timing Analyzer provides point-to-point timing delay information, setup and hold time prediction, and device-wide performance analysis.

Tables 17 through 20 describe the FLEX 8000 timing parameters and their symbols.

FLEX 8000 Programmable Logic Device Family Data Sheet

Source	Destination	Total Delay
LE-Out	LE in same LAB	t _{LOCAL}
LE-Out	LE in same row, different LAB	$t_{ROW} + t_{LOCAL}$
LE-Out	LE in different row	$t_{COL} + t_{ROW} + t_{LOCAL}$
LE-Out	IOE on column	t _{COL}
LE-Out	IOE on row	t _{ROW}
IOE on row	LE in same row	$t_{ROW} + t_{LOCAL}$
IOE on column	Any LE	$t_{COL} + t_{ROW} + t_{LOCAL}$

Tables 22 through 49 show the FLEX 8000 internal and external timing parameters.

Symbol		Speed Grade							
	A-2		A-3		A-4		1		
	Min	Max	Min	Мах	Min	Max			
t _{IOD}		0.7		0.8		0.9	ns		
t _{IOC}		1.7		1.8		1.9	ns		
t _{IOE}		1.7		1.8		1.9	ns		
t _{IOCO}		1.0		1.0		1.0	ns		
t _{IOCOMB}		0.3		0.2		0.1	ns		
t _{IOSU}	1.4		1.6		1.8		ns		
t _{IOH}	0.0		0.0		0.0		ns		
t _{IOCLR}		1.2		1.2		1.2	ns		
t _{IN}		1.5		1.6		1.7	ns		
t _{OD1}		1.1		1.4		1.7	ns		
t _{OD2}		-		-		-	ns		
t _{OD3}		4.6		4.9		5.2	ns		
t _{XZ}		1.4		1.6		1.8	ns		
t _{ZX1}		1.4		1.6		1.8	ns		
t _{ZX2}		-		-		-	ns		
t _{ZX3}		4.9		5.1		5.3	ns		

Symbol			Speed	Grade			Unit
	A-2		A-3		A-4		
	Min	Max	Min	Max	Min	Max	
t _{LABCASC}		0.3		0.3		0.4	ns
t _{LABCARRY}		0.3		0.3		0.4	ns
t _{LOCAL}		0.5		0.6		0.8	ns
t _{ROW}		4.2		4.2		4.2	ns
t _{COL}		2.5		2.5		2.5	ns
t _{DIN_C}		5.0		5.0		5.5	ns
t _{DIN_D}		7.2		7.2		7.2	ns
t _{DIN IO}		5.0		5.0		5.5	ns

Symbol	Speed Grade							
	A-2		A-3		A	-4		
	Min	Max	Min	Мах	Min	Мах		
t _{LUT}		2.0		2.5		3.2	ns	
t _{CLUT}		0.0		0.0		0.0	ns	
t _{RLUT}		0.9		1.1		1.5	ns	
t _{GATE}		0.0		0.0		0.0	ns	
t _{CASC}		0.6		0.7		0.9	ns	
t _{CICO}		0.4		0.5		0.6	ns	
t _{CGEN}		0.4		0.5		0.7	ns	
t _{CGENR}		0.9		1.1		1.5	ns	
t _C		1.6		2.0		2.5	ns	
t _{CH}	4.0		4.0		4.0		ns	
t _{CL}	4.0		4.0		4.0		ns	
t _{CO}		0.4		0.5		0.6	ns	
t _{COMB}		0.4		0.5		0.6	ns	
t _{SU}	0.8		1.1		1.2		ns	
t _H	0.9		1.1		1.5		ns	
t _{PRE}		0.6		0.7		0.8	ns	
t _{CLR}		0.6		0.7		0.8	ns	

Table 25. EPF8282A External Timing Parameters

Symbol	Speed Grade							
	A	-2	A-3		A-4			
	Min	Max	Min	Max	Min	Мах		
t _{DRR}		15.8		19.8		24.8	ns	
t _{ODH}	1.0		1.0		1.0		ns	

Π

Symbol	Speed Grade					
	A	-3	A	A-4		
	Min	Max	Min	Max		
t _{LUT}		3.2		7.3	ns	
t _{CLUT}		0.0		1.4	ns	
t _{RLUT}		1.5		5.1	ns	
t _{GATE}		0.0		0.0	ns	
t _{CASC}		0.9		2.8	ns	
t _{CICO}		0.6		1.5	ns	
t _{CGEN}		0.7		2.2	ns	
t _{CGENR}		1.5		3.7	ns	
t _C		2.5		4.7	ns	
t _{CH}	4.0		6.0		ns	
t _{CL}	4.0		6.0		ns	
t _{CO}		0.6		0.9	ns	
t _{COMB}		0.6		0.9	ns	
t _{SU}	1.2		2.4		ns	
t _H	1.5		4.6		ns	
t _{PRE}		0.8		1.3	ns	
t _{CLR}		0.8		1.3	ns	

Table 29. EPF8282AV External Timing Parameters								
Symbol		Unit						
	A	-3	A					
	Min	Max	Min	Max				
t _{DRR}		24.8		50.1	ns			
t _{ODH}	1.0		1.0		ns			

Symbol	Speed Grade							
	A-2		A-3		A-4			
	Min	Max	Min	Мах	Min	Max		
t _{IOD}		0.7		0.8		0.9	ns	
t _{IOC}		1.7		1.8		1.9	ns	
t _{IOE}		1.7		1.8		1.9	ns	
t _{IOCO}		1.0		1.0		1.0	ns	
t _{IOCOMB}		0.3		0.2		0.1	ns	
t _{IOSU}	1.4		1.6		1.8		ns	
t _{IOH}	0.0		0.0		0.0		ns	
t _{IOCLR}		1.2		1.2		1.2	ns	
t _{IN}		1.5		1.6		1.7	ns	
t _{OD1}		1.1		1.4		1.7	ns	
t _{OD2}		-		-		-	ns	
t _{OD3}		4.6		4.9		5.2	ns	
t _{XZ}		1.4		1.6		1.8	ns	
t _{ZX1}		1.4		1.6		1.8	ns	
t _{ZX2}		-		-		-	ns	
t _{ZX3}		4.9		5.1		5.3	ns	

Table 31. EPF8452A Interconnect Timing Parameters

Symbol			Speed	Grade			Unit
	A	-2	A-3		A-4		
	Min	Max	Min	Max	Min	Max	1
t _{LABCASC}		0.3		0.4		0.4	ns
t _{LABCARRY}		0.3		0.4		0.4	ns
t _{LOCAL}		0.5		0.5		0.7	ns
t _{ROW}		5.0		5.0		5.0	ns
t _{COL}		3.0		3.0		3.0	ns
t _{DIN_C}		5.0		5.0		5.5	ns
t _{DIN_D}		7.0		7.0		7.5	ns
t _{DIN_IO}		5.0		5.0		5.5	ns

٦

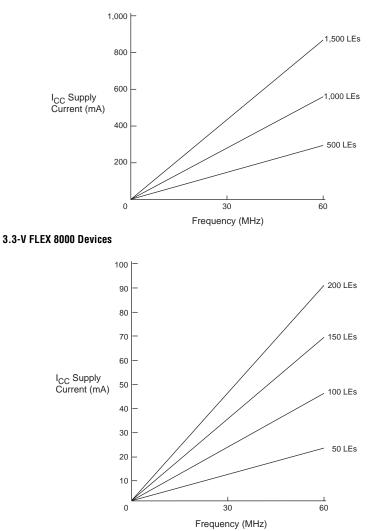
Symbol			Speed G	rade			Unit
	A-2		A-3		A-4		1
	Min	Max	Min	Max	Min	Max	1
t _{LUT}		2.0		2.3		3.0	ns
t _{CLUT}		0.0		0.2		0.1	ns
t _{RLUT}		0.9		1.6		1.6	ns
t _{GATE}		0.0		0.0		0.0	ns
t _{CASC}		0.6		0.7		0.9	ns
t _{CICO}		0.4		0.5		0.6	ns
t _{CGEN}		0.4		0.9		0.8	ns
t _{CGENR}		0.9		1.4		1.5	ns
t _C		1.6		1.8		2.4	ns
t _{CH}	4.0		4.0		4.0		ns
t _{CL}	4.0		4.0		4.0		ns
t _{CO}		0.4		0.5		0.6	ns
t _{COMB}		0.4		0.5		0.6	ns
t _{SU}	0.8		1.0		1.1		ns
t _H	0.9		1.1		1.4		ns
t _{PRE}		0.6		0.7		0.8	ns
t _{CLR}		0.6		0.7		0.8	ns

Table 37. EPF8636A External Timing Parameters

Symbol			Speed G	rade			Unit
	A	A-2		-3	A		
	Min	Max	Min	Max	Min	Max	
t _{DRR}		16.0		20.0		25.0	ns
t _{ODH}	1.0		1.0		1.0		ns

Symbol			Speed	Grade			Unit
	A-2		A-3		A		
	Min	Max	Min	Max	Min	Max	-
t _{LUT}		2.0		2.5		3.2	ns
t _{CLUT}		0.0		0.0		0.0	ns
t _{RLUT}		0.9		1.1		1.5	ns
t _{GATE}		0.0		0.0		0.0	ns
t _{CASC}		0.6		0.7		0.9	ns
t _{CICO}		0.4		0.5		0.6	ns
t _{CGEN}		0.4		0.5		0.7	ns
t _{CGENR}		0.9		1.1		1.5	ns
t _C		1.6		2.0		2.5	ns
t _{CH}	4.0		4.0		4.0		ns
t _{CL}	4.0		4.0		4.0		ns
t _{CO}		0.4		0.5		0.6	ns
t _{COMB}		0.4		0.5		0.6	ns
t _{SU}	0.8		1.1		1.2		ns
t _H	0.9		1.1		1.5		ns
t _{PRE}		0.6		0.7		0.8	ns
t _{CLR}		0.6		0.7		0.8	ns

Table 41. EPF882	20A External T	iming Parame	ters						
Symbol		Speed Grade							
	A-2		A-3		A-4				
	Min	Max	Min	Max	Min	Max			
t _{DRR}		16.0		20.0		25.0	ns		
t _{ODH}	1.0		1.0		1.0		ns		


Symbol			Speed	Grade			Unit
	A	-2	A	-3	A	-4	
	Min	Max	Min	Max	Min	Max	
t _{IOD}		0.7		0.8		0.9	ns
t _{IOC}		1.7		1.8		1.9	ns
t _{IOE}		1.7		1.8		1.9	ns
t _{IOCO}		1.0		1.0		1.0	ns
t _{IOCOMB}		0.3		0.2		0.1	ns
t _{IOSU}	1.4		1.6		1.8		ns
t _{IOH}	0.0		0.0		0.0		ns
t _{IOCLR}		1.2		1.2		1.2	ns
t _{IN}		1.5		1.6		1.7	ns
t _{OD1}		1.1		1.4		1.7	ns
t _{OD2}		1.6		1.9		2.2	ns
t _{OD3}		4.6		4.9		5.2	ns
t _{XZ}		1.4		1.6		1.8	ns
t _{ZX1}		1.4		1.6		1.8	ns
t _{ZX2}		1.9		2.1		2.3	ns
t _{ZX3}		4.9		5.1		5.3	ns

Symbol		Speed Grade								
	A-2		A	-3	A-4					
	Min	Max	Min	Max	Min	Max				
t _{LABCASC}		0.3		0.3		0.4	ns			
t _{LABCARRY}		0.3		0.3		0.4	ns			
t _{LOCAL}		0.5		0.6		0.8	ns			
t _{ROW}		5.0		5.0		5.0	ns			
t _{COL}		3.0		3.0		3.0	ns			
t _{DIN_C}		5.0		5.0		5.5	ns			
t _{DIN_D}		7.0		7.0		7.5	ns			
t _{DIN IO}		5.0		5.0		5.5	ns			

٦

Symbol			Speed	Grade			Unit
	A-2		A	-3	A-4		
	Min	Max	Min	Max	Min	Max	
t _{LUT}		2.0		2.5		3.2	ns
t _{CLUT}		0.0		0.0		0.0	ns
t _{RLUT}		0.9		1.1		1.5	ns
t _{GATE}		0.0		0.0		0.0	ns
t _{CASC}		0.6		0.7		0.9	ns
t _{CICO}		0.4		0.5		0.6	ns
t _{CGEN}		0.4		0.5		0.7	ns
t _{CGENR}		0.9		1.1		1.5	ns
t _C		1.6		2.0		2.5	ns
t _{CH}	4.0		4.0		4.0		ns
t _{CL}	4.0		4.0		4.0		ns
t _{CO}		0.4		0.5		0.6	ns
t _{COMB}		0.4		0.5		0.6	ns
t _{SU}	0.8		1.1		1.2		ns
t _H	0.9		1.1		1.5		ns
t _{PRE}		0.6		0.7		0.8	ns
t _{CLR}		0.6		0.7		0.8	ns

Symbol			Speed	Grade			Unit
	A	A-2		A-3		A-4	
	Min	Max	Min	Max	Min	Max	
t _{DRR}		16.1		20.1		25.1	ns
t _{oDH}	1.0		1.0		1.0		ns

Configuration & Operation

The FLEX 8000 architecture supports several configuration schemes to load a design into the device(s) on the circuit board. This section summarizes the device operating modes and available device configuration schemes.

For more information, go to *Application Note 33* (*Configuring FLEX 8000 Devices*) and *Application Note 38* (*Configuring Multiple FLEX 8000 Devices*).

Altera Corporation

FLEX 8000 Programmable Logic Device Family Data Sheet

Table 52. FLEX	X 8000 84-, 100)-, 144- & 160)-Pin Package	Pin-Outs (Pa	art 3 of 3)		
Pin Name	84-Pin PLCC EPF8282A	84-Pin PLCC EPF8452A EPF8636A	100-Pin TQFP EPF8282A EPF8282AV	100-Pin TQFP EPF8452A	144-Pin TQFP EPF8820A	160-Pin PGA EPF8452A	160-Pin PQFP EPF8820A (1)
GND	5, 26, 47, 68	5, 26, 47, 68	2, 13, 30, 44, 52, 63, 80, 94	19, 44, 69, 94	7, 17, 27, 39, 54, 80, 81, 100,101, 128, 142	C12, D4, D7, D9, D13, G4, G13, H3, H12, J4, J13, L1, M3, M8, M12, M15, N4	12, 13, 34, 35, 51, 63, 75, 80, 83, 93, 103, 115, 126, 131, 143, 155
No Connect (N.C.)	-	-	-	2, 6, 13, 30, 37, 42, 43, 50, 52, 56, 63, 80, 87, 92, 93, 99	-	-	-
Total User I/O Pins (9)	64	64	74	64	108	116	116

Table 54. FLEX	8000 225-, 232	-, 240-, 280- &	304-Pin Packa	ge Pin-Outs (Pa	nrt 3 of 3)	
Pin Name	225-Pin BGA EPF8820A	232-Pin PGA EPF81188A	240-Pin PQFP EPF81188A	240-Pin PQFP EPF81500A	280-Pin PGA EPF81500A	304-Pin RQFP EPF81500A
GND	B1, D4, E14, F7, F8, F9, F12, G6, G7, G8, G9, G10, H1, H4, H5, H6, H7, H8, H9, H10, H11, J6, J7, J8, J9, J10, K6, K7, K8, K9, K11, L15, N3, P1	K4, K14, L5, L13, N4, N7,	8, 9, 30, 31, 52, 53, 72, 90, 108, 115, 129, 139, 151, 161, 173, 185, 187, 193, 211, 229	6, 7, 28, 29, 50, 51, 71, 85, 92, 101, 118, 119, 140, 141, 162, 163, 184, 185, 186, 198, 208, 214, 228	D4, D5, D16, E4, E5, E6, E15, E16, F5, F15, G5, G15, H5, H15, J5, J15, K5, K15, L5, L15, M5, M15, N5, N15, P4, P5, P15, P16, R4, R5, R15, R16, T4, T5, T16, U17	151,175,177, 206,208,231, 232,237,253, 265,273,291
No Connect (N.C.)		_	61, 62, 119, 120, 181, 182, 239, 240	-	_	10, 21, 23, 25, 35, 37, 39, 40, 41, 42, 52, 55, 66, 68, 146, 147, 161, 173, 174, 176, 187, 188, 189, 190, 192, 194, 195, 205, 207, 219, 221, 233, 234, 235, 236, 302, 303
Total User I/O Pins <i>(9)</i>	148	180	180	177	204	204