



Welcome to **E-XFL.COM** 

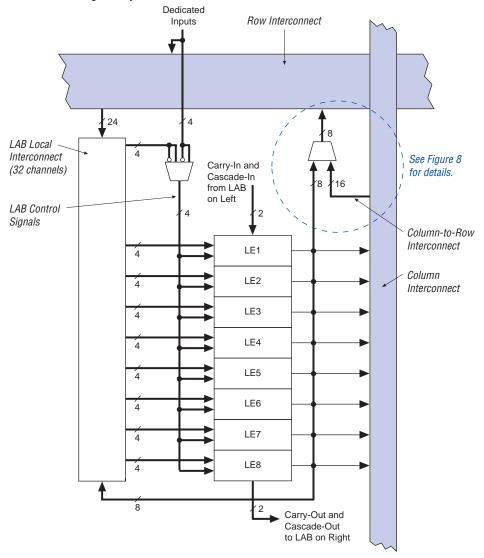
# Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

# **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

| Details                        |                                                             |
|--------------------------------|-------------------------------------------------------------|
| Product Status                 | Obsolete                                                    |
| Number of LABs/CLBs            | 162                                                         |
| Number of Logic Elements/Cells | 1296                                                        |
| Total RAM Bits                 | -                                                           |
| Number of I/O                  | 181                                                         |
| Number of Gates                | 16000                                                       |
| Voltage - Supply               | 4.75V ~ 5.25V                                               |
| Mounting Type                  | Surface Mount                                               |
| Operating Temperature          | 0°C ~ 70°C (TA)                                             |
| Package / Case                 | 240-BFQFP Exposed Pad                                       |
| Supplier Device Package        | 240-RQFP (32x32)                                            |
| Purchase URL                   | https://www.e-xfl.com/product-detail/intel/epf81500arc240-3 |


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# **Logic Array Block**

A logic array block (LAB) consists of eight LEs, their associated carry and cascade chains, LAB control signals, and the LAB local interconnect. The LAB provides the coarse-grained structure of the FLEX 8000 architecture. This structure enables FLEX 8000 devices to provide efficient routing, high device utilization, and high performance. Figure 2 shows a block diagram of the FLEX 8000 LAB.

Figure 2. FLEX 8000 Logic Array Block



The FLEX 8000 architecture provides two dedicated high-speed data paths—carry chains and cascade chains—that connect adjacent LEs without using local interconnect paths. The carry chain supports high-speed counters and adders; the cascade chain implements wide-input functions with minimum delay. Carry and cascade chains connect all LEs in an LAB and all LABs in the same row. Heavy use of carry and cascade chains can reduce routing flexibility. Therefore, the use of carry and cascade chains should be limited to speed-critical portions of a design.

#### Carry Chain

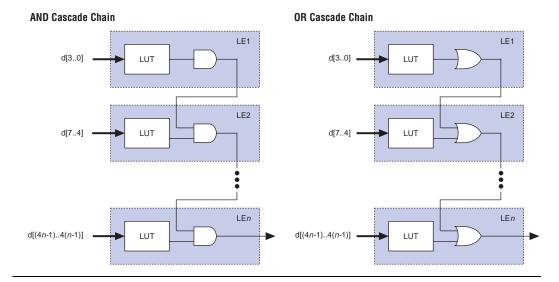

The carry chain provides a very fast (less than 1 ns) carry-forward function between LEs. The carry-in signal from a lower-order bit moves forward into the higher-order bit via the carry chain, and feeds into both the LUT and the next portion of the carry chain. This feature allows the FLEX 8000 architecture to implement high-speed counters and adders of arbitrary width. The MAX+PLUS II Compiler can create carry chains automatically during design processing; designers can also insert carry chain logic manually during design entry.

Figure 4 shows how an n-bit full adder can be implemented in n+1 LEs with the carry chain. One portion of the LUT generates the sum of two bits using the input signals and the carry-in signal; the sum is routed to the output of the LE. The register is typically bypassed for simple adders, but can be used for an accumulator function. Another portion of the LUT and the carry chain logic generate the carry-out signal, which is routed directly to the carry-in signal of the next-higher-order bit. The final carry-out signal is routed to another LE, where it can be used as a general-purpose signal. In addition to mathematical functions, carry chain logic supports very fast counters and comparators.

The MAX+PLUS II Compiler can create cascade chains automatically during design processing; designers can also insert cascade chain logic manually during design entry. Cascade chains longer than eight LEs are automatically implemented by linking LABs together. The last LE of an LAB cascades to the first LE of the next LAB.

Figure 5 shows how the cascade function can connect adjacent LEs to form functions with a wide fan-in. These examples show functions of 4n variables implemented with n LEs. For a device with an A-2 speed grade, the LE delay is 2.4 ns; the cascade chain delay is 0.6 ns. With the cascade chain, 4.2 ns is needed to decode a 16-bit address.

Figure 5. FLEX 8000 Cascade Chain Operation



#### LE Operating Modes

The FLEX 8000 LE can operate in one of four modes, each of which uses LE resources differently. See Figure 6. In each mode, seven of the ten available inputs to the LE—the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE—are directed to different destinations to implement the desired logic function. The three remaining inputs to the LE provide clock, clear, and preset control for the register. The MAX+PLUS II software automatically chooses the appropriate mode for each application. Design performance can also be enhanced by designing for the operating mode that supports the desired application.

#### Asynchronous Clear

A register is cleared by one of the two LABCTRL signals. When the CLRn port receives a low signal, the register is set to zero.

#### **Asynchronous Preset**

An asynchronous preset is implemented as either an asynchronous load or an asynchronous clear. If DATA3 is tied to VCC, asserting LABCTRL1 asynchronously loads a 1 into the register. Alternatively, the MAX+PLUS II software can provide preset control by using the clear and inverting the input and output of the register. Inversion control is available for the inputs to both LEs and IOEs. Therefore, if a register is preset by only one of the two LABCTRL signals, the DATA3 input is not needed and can be used for one of the LE operating modes.

#### Asynchronous Clear & Preset

When implementing asynchronous clear and preset, LABCTRL1 controls the preset and LABCTRL2 controls the clear. The DATA3 input is tied to VCC; therefore, asserting LABCTRL1 asynchronously loads a 1 into the register, effectively presetting the register. Asserting LABCTRL2 clears the register.

## Asynchronous Load with Clear

When implementing an asynchronous load with the clear, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear. LABCTRL2 implements the clear by controlling the register clear.

#### Asynchronous Load with Preset

When implementing an asynchronous load in conjunction with a preset, the MAX+PLUS II software provides preset control by using the clear and inverting the input and output of the register. Asserting LABCTRL2 clears the register, while asserting LABCTRL1 loads the register. The MAX+PLUS II software inverts the signal that drives the DATA3 signal to account for the inversion of the register's output.

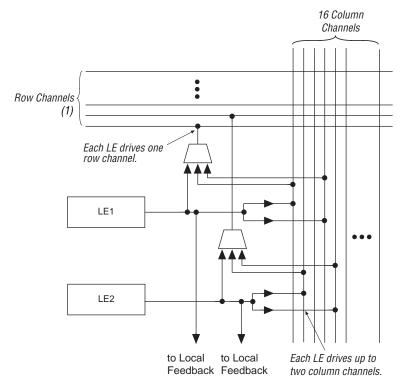
#### Asynchronous Load without Clear or Preset

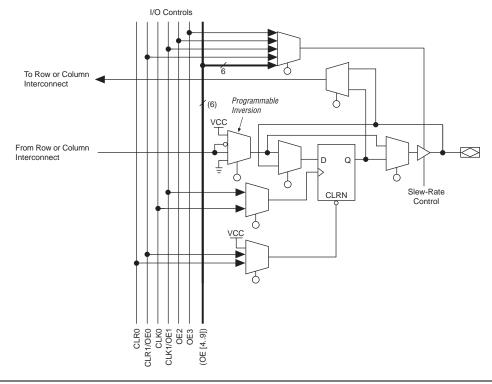
When implementing an asynchronous load without the clear or preset, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear.

#### FastTrack Interconnect

In the FLEX 8000 architecture, connections between LEs and device I/O pins are provided by the FastTrack Interconnect, a series of continuous horizontal (row) and vertical (column) routing channels that traverse the entire FLEX 8000 device. This device-wide routing structure provides predictable performance even in complex designs. In contrast, the segmented routing structure in FPGAs requires switch matrices to connect a variable number of routing paths, which increases the delays between logic resources and reduces performance.

The LABs within FLEX 8000 devices are arranged into a matrix of columns and rows. Each row of LABs has a dedicated row interconnect that routes signals both into and out of the LABs in the row. The row interconnect can then drive I/O pins or feed other LABs in the device. Figure 8 shows how an LE drives the row and column interconnect.



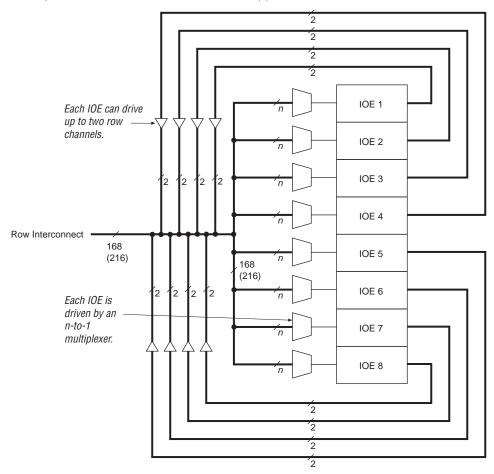


Figure 8. FLEX 8000 LAB Connections to Row & Column Interconnect

Note:

(1) See Table 4 for the number of row channels.

### Figure 10. FLEX 8000 IOE

Numbers in parentheses are for EPF81500A devices only.




### Row-to-IOE Connections

Figure 11 illustrates the connection between row interconnect channels and IOEs. An input signal from an IOE can drive two separate row channels. When an IOE is used as an output, the signal is driven by an *n*-to-1 multiplexer that selects the row channels. The size of the multiplexer varies with the number of columns in a device. EPF81500A devices use a 27-to-1 multiplexer; EPF81188A, EPF8820A, EPF8636A, and EPF8452A devices use a 21-to-1 multiplexer; and EPF8282A and EPF8282AV devices use a 13-to-1 multiplexer. Eight IOEs are connected to each side of the row channels.

Figure 11. FLEX 8000 Row-to-IOE Connections

Numbers in parentheses are for EPF81500A devices. See Note (1).



#### Note:

- (1) n = 13 for EPF8282A and EPF8282AV devices.
  - *n* = 21 for EPF8452A, EPF8636A, EPF8820A, and EPF81188A devices.
  - n = 27 for EPF81500A devices.

### Column-to-IOE Connections

Two IOEs are located at the top and bottom of the column channels (see Figure 12). When an IOE is used as an input, it can drive up to two separate column channels. The output signal to an IOE can choose from 8 of the 16 column channels through an 8-to-1 multiplexer.

| Table 1          | Table 12. FLEX 8000 5.0-V Device CapacitanceNote (8) |                                     |  |    |    |  |  |  |  |
|------------------|------------------------------------------------------|-------------------------------------|--|----|----|--|--|--|--|
| Symbol           | Parameter                                            | Conditions Min Max U                |  |    |    |  |  |  |  |
| C <sub>IN</sub>  | Input capacitance                                    | V <sub>IN</sub> = 0 V, f = 1.0 MHz  |  | 10 | pF |  |  |  |  |
| C <sub>OUT</sub> | Output capacitance                                   | V <sub>OUT</sub> = 0 V, f = 1.0 MHz |  | 10 | pF |  |  |  |  |

#### Notes to tables:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 7.0 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) The maximum V<sub>CC</sub> rise time is 100 ms.
- (4) Numbers in parentheses are for industrial-temperature-range devices.
- (5) Typical values are for  $T_A = 25^{\circ} \text{ C}$  and  $V_{CC} = 5.0 \text{ V}$ .
- (6) These values are specified in Table 10 on page 28.
- (7) The I<sub>OH</sub> parameter refers to high-level TTL or CMOS output current; the I<sub>OL</sub> parameter refers to low-level TTL or CMOS output current.
- (8) Capacitance is sample-tested only.

Tables 13 through 16 provide information on absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for 3.3-V FLEX 8000 devices.

| Table 1          | Table 13. FLEX 8000 3.3-V Device Absolute Maximum RatingsNote (1) |                              |      |     |      |  |  |  |  |  |  |
|------------------|-------------------------------------------------------------------|------------------------------|------|-----|------|--|--|--|--|--|--|
| Symbol           | Parameter                                                         | Conditions                   | Min  | Max | Unit |  |  |  |  |  |  |
| V <sub>CC</sub>  | Supply voltage                                                    | With respect to ground (2)   | -2.0 | 5.3 | V    |  |  |  |  |  |  |
| V <sub>I</sub>   | DC input voltage                                                  |                              | -2.0 | 5.3 | V    |  |  |  |  |  |  |
| I <sub>OUT</sub> | DC output current, per pin                                        |                              | -25  | 25  | mA   |  |  |  |  |  |  |
| T <sub>STG</sub> | Storage temperature                                               | No bias                      | -65  | 150 | ° C  |  |  |  |  |  |  |
| $T_{AMB}$        | Ambient temperature                                               | Under bias                   | -65  | 135 | ° C  |  |  |  |  |  |  |
| $T_{J}$          | Junction temperature                                              | Plastic packages, under bias |      | 135 | ° C  |  |  |  |  |  |  |

| Table 1         | Table 14. FLEX 8000 3.3-V Device Recommended Operating Conditions |                    |      |                       |      |  |  |  |  |  |
|-----------------|-------------------------------------------------------------------|--------------------|------|-----------------------|------|--|--|--|--|--|
| Symbol          | Parameter                                                         | Conditions         | Min  | Max                   | Unit |  |  |  |  |  |
| V <sub>CC</sub> | Supply voltage                                                    | (3)                | 3.0  | 3.6                   | V    |  |  |  |  |  |
| VI              | Input voltage                                                     |                    | -0.3 | V <sub>CC</sub> + 0.3 | V    |  |  |  |  |  |
| Vo              | Output voltage                                                    |                    | 0    | V <sub>CC</sub>       | V    |  |  |  |  |  |
| T <sub>A</sub>  | Operating temperature                                             | For commercial use | 0    | 70                    | ° C  |  |  |  |  |  |
| t <sub>R</sub>  | Input rise time                                                   |                    |      | 40                    | ns   |  |  |  |  |  |
| t <sub>F</sub>  | Input fall time                                                   |                    |      | 40                    | ns   |  |  |  |  |  |

| Table 1          | Table 15. FLEX 8000 3.3-V Device DC Operating Conditions   Note (4) |                                      |                       |     |                       |      |  |  |  |  |  |  |
|------------------|---------------------------------------------------------------------|--------------------------------------|-----------------------|-----|-----------------------|------|--|--|--|--|--|--|
| Symbol           | Parameter                                                           | Conditions                           | Min                   | Тур | Max                   | Unit |  |  |  |  |  |  |
| V <sub>IH</sub>  | High-level input voltage                                            |                                      | 2.0                   |     | V <sub>CC</sub> + 0.3 | V    |  |  |  |  |  |  |
| $V_{IL}$         | Low-level input voltage                                             |                                      | -0.3                  |     | 0.8                   | V    |  |  |  |  |  |  |
| $V_{OH}$         | High-level output voltage                                           | $I_{OH} = -0.1 \text{ mA DC } (5)$   | V <sub>CC</sub> - 0.2 |     |                       | V    |  |  |  |  |  |  |
| $V_{OL}$         | Low-level output voltage                                            | I <sub>OL</sub> = 4 mA DC (5)        |                       |     | 0.45                  | V    |  |  |  |  |  |  |
| I <sub>I</sub>   | Input leakage current                                               | $V_I = V_{CC}$ or ground             | -10                   |     | 10                    | μΑ   |  |  |  |  |  |  |
| $I_{OZ}$         | Tri-state output off-state current                                  | $V_O = V_{CC}$ or ground             | -40                   |     | 40                    | μΑ   |  |  |  |  |  |  |
| I <sub>CC0</sub> | V <sub>CC</sub> supply current (standby)                            | V <sub>I</sub> = ground, no load (6) |                       | 0.3 | 10                    | mA   |  |  |  |  |  |  |

| Table 1          | Table 16. FLEX 8000 3.3-V Device CapacitanceNote (7) |                                     |  |    |    |  |  |  |  |
|------------------|------------------------------------------------------|-------------------------------------|--|----|----|--|--|--|--|
| Symbol           | Parameter                                            | Conditions Min Max U                |  |    |    |  |  |  |  |
| C <sub>IN</sub>  | Input capacitance                                    | V <sub>IN</sub> = 0 V, f = 1.0 MHz  |  | 10 | pF |  |  |  |  |
| C <sub>OUT</sub> | Output capacitance                                   | V <sub>OUT</sub> = 0 V, f = 1.0 MHz |  | 10 | pF |  |  |  |  |

#### Notes to tables:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input voltage is –0.3 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to 5.3 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) The maximum  $V_{CC}$  rise time is 100 ms.  $V_{CC}$  must rise monotonically.
- (4) These values are specified in Table 14 on page 29.
- (5) The I<sub>OH</sub> parameter refers to high-level TTL output current; the I<sub>OL</sub> parameter refers to low-level TTL output current.
- (6) Typical values are for  $T_A = 25^{\circ}$  C and  $V_{CC} = 3.3$  V.
- (7) Capacitance is sample-tested only.

Figure 16 shows the typical output drive characteristics of 5.0-V FLEX 8000 devices. The output driver is compliant with *PCI Local Bus Specification, Revision 2.2*.

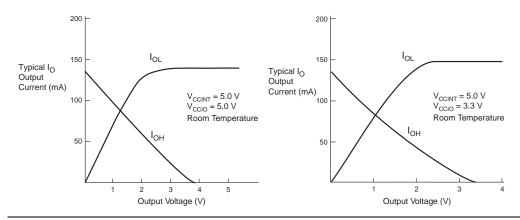



Figure 16. Output Drive Characteristics of 5.0-V FLEX 8000 Devices (Except EPF8282A)

Figure 17 shows the typical output drive characteristics of 5.0-V EPF8282A devices. The output driver is compliant with *PCI Local Bus Specification, Revision 2.2*.

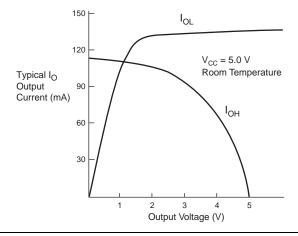



Figure 17. Output Drive Characteristics of EPF8282A Devices with 5.0-V V<sub>CCIO</sub>

Figure 18 shows the typical output drive characteristics of EPF8282AV devices.

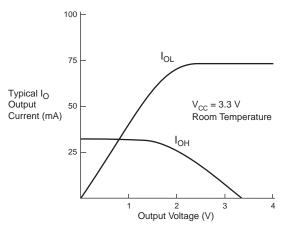



Figure 18. Output Drive Characteristics of EPF8282AV Devices

# **Timing Model**

The continuous, high-performance FastTrack Interconnect routing structure ensures predictable performance and accurate simulation and timing analysis. This predictable performance contrasts with that of FPGAs, which use a segmented connection scheme and hence have unpredictable performance. Timing simulation and delay prediction are available with the MAX+PLUS II Simulator and Timing Analyzer, or with industry-standard EDA tools. The Simulator offers both pre-synthesis functional simulation to evaluate logic design accuracy and post-synthesis timing simulation with 0.1-ns resolution. The Timing Analyzer provides point-to-point timing delay information, setup and hold time prediction, and device-wide performance analysis.

Tables 17 through 20 describe the FLEX 8000 timing parameters and their symbols.

| Symbol              |     | Speed | Grade |     | Unit |
|---------------------|-----|-------|-------|-----|------|
|                     | A   | -3    | А     | -4  |      |
| -                   | Min | Max   | Min   | Max |      |
| $t_{IOD}$           |     | 0.9   |       | 2.2 | ns   |
| $t_{IOC}$           |     | 1.9   |       | 2.0 | ns   |
| t <sub>IOE</sub>    |     | 1.9   |       | 2.0 | ns   |
| $t_{IOCO}$          |     | 1.0   |       | 2.0 | ns   |
| t <sub>IOCOMB</sub> |     | 0.1   |       | 0.0 | ns   |
| t <sub>IOSU</sub>   | 1.8 |       | 2.8   |     | ns   |
| t <sub>IOH</sub>    | 0.0 |       | 0.2   |     | ns   |
| t <sub>IOCLR</sub>  |     | 1.2   |       | 2.3 | ns   |
| $t_{IN}$            |     | 1.7   |       | 3.4 | ns   |
| t <sub>OD1</sub>    | •   | 1.7   |       | 4.1 | ns   |
| $t_{OD2}$           |     | _     |       | _   | ns   |
| t <sub>OD3</sub>    |     | 5.2   |       | 7.1 | ns   |
| $t_{XZ}$            |     | 1.8   |       | 4.3 | ns   |
| $t_{ZX1}$           |     | 1.8   |       | 4.3 | ns   |
| $t_{ZX2}$           |     | _     |       | -   | ns   |
| $t_{ZX3}$           |     | 5.3   |       | 8.3 | ns   |

| Symbol                |     | Speed | Grade |      | Unit |
|-----------------------|-----|-------|-------|------|------|
| <u> </u>              | A   | -3    | А     | -4   |      |
|                       | Min | Max   | Min   | Max  |      |
| $t_{LABCASC}$         |     | 0.4   |       | 1.3  | ns   |
| t <sub>LABCARRY</sub> |     | 0.4   |       | 0.8  | ns   |
| t <sub>LOCAL</sub>    |     | 0.8   |       | 1.5  | ns   |
| t <sub>ROW</sub>      |     | 4.2   |       | 6.3  | ns   |
| t <sub>COL</sub>      |     | 2.5   |       | 3.8  | ns   |
| t <sub>DIN_C</sub>    |     | 5.5   |       | 8.0  | ns   |
| t <sub>DIN_D</sub>    |     | 7.2   |       | 10.8 | ns   |
| t <sub>DIN IO</sub>   |     | 5.5   |       | 9.0  | ns   |

| Table 28. EPF8282AV Logic Element Timing Parameters |     |      |     |     |    |  |  |  |  |
|-----------------------------------------------------|-----|------|-----|-----|----|--|--|--|--|
| Symbol                                              |     | Unit |     |     |    |  |  |  |  |
|                                                     | A-3 |      | A   | -4  | 1  |  |  |  |  |
|                                                     | Min | Max  | Min | Max | •  |  |  |  |  |
| $t_{LUT}$                                           |     | 3.2  |     | 7.3 | ns |  |  |  |  |
| t <sub>CLUT</sub>                                   |     | 0.0  |     | 1.4 | ns |  |  |  |  |
| t <sub>RLUT</sub>                                   |     | 1.5  |     | 5.1 | ns |  |  |  |  |
| t <sub>GATE</sub>                                   |     | 0.0  |     | 0.0 | ns |  |  |  |  |
| t <sub>CASC</sub>                                   |     | 0.9  |     | 2.8 | ns |  |  |  |  |
| t <sub>CICO</sub>                                   |     | 0.6  |     | 1.5 | ns |  |  |  |  |
| t <sub>CGEN</sub>                                   |     | 0.7  |     | 2.2 | ns |  |  |  |  |
| t <sub>CGENR</sub>                                  |     | 1.5  |     | 3.7 | ns |  |  |  |  |
| $t_{\rm C}$                                         |     | 2.5  |     | 4.7 | ns |  |  |  |  |
| t <sub>CH</sub>                                     | 4.0 |      | 6.0 |     | ns |  |  |  |  |
| $t_{CL}$                                            | 4.0 |      | 6.0 |     | ns |  |  |  |  |
| $t_{CO}$                                            |     | 0.6  |     | 0.9 | ns |  |  |  |  |
| t <sub>COMB</sub>                                   |     | 0.6  |     | 0.9 | ns |  |  |  |  |
| t <sub>SU</sub>                                     | 1.2 |      | 2.4 |     | ns |  |  |  |  |
| $t_H$                                               | 1.5 |      | 4.6 |     | ns |  |  |  |  |
| t <sub>PRE</sub>                                    |     | 0.8  |     | 1.3 | ns |  |  |  |  |
| t <sub>CLR</sub>                                    |     | 0.8  |     | 1.3 | ns |  |  |  |  |

| Table 29. EPF8282AV External Timing Parameters |     |                  |     |            |    |  |  |  |  |  |
|------------------------------------------------|-----|------------------|-----|------------|----|--|--|--|--|--|
| Symbol                                         |     | Speed Grade Unit |     |            |    |  |  |  |  |  |
|                                                | A   | 1-3              | A   | <b>\-4</b> |    |  |  |  |  |  |
|                                                | Min | Max              | Min | Max        |    |  |  |  |  |  |
| t <sub>DRR</sub>                               |     | 24.8             |     | 50.1       | ns |  |  |  |  |  |
| t <sub>ODH</sub>                               | 1.0 |                  | 1.0 |            | ns |  |  |  |  |  |

| Symbol             | Speed Grade |     |     |     |     |     |    |  |
|--------------------|-------------|-----|-----|-----|-----|-----|----|--|
|                    | A-2         |     | А   | A-3 |     | -4  |    |  |
|                    | Min         | Max | Min | Max | Min | Max |    |  |
| $t_{IOD}$          |             | 0.7 |     | 0.8 |     | 0.9 | ns |  |
| $t_{IOC}$          |             | 1.7 |     | 1.8 |     | 1.9 | ns |  |
| $t_{IOE}$          |             | 1.7 |     | 1.8 |     | 1.9 | ns |  |
| t <sub>IOCO</sub>  |             | 1.0 |     | 1.0 |     | 1.0 | ns |  |
| $t_{IOCOMB}$       |             | 0.3 |     | 0.2 |     | 0.1 | ns |  |
| t <sub>IOSU</sub>  | 1.4         |     | 1.6 |     | 1.8 |     | ns |  |
| t <sub>IOH</sub>   | 0.0         |     | 0.0 |     | 0.0 |     | ns |  |
| t <sub>IOCLR</sub> |             | 1.2 |     | 1.2 |     | 1.2 | ns |  |
| t <sub>IN</sub>    |             | 1.5 |     | 1.6 |     | 1.7 | ns |  |
| t <sub>OD1</sub>   |             | 1.1 |     | 1.4 |     | 1.7 | ns |  |
| t <sub>OD2</sub>   |             | 1.6 |     | 1.9 |     | 2.2 | ns |  |
| t <sub>OD3</sub>   |             | 4.6 |     | 4.9 |     | 5.2 | ns |  |
| $t_{XZ}$           |             | 1.4 |     | 1.6 |     | 1.8 | ns |  |
| $t_{ZX1}$          |             | 1.4 |     | 1.6 |     | 1.8 | ns |  |
| $t_{ZX2}$          |             | 1.9 |     | 2.1 |     | 2.3 | ns |  |
| $t_{ZX3}$          |             | 4.9 |     | 5.1 |     | 5.3 | ns |  |

| Symbol                |     |     | Speed | Grade |     |     | Unit |
|-----------------------|-----|-----|-------|-------|-----|-----|------|
|                       | A-2 |     | A-3   |       | A-4 |     | 7    |
|                       | Min | Max | Min   | Max   | Min | Max |      |
| t <sub>LABCASC</sub>  |     | 0.3 |       | 0.3   |     | 0.4 | ns   |
| t <sub>LABCARRY</sub> |     | 0.3 |       | 0.3   |     | 0.4 | ns   |
| t <sub>LOCAL</sub>    |     | 0.5 |       | 0.6   |     | 0.8 | ns   |
| $t_{ROW}$             |     | 5.0 |       | 5.0   |     | 5.0 | ns   |
| $t_{COL}$             |     | 3.0 |       | 3.0   |     | 3.0 | ns   |
| t <sub>DIN_C</sub>    |     | 5.0 |       | 5.0   |     | 5.5 | ns   |
| t <sub>DIN_D</sub>    |     | 7.0 |       | 7.0   |     | 7.5 | ns   |
| t <sub>DIN_IO</sub>   |     | 5.0 |       | 5.0   |     | 5.5 | ns   |

| Table 48. EPF81500A LE Timing Parameters |             |     |     |     |     |     |    |  |
|------------------------------------------|-------------|-----|-----|-----|-----|-----|----|--|
| Symbol                                   | Speed Grade |     |     |     |     |     |    |  |
|                                          | A-2         |     | A-3 |     | A-4 |     | 7  |  |
|                                          | Min         | Max | Min | Max | Min | Max |    |  |
| $t_{LUT}$                                |             | 2.0 |     | 2.5 |     | 3.2 | ns |  |
| $t_{CLUT}$                               |             | 0.0 |     | 0.0 |     | 0.0 | ns |  |
| t <sub>RLUT</sub>                        |             | 0.9 |     | 1.1 |     | 1.5 | ns |  |
| t <sub>GATE</sub>                        |             | 0.0 |     | 0.0 |     | 0.0 | ns |  |
| t <sub>CASC</sub>                        |             | 0.6 |     | 0.7 |     | 0.9 | ns |  |
| t <sub>CICO</sub>                        |             | 0.4 |     | 0.5 |     | 0.6 | ns |  |
| t <sub>CGEN</sub>                        |             | 0.4 |     | 0.5 |     | 0.7 | ns |  |
| t <sub>CGENR</sub>                       |             | 0.9 |     | 1.1 |     | 1.5 | ns |  |
| $t_C$                                    |             | 1.6 |     | 2.0 |     | 2.5 | ns |  |
| t <sub>CH</sub>                          | 4.0         |     | 4.0 |     | 4.0 |     | ns |  |
| $t_{CL}$                                 | 4.0         |     | 4.0 |     | 4.0 |     | ns |  |
| $t_{CO}$                                 |             | 0.4 |     | 0.5 |     | 0.6 | ns |  |
| t <sub>COMB</sub>                        |             | 0.4 |     | 0.5 |     | 0.6 | ns |  |
| t <sub>SU</sub>                          | 0.8         |     | 1.1 |     | 1.2 |     | ns |  |
| $t_H$                                    | 0.9         |     | 1.1 |     | 1.5 |     | ns |  |
| t <sub>PRE</sub>                         |             | 0.6 |     | 0.7 |     | 0.8 | ns |  |
| t <sub>CLR</sub>                         |             | 0.6 |     | 0.7 |     | 0.8 | ns |  |

| Table 49. EPF81500A External Timing Parameters |     |             |       |      |     |      |    |  |  |
|------------------------------------------------|-----|-------------|-------|------|-----|------|----|--|--|
| Symbol                                         |     | Speed Grade |       |      |     |      |    |  |  |
|                                                | А   | -2          | A-3 A |      | -4  | 1    |    |  |  |
|                                                | Min | Max         | Min   | Max  | Min | Max  |    |  |  |
| t <sub>DRR</sub>                               |     | 16.1        |       | 20.1 |     | 25.1 | ns |  |  |
| t <sub>ODH</sub>                               | 1.0 |             | 1.0   |      | 1.0 |      | ns |  |  |

## **Operating Modes**

The FLEX 8000 architecture uses SRAM elements that require configuration data to be loaded whenever the device powers up and begins operation. The process of physically loading the SRAM programming data into the device is called *configuration*. During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. The I/O pins are tri-stated during power-up, and before and during configuration. The configuration and initialization processes together are called *command mode*; normal device operation is called *user mode*.

SRAM elements allow FLEX 8000 devices to be reconfigured in-circuit with new programming data that is loaded into the device. Real-time reconfiguration is performed by forcing the device into command mode with a device pin, loading different programming data, reinitializing the device, and resuming user-mode operation. The entire reconfiguration process requires less than 100 ms and can be used to dynamically reconfigure an entire system. In-field upgrades can be performed by distributing new configuration files.

## **Configuration Schemes**

The configuration data for a FLEX 8000 device can be loaded with one of six configuration schemes, chosen on the basis of the target application. Both active and passive schemes are available. In the active configuration schemes, the FLEX 8000 device functions as the controller, directing the loading operation, controlling external configuration devices, and completing the loading process. The clock source for all active configuration schemes is an oscillator on the FLEX 8000 device that operates between 2 MHz and 6 MHz. In the passive configuration schemes, an external controller guides the FLEX 8000 device. Table 51 shows the data source for each of the six configuration schemes.

| Table 51. Data Source for Configuration  |     |                               |  |  |  |  |  |
|------------------------------------------|-----|-------------------------------|--|--|--|--|--|
| Configuration Scheme Acronym Data Source |     |                               |  |  |  |  |  |
| Active serial                            | AS  | Altera configuration device   |  |  |  |  |  |
| Active parallel up                       | APU | Parallel configuration device |  |  |  |  |  |
| Active parallel down                     | APD | Parallel configuration device |  |  |  |  |  |
| Passive serial                           | PS  | Serial data path              |  |  |  |  |  |
| Passive parallel synchronous             | PPS | Intelligent host              |  |  |  |  |  |
| Passive parallel asynchronous            | PPA | Intelligent host              |  |  |  |  |  |

# Device Pin-Outs

Tables 52 through 54 show the pin names and numbers for the dedicated pins in each FLEX 8000 device package.

| Pin Name       | 84-Pin<br>PLCC<br>EPF8282A | 84-Pin<br>PLCC<br>EPF8452A<br>EPF8636A | 100-Pin<br>TQFP<br>EPF8282A<br>EPF8282AV | 100-Pin<br>TQFP<br>EPF8452A | 144-Pin<br>TQFP<br>EPF8820A | 160-Pin<br>PGA<br>EPF8452A | 160-Pin<br>PQFP<br>EPF8820A<br>(1) |
|----------------|----------------------------|----------------------------------------|------------------------------------------|-----------------------------|-----------------------------|----------------------------|------------------------------------|
| nSP <i>(2)</i> | 75                         | 75                                     | 75                                       | 76                          | 110                         | R1                         | 1                                  |
| MSELO (2)      | 74                         | 74                                     | 74                                       | 75                          | 109                         | P2                         | 2                                  |
| MSEL1 (2)      | 53                         | 53                                     | 51                                       | 51                          | 72                          | A1                         | 44                                 |
| nSTATUS (2)    | 32                         | 32                                     | 24                                       | 25                          | 37                          | C13                        | 82                                 |
| nCONFIG (2)    | 33                         | 33                                     | 25                                       | 26                          | 38                          | A15                        | 81                                 |
| DCLK (2)       | 10                         | 10                                     | 100                                      | 100                         | 143                         | P14                        | 125                                |
| CONF_DONE (2)  | 11                         | 11                                     | 1                                        | 1                           | 144                         | N13                        | 124                                |
| nWS            | 30                         | 30                                     | 22                                       | 23                          | 33                          | F13                        | 87                                 |
| nRS            | 48                         | 48                                     | 42                                       | 45                          | 31                          | C6                         | 89                                 |
| RDCLK          | 49                         | 49                                     | 45                                       | 46                          | 12                          | B5                         | 110                                |
| nCS            | 29                         | 29                                     | 21                                       | 22                          | 4                           | D15                        | 118                                |
| CS             | 28                         | 28                                     | 19                                       | 21                          | 3                           | E15                        | 121                                |
| RDYnBUSY       | 77                         | 77                                     | 77                                       | 78                          | 20                          | P3                         | 100                                |
| CLKUSR         | 50                         | 50                                     | 47                                       | 47                          | 13                          | C5                         | 107                                |
| ADD17          | 51                         | 51                                     | 49                                       | 48                          | 75                          | B4                         | 40                                 |
| ADD16          | 36                         | 55                                     | 28                                       | 54                          | 76                          | E2                         | 39                                 |
| ADD15          | 56                         | 56                                     | 55                                       | 55                          | 77                          | D1                         | 38                                 |
| ADD14          | 57                         | 57                                     | 57                                       | 57                          | 78                          | E1                         | 37                                 |
| ADD13          | 58                         | 58                                     | 58                                       | 58                          | 79                          | F3                         | 36                                 |
| ADD12          | 60                         | 60                                     | 59                                       | 60                          | 83                          | F2                         | 32                                 |
| ADD11          | 61                         | 61                                     | 60                                       | 61                          | 85                          | F1                         | 30                                 |
| ADD10          | 62                         | 62                                     | 61                                       | 62                          | 87                          | G2                         | 28                                 |
| ADD9           | 63                         | 63                                     | 62                                       | 64                          | 89                          | G1                         | 26                                 |
| ADD8           | 64                         | 64                                     | 64                                       | 65                          | 92                          | H1                         | 22                                 |
| ADD7           | 65                         | 65                                     | 65                                       | 66                          | 94                          | H2                         | 20                                 |
| ADD6           | 66                         | 66                                     | 66                                       | 67                          | 95                          | J1                         | 18                                 |
| ADD5           | 67                         | 67                                     | 67                                       | 68                          | 97                          | J2                         | 16                                 |
| ADD4           | 69                         | 69                                     | 68                                       | 70                          | 102                         | K2                         | 11                                 |
| ADD3           | 70                         | 70                                     | 69                                       | 71                          | 103                         | K1                         | 10                                 |
| ADD2           | 71                         | 71                                     | 71                                       | 72                          | 104                         | K3                         | 8                                  |
| ADD1           | 76                         | 72                                     | 76                                       | 73                          | 105                         | M1                         | 7                                  |

| Pin Name     | 84-Pin            | 84-Pin                       | 100-Pin                       | 100-Pin              | 144-Pin                                    | 160-Pin                                                                                   | 160-Pin                                                 |
|--------------|-------------------|------------------------------|-------------------------------|----------------------|--------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------|
|              | PLCC<br>EPF8282A  | PLCC<br>EPF8452A<br>EPF8636A | TQFP<br>EPF8282A<br>EPF8282AV | TQFP<br>EPF8452A     | TQFP<br>EPF8820A                           | PGA<br>EPF8452A                                                                           | PQFP<br>EPF8820A<br>(1)                                 |
| ADD0         | 78                | 76                           | 78                            | 77                   | 106                                        | N3                                                                                        | 6                                                       |
| DATA7        | 3                 | 2                            | 90                            | 89                   | 131                                        | P8                                                                                        | 140                                                     |
| DATA6        | 4                 | 4                            | 91                            | 91                   | 132                                        | P10                                                                                       | 139                                                     |
| DATA5        | 6                 | 6                            | 92                            | 95                   | 133                                        | R12                                                                                       | 138                                                     |
| DATA4        | 7                 | 7                            | 95                            | 96                   | 134                                        | R13                                                                                       | 136                                                     |
| DATA3        | 8                 | 8                            | 97                            | 97                   | 135                                        | P13                                                                                       | 135                                                     |
| DATA2        | 9                 | 9                            | 99                            | 98                   | 137                                        | R14                                                                                       | 133                                                     |
| DATA1        | 13                | 13                           | 4                             | 4                    | 138                                        | N15                                                                                       | 132                                                     |
| DATA0        | 14                | 14                           | 5                             | 5                    | 140                                        | K13                                                                                       | 129                                                     |
| SDOUT (3)    | 79                | 78                           | 79                            | 79                   | 23                                         | P4                                                                                        | 97                                                      |
| TDI (4)      | 55                | 45 (5)                       | 54                            | _                    | 96                                         | _                                                                                         | 17                                                      |
| TDO (4)      | 27                | 27 (5)                       | 18                            | _                    | 18                                         | _                                                                                         | 102                                                     |
| TCK (4), (6) | 72                | 44 (5)                       | 72                            | _                    | 88                                         | _                                                                                         | 27                                                      |
| TMS (4)      | 20                | 43 (5)                       | 11                            | _                    | 86                                         | _                                                                                         | 29                                                      |
| TRST (7)     | 52                | 52 (8)                       | 50                            | _                    | 71                                         | _                                                                                         | 45                                                      |
| Dedicated    | 12, 31, 54,       | 12, 31, 54,                  | 3, 23, 53, 73                 | 3, 24, 53,           | 9, 26, 82,                                 | C3, D14,                                                                                  | 14, 33, 94,                                             |
| Inputs (10)  | 73                | 73                           |                               | 74                   | 99                                         | N2, R15                                                                                   | 113                                                     |
| VCCINT       | 17, 38, 59,<br>80 | 17, 38, 59,<br>80            | 6, 20, 37, 56,<br>70, 87      | 9, 32, 49,<br>59, 82 | 8, 28, 70,<br>90, 111                      | B2, C4, D3,<br>D8, D12,<br>G3, G12,<br>H4, H13,<br>J3, J12,<br>M4, M7,<br>M9, M13,<br>N12 | 3, 24, 46,<br>92, 114,<br>160                           |
| VCCIO        | -                 | _                            | _                             | _                    | 16, 40, 60,<br>69, 91,<br>112, 122,<br>141 | _                                                                                         | 23, 47, 57,<br>69, 79,<br>104, 127,<br>137, 149,<br>159 |

| Pin Name      | 160-Pin<br>PQFP<br>EPF8452A | 160-Pin<br>PQFP<br>EPF8636A | 192-Pin PGA<br>EPF8636A<br>EPF8820A | 208-Pin<br>PQFP<br>EPF8636A (1) | 208-Pin<br>PQFP<br>EPF8820A (1) | 208-Pin<br>PQFP<br>EPF81188A <i>(1)</i> |
|---------------|-----------------------------|-----------------------------|-------------------------------------|---------------------------------|---------------------------------|-----------------------------------------|
| nSP (2)       | 120                         | 1                           | R15                                 | 207                             | 207                             | 5                                       |
| MSELO (2)     | 117                         | 3                           | T15                                 | 4                               | 4                               | 21                                      |
| MSEL1 (2)     | 84                          | 38                          | Т3                                  | 49                              | 49                              | 33                                      |
| nSTATUS (2)   | 37                          | 83                          | B3                                  | 108                             | 108                             | 124                                     |
| nCONFIG (2)   | 40                          | 81                          | C3                                  | 103                             | 103                             | 107                                     |
| DCLK (2)      | 1                           | 120                         | C15                                 | 158                             | 158                             | 154                                     |
| CONF_DONE (2) | 4                           | 118                         | B15                                 | 153                             | 153                             | 138                                     |
| nWS           | 30                          | 89                          | C5                                  | 114                             | 114                             | 118                                     |
| nRS           | 71                          | 50                          | B5                                  | 66                              | 116                             | 121                                     |
| RDCLK         | 73                          | 48                          | C11                                 | 64                              | 137                             | 137                                     |
| nCS           | 29                          | 91                          | B13                                 | 116                             | 145                             | 142                                     |
| CS            | 27                          | 93                          | A16                                 | 118                             | 148                             | 144                                     |
| RDYnBUSY      | 125                         | 155                         | A8                                  | 201                             | 127                             | 128                                     |
| CLKUSR        | 76                          | 44                          | A10                                 | 59                              | 134                             | 134                                     |
| ADD17         | 78                          | 43                          | R5                                  | 57                              | 43                              | 46                                      |
| ADD16         | 91                          | 33                          | U3                                  | 43                              | 42                              | 45                                      |
| ADD15         | 92                          | 31                          | T5                                  | 41                              | 41                              | 44                                      |
| ADD14         | 94                          | 29                          | U4                                  | 39                              | 40                              | 39                                      |
| ADD13         | 95                          | 27                          | R6                                  | 37                              | 39                              | 37                                      |
| ADD12         | 96                          | 24                          | T6                                  | 31                              | 35                              | 36                                      |
| ADD11         | 97                          | 23                          | R7                                  | 30                              | 33                              | 31                                      |
| ADD10         | 98                          | 22                          | T7                                  | 29                              | 31                              | 30                                      |
| ADD9          | 99                          | 21                          | Т8                                  | 28                              | 29                              | 29                                      |
| ADD8          | 101                         | 20                          | U9                                  | 24                              | 25                              | 26                                      |
| ADD7          | 102                         | 19                          | U10                                 | 23                              | 23                              | 25                                      |
| ADD6          | 103                         | 18                          | U11                                 | 22                              | 21                              | 24                                      |
| ADD5          | 104                         | 17                          | U12                                 | 21                              | 19                              | 18                                      |
| ADD4          | 105                         | 13                          | R12                                 | 14                              | 14                              | 17                                      |
| ADD3          | 106                         | 11                          | U14                                 | 12                              | 13                              | 16                                      |
| ADD2          | 109                         | 9                           | U15                                 | 10                              | 11                              | 10                                      |
| ADD1          | 110                         | 7                           | R13                                 | 8                               | 10                              | 9                                       |
| ADD0          | 123                         | 157                         | U16                                 | 203                             | 9                               | 8                                       |
| DATA7         | 144                         | 137                         | H17                                 | 178                             | 178                             | 177                                     |
| DATA6         | 150                         | 132                         | G17                                 | 172                             | 176                             | 175                                     |
| DATA5         | 152                         | 129                         | F17                                 | 169                             | 174                             | 172                                     |

| Pin Name                     | 160-Pin<br>PQFP<br>EPF8452A                                  | 160-Pin<br>PQFP<br>EPF8636A                                                | 192-Pin PGA<br>EPF8636A<br>EPF8820A                                                        | 208-Pin<br>PQFP<br>EPF8636A (1)                                                                                                                                                  | 208-Pin<br>PQFP<br>EPF8820A (1)                                                     | 208-Pin<br>PQFP<br>EPF81188A (1)                                                                         |
|------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| DATA4                        | 154                                                          | 127                                                                        | E17                                                                                        | 165                                                                                                                                                                              | 172                                                                                 | 170                                                                                                      |
| DATA3                        | 157                                                          | 124                                                                        | G15                                                                                        | 162                                                                                                                                                                              | 171                                                                                 | 168                                                                                                      |
| DATA2                        | 159                                                          | 122                                                                        | F15                                                                                        | 160                                                                                                                                                                              | 167                                                                                 | 166                                                                                                      |
| DATA1                        | 11                                                           | 115                                                                        | E16                                                                                        | 149                                                                                                                                                                              | 165                                                                                 | 163                                                                                                      |
| DATA0                        | 12                                                           | 113                                                                        | C16                                                                                        | 147                                                                                                                                                                              | 162                                                                                 | 161                                                                                                      |
| SDOUT (3)                    | 128                                                          | 152                                                                        | C7 (11)                                                                                    | 198                                                                                                                                                                              | 124                                                                                 | 119                                                                                                      |
| TDI (4)                      | _                                                            | 55                                                                         | R11                                                                                        | 72                                                                                                                                                                               | 20                                                                                  | -                                                                                                        |
| TDO (4)                      | _                                                            | 95                                                                         | B9                                                                                         | 120                                                                                                                                                                              | 129                                                                                 | -                                                                                                        |
| TCK (4), (6)                 | _                                                            | 57                                                                         | U8                                                                                         | 74                                                                                                                                                                               | 30                                                                                  | -                                                                                                        |
| TMS (4)                      | _                                                            | 59                                                                         | U7                                                                                         | 76                                                                                                                                                                               | 32                                                                                  | _                                                                                                        |
| TRST (7)                     | _                                                            | 40                                                                         | R3                                                                                         | 54                                                                                                                                                                               | 54                                                                                  | _                                                                                                        |
| Dedicated<br>Inputs (10)     | 5, 36, 85, 116                                               | 6, 35, 87, 116                                                             | A5, U5, U13,<br>A13                                                                        | 7, 45, 112,<br>150                                                                                                                                                               | 17, 36, 121,<br>140                                                                 | 13, 41, 116,<br>146                                                                                      |
| VCCINT (5.0 V)               | 21, 41, 53, 67,<br>80, 81, 100, 121,<br>133, 147, 160        | 4, 5, 26, 85,<br>106                                                       | C8, C9, C10,<br>R8, R9, R10,<br>R14                                                        | 5, 6, 33, 110,<br>137                                                                                                                                                            | 5, 6, 27, 48,<br>119, 141                                                           | 4, 20, 35, 48,<br>50, 102, 114,<br>131, 147                                                              |
| VCCIO<br>(5.0 V or<br>3.3 V) | _                                                            | 25, 41, 60, 70,<br>80, 107, 121,<br>140, 149, 160                          | D3, D4, D9,<br>D14, D15, G4,<br>G14, L4, L14,<br>P4, P9, P14                               | 32, 55, 78, 91,<br>102, 138, 159,<br>182, 193, 206                                                                                                                               | 26, 55, 69, 87,<br>102, 131, 159,<br>173, 191, 206                                  | 3, 19, 34, 49,<br>69, 87, 106,<br>123, 140, 156,<br>174, 192                                             |
| GND                          | 13, 14, 28, 46,<br>60, 75, 93, 107,<br>108, 126, 140,<br>155 | 15, 16, 36, 37,<br>45, 51, 75, 84,<br>86, 96, 97,<br>117, 126, 131,<br>154 | C4, D7, D8,<br>D10, D11, H4,<br>H14, K4, K14,<br>P7, P8, P10,<br>P11                       | 19, 20, 46, 47,<br>60, 67, 96,<br>109, 111, 124,<br>125, 151, 164,<br>171, 200                                                                                                   | 15, 16, 37, 38,<br>60, 78, 96,<br>109, 110, 120,<br>130, 142, 152,<br>164, 182, 200 | 11, 12, 27, 28,<br>42, 43, 60, 78,<br>96, 105, 115,<br>122, 132, 139,<br>148, 155, 159,<br>165, 183, 201 |
| No Connect<br>(N.C.)         | 2, 3, 38, 39, 70,<br>82, 83, 118, 119,<br>148                | 2, 39, 82, 119                                                             | C6, C12, C13,<br>C14, E3, E15,<br>F3, J3, J4,<br>J14, J15, N3,<br>N15, P3, P15,<br>R4 (12) | 1, 2, 3, 16, 17,<br>18, 25, 26, 27,<br>34, 35, 36, 50,<br>51, 52, 53,<br>104, 105, 106,<br>107, 121, 122,<br>123, 130, 131,<br>132, 139, 140,<br>141, 154, 155,<br>156, 157, 208 | 1, 2, 3, 50, 51,<br>52, 53, 104,<br>105, 106, 107,<br>154, 155, 156,<br>157, 208    | 1, 2, 51, 52, 53,<br>54, 103, 104,<br>157, 158, 207,<br>208                                              |
| Total User I/O Pins (9)      | 116                                                          | 114                                                                        | 132, 148 (13)                                                                              | 132                                                                                                                                                                              | 148                                                                                 | 144                                                                                                      |