E·XFL

Intel - EPF8282ATC100-2N Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	26
Number of Logic Elements/Cells	208
Total RAM Bits	-
Number of I/O	78
Number of Gates	2500
Voltage - Supply	4.75V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf8282atc100-2n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FLEX 8000 devices provide a large number of storage elements for applications such as digital signal processing (DSP), wide-data-path manipulation, and data transformation. These devices are an excellent choice for bus interfaces, TTL integration, coprocessor functions, and high-speed controllers. The high-pin-count packages can integrate multiple 32-bit buses into a single device. Table 3 shows FLEX 8000 performance and LE requirements for typical applications.

Application	LEs Used		Speed Grade	ed Grade		
		A-2	A-3	A-4		
16-bit loadable counter	16	125	95	83	MHz	
16-bit up/down counter	16	125	95	83	MHz	
24-bit accumulator	24	87	67	58	MHz	
16-bit address decode	4	4.2	4.9	6.3	ns	
16-to-1 multiplexer	10	6.6	7.9	9.5	ns	

All FLEX 8000 device packages provide four dedicated inputs for synchronous control signals with large fan-outs. Each I/O pin has an associated register on the periphery of the device. As outputs, these registers provide fast clock-to-output times; as inputs, they offer quick setup times.

The logic and interconnections in the FLEX 8000 architecture are configured with CMOS SRAM elements. FLEX 8000 devices are configured at system power-up with data stored in an industry-standard parallel EPROM or an Altera serial configuration devices, or with data provided by a system controller. Altera offers the EPC1, EPC1213, EPC1064, and EPC1441 configuration devices, which configure FLEX 8000 devices via a serial data stream. Configuration data can also be stored in an industry-standard 32 K × 8 bit or larger configuration device, or downloaded from system RAM. After a FLEX 8000 device has been configured, it can be reconfigured in-circuit by resetting the device and loading new data. Because reconfiguration requires less than 100 ms, realtime changes can be made during system operation. For information on how to configure FLEX 8000 devices, go to the following documents:

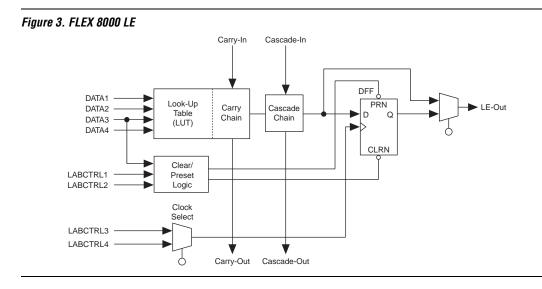
- Configuration Devices for APEX & FLEX Devices Data Sheet
- BitBlaster Serial Download Cable Data Sheet
- ByteBlasterMV Parallel Port Download Cable Data Sheet
- *Application Note 33 (Configuring FLEX 8000 Devices)*
- Application Note 38 (Configuring Multiple FLEX 8000 Devices)

FLEX 8000 devices contain an optimized microprocessor interface that permits the microprocessor to configure FLEX 8000 devices serially, in parallel, synchronously, or asynchronously. The interface also enables the microprocessor to treat a FLEX 8000 device as memory and configure the device by writing to a virtual memory location, making it very easy for the designer to create configuration software.

The FLEX 8000 family is supported by Altera's MAX+PLUS II development system, a single, integrated package that offers schematic, text—including the Altera Hardware Description Language (AHDL), VHDL, and Verilog HDL—and waveform design entry, compilation and logic synthesis, simulation and timing analysis, and device programming. The MAX+PLUS II software provides EDIF 2 0 0 and 3 0 0, library of parameterized modules (LPM), VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industrystandard PC- and UNIX workstation-based EDA tools. The MAX+PLUS II software runs on Windows-based PCs and Sun SPARCstation, HP 9000 Series 700/800, and IBM RISC System/6000 workstations.

The MAX+PLUS II software interfaces easily with common gate array EDA tools for synthesis and simulation. For example, the MAX+PLUS II software can generate Verilog HDL files for simulation with tools such as Cadence Verilog-XL. Additionally, the MAX+PLUS II software contains EDA libraries that use device-specific features such as carry chains, which are used for fast counter and arithmetic functions. For instance, the Synopsys Design Compiler library supplied with the MAX+PLUS II development system includes DesignWare functions that are optimized for the FLEX 8000 architecture.

Functional Description For more information on the MAX+PLUS II software, go to the *MAX+PLUS II Programmable Logic Development System & Software Data Sheet*.


The FLEX 8000 architecture incorporates a large matrix of compact building blocks called logic elements (LEs). Each LE contains a 4-input LUT that provides combinatorial logic capability and a programmable register that offers sequential logic capability. The fine-grained structure of the LE provides highly efficient logic implementation.

Eight LEs are grouped together to form a logic array block (LAB). Each FLEX 8000 LAB is an independent structure with common inputs, interconnections, and control signals. The LAB architecture provides a coarse-grained structure for high device performance and easy routing.

Each LAB provides four control signals that can be used in all eight LEs. Two of these signals can be used as clocks, and the other two for clear/preset control. The LAB control signals can be driven directly from a dedicated input pin, an I/O pin, or any internal signal via the LAB local interconnect. The dedicated inputs are typically used for global clock, clear, or preset signals because they provide synchronous control with very low skew across the device. FLEX 8000 devices support up to four individual global clock, clear, or preset control signals. If logic is required on a control signal, it can be generated in one or more LEs in any LAB and driven into the local interconnect of the target LAB.

Logic Element

The logic element (LE) is the smallest unit of logic in the FLEX 8000 architecture, with a compact size that provides efficient logic utilization. Each LE contains a 4-input LUT, a programmable flipflop, a carry chain, and cascade chain. Figure 3 shows a block diagram of an LE.

The LUT is a function generator that can quickly compute any function of four variables. The programmable flipflop in the LE can be configured for D, T, JK, or SR operation. The clock, clear, and preset control signals on the flipflop can be driven by dedicated input pins, general-purpose I/O pins, or any internal logic. For purely combinatorial functions, the flipflop is bypassed and the output of the LUT goes directly to the output of the LE.

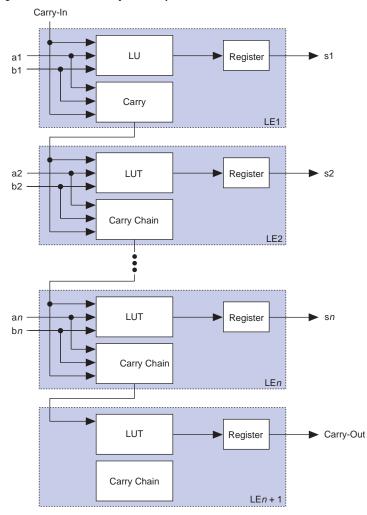


Figure 4. FLEX 8000 Carry Chain Operation

Cascade Chain

With the cascade chain, the FLEX 8000 architecture can implement functions that have a very wide fan-in. Adjacent LUTs can be used to compute portions of the function in parallel; the cascade chain serially connects the intermediate values. The cascade chain can use a logical AND or logical OR (via De Morgan's inversion) to connect the outputs of adjacent LEs. Each additional LE provides four more inputs to the effective width of a function, with a delay as low as 0.6 ns per LE.

The MAX+PLUS II Compiler can create cascade chains automatically during design processing; designers can also insert cascade chain logic manually during design entry. Cascade chains longer than eight LEs are automatically implemented by linking LABs together. The last LE of an LAB cascades to the first LE of the next LAB.

Figure 5 shows how the cascade function can connect adjacent LEs to form functions with a wide fan-in. These examples show functions of 4n variables implemented with n LEs. For a device with an A-2 speed grade, the LE delay is 2.4 ns; the cascade chain delay is 0.6 ns. With the cascade chain, 4.2 ns is needed to decode a 16-bit address.

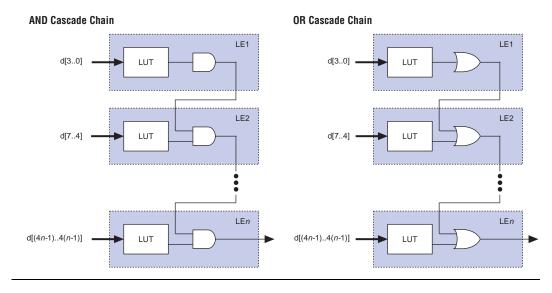
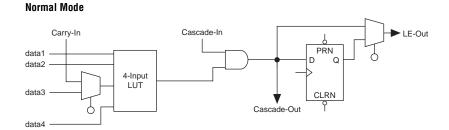
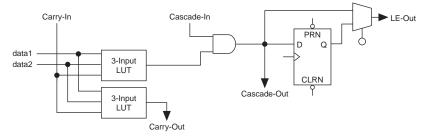
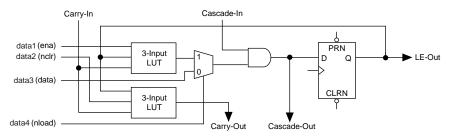
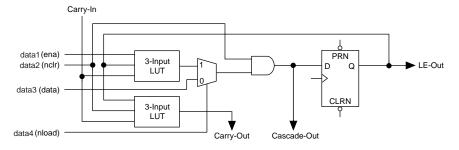



Figure 5. FLEX 8000 Cascade Chain Operation


LE Operating Modes

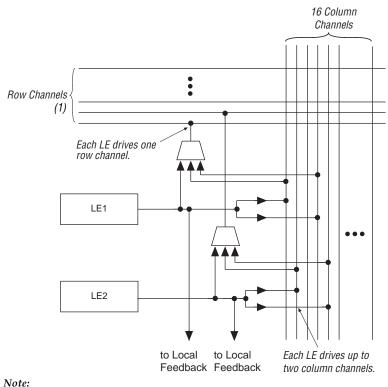
The FLEX 8000 LE can operate in one of four modes, each of which uses LE resources differently. See Figure 6. In each mode, seven of the ten available inputs to the LE—the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE—are directed to different destinations to implement the desired logic function. The three remaining inputs to the LE provide clock, clear, and preset control for the register. The MAX+PLUS II software automatically chooses the appropriate mode for each application. Design performance can also be enhanced by designing for the operating mode that supports the desired application.


Figure 6. FLEX 8000 LE Operating Modes


Arithmetic Mode

Up/Down Counter Mode

Clearable Counter Mode



FastTrack Interconnect

In the FLEX 8000 architecture, connections between LEs and device I/O pins are provided by the FastTrack Interconnect, a series of continuous horizontal (row) and vertical (column) routing channels that traverse the entire FLEX 8000 device. This device-wide routing structure provides predictable performance even in complex designs. In contrast, the segmented routing structure in FPGAs requires switch matrices to connect a variable number of routing paths, which increases the delays between logic resources and reduces performance.

The LABs within FLEX 8000 devices are arranged into a matrix of columns and rows. Each row of LABs has a dedicated row interconnect that routes signals both into and out of the LABs in the row. The row interconnect can then drive I/O pins or feed other LABs in the device. Figure 8 shows how an LE drives the row and column interconnect.

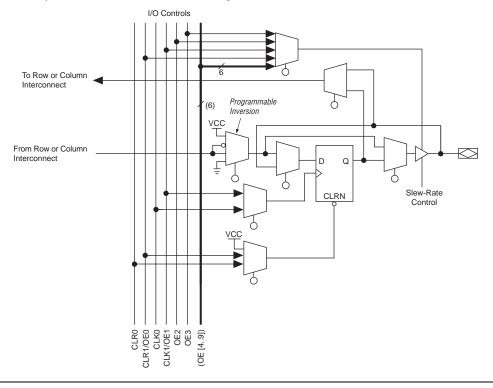

Figure 8. FLEX 8000 LAB Connections to Row & Column Interconnect

Figure 10. FLEX 8000 IOE

Numbers in parentheses are for EPF81500A devices only.

Row-to-IOE Connections

Figure 11 illustrates the connection between row interconnect channels and IOEs. An input signal from an IOE can drive two separate row channels. When an IOE is used as an output, the signal is driven by an *n*-to-1 multiplexer that selects the row channels. The size of the multiplexer varies with the number of columns in a device. EPF81500A devices use a 27-to-1 multiplexer; EPF81188A, EPF8820A, EPF8636A, and EPF8452A devices use a 21-to-1 multiplexer; and EPF8282A and EPF8282AV devices use a 13-to-1 multiplexer. Eight IOEs are connected to each side of the row channels.

Table 5 lists the source of the peripheral control signal for each FLEX 8000 device by row.

Table 5. Row S	Table 5. Row Sources of FLEX 8000 Peripheral Control Signals											
Peripheral Control Signal	EPF8282A EPF8282AV	EPF8452A	EPF8636A	EPF8820A	EPF81188A	EPF81500A						
CLK0	Row A	Row A	Row A	Row A	Row E	Row E						
CLK1/OE1	Row B	Row B	Row C	Row C	Row B	Row B						
CLR0	Row A	Row A	Row B	Row B	Row F	Row F						
CLR1/OE0	Row B	Row B	Row C	Row D	Row C	Row C						
OE2	Row A	Row A	Row A	Row A	Row D	Row A						
OE3	Row B	Row B	Row B	Row B	Row A	Row A						
OE4	-	-	-	-	-	Row B						
OE5	-	-	-	-	-	Row C						
OE6	-	-	-	-	-	Row D						
OE7	-	-	-	-	-	Row D						
OE8	-	-	-	-	-	Row E						
OE9	-	-	-	-	-	Row F						

Output Configuration

This section discusses slew-rate control and MultiVolt I/O interface operation for FLEX 8000 devices.

Slew-Rate Control

The output buffer in each IOE has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A slow slew rate reduces system noise by slowing signal transitions, adding a maximum delay of 3.5 ns. The slow slew-rate setting affects only the falling edge of a signal. The fast slew rate should be used for speed-critical outputs in systems that are adequately protected against noise. Designers can specify the slew rate on a pin-by-pin basis during design entry or assign a default slew rate to all pins on a global basis.

For more information on high-speed system design, go to *Application Note* 75 (*High-Speed Board Designs*).

Symbol		Speed Grade								
	A	-2	A	-3	A	-4				
	Min	Max	Min	Мах	Min	Мах				
t _{LUT}		2.0		2.5		3.2	ns			
t _{CLUT}		0.0		0.0		0.0	ns			
t _{RLUT}		0.9		1.1		1.5	ns			
t _{GATE}		0.0		0.0		0.0	ns			
t _{CASC}		0.6		0.7		0.9	ns			
t _{CICO}		0.4		0.5		0.6	ns			
t _{CGEN}		0.4		0.5		0.7	ns			
t _{CGENR}		0.9		1.1		1.5	ns			
t _C		1.6		2.0		2.5	ns			
t _{CH}	4.0		4.0		4.0		ns			
t _{CL}	4.0		4.0		4.0		ns			
t _{CO}		0.4		0.5		0.6	ns			
t _{COMB}		0.4		0.5		0.6	ns			
t _{SU}	0.8		1.1		1.2		ns			
t _H	0.9		1.1		1.5		ns			
t _{PRE}		0.6		0.7		0.8	ns			
t _{CLR}		0.6		0.7		0.8	ns			

Table 25. EPF8282A External Timing Parameters

Symbol			Speed	Speed Grade					
	A	-2	A-3		A-4				
	Min	Max	Min	Max	Min	Мах			
t _{DRR}		15.8		19.8		24.8	ns		
t _{ODH}	1.0		1.0		1.0		ns		

FLEX 8000 Programmable Logic Device Family Data She	et
---	----

Symbol	Speed Grade						
	A	-3	А	-4			
	Min	Max	Min	Мах			
t _{IOD}		0.9		2.2	ns		
t _{IOC}		1.9		2.0	ns		
t _{IOE}		1.9		2.0	ns		
t _{IOCO}	_	1.0		2.0	ns		
t _{IOCOMB}		0.1		0.0	ns		
t _{IOSU}	1.8		2.8		ns		
t _{іон}	0.0		0.2		ns		
t _{IOCLR}		1.2		2.3	ns		
t _{IN}		1.7		3.4	ns		
t _{OD1}		1.7		4.1	ns		
t _{OD2}	_	-		-	ns		
t _{OD3}		5.2		7.1	ns		
t _{XZ}		1.8		4.3	ns		
t _{ZX1}		1.8		4.3	ns		
tzx2		-		-	ns		
t _{ZX3}		5.3		8.3	ns		

Symbol		Speed Grade						
	A	A-3		-4				
	Min	Max	Min	Мах				
t _{LABCASC}		0.4		1.3	ns			
t _{LABCARRY}		0.4		0.8	ns			
t _{LOCAL}		0.8		1.5	ns			
t _{ROW}		4.2		6.3	ns			
t _{COL}		2.5		3.8	ns			
t _{DIN_C}		5.5		8.0	ns			
t _{DIN_D}		7.2		10.8	ns			
t _{DIN_IO}		5.5		9.0	ns			

Π

Symbol	Speed Grade						
	A	-3	A	-4			
	Min	Max	Min	Max			
t _{LUT}		3.2		7.3	ns		
t _{CLUT}		0.0		1.4	ns		
t _{RLUT}		1.5		5.1	ns		
t _{GATE}		0.0		0.0	ns		
t _{CASC}		0.9		2.8	ns		
t _{CICO}		0.6		1.5	ns		
t _{CGEN}		0.7		2.2	ns		
t _{CGENR}		1.5		3.7	ns		
t _C		2.5		4.7	ns		
t _{CH}	4.0		6.0		ns		
t _{CL}	4.0		6.0		ns		
t _{CO}		0.6		0.9	ns		
t _{COMB}		0.6		0.9	ns		
t _{SU}	1.2		2.4		ns		
t _H	1.5		4.6		ns		
t _{PRE}		0.8		1.3	ns		
t _{CLR}		0.8		1.3	ns		

Table 29. EPF8282AV External Timing Parameters									
Symbol		Unit							
	A	-3	A-4						
	Min	Max	Min	Max					
t _{DRR}		24.8		50.1	ns				
t _{ODH}	1.0		1.0		ns				

Symbol	Speed Grade							
	A-2		A	A-3		-4		
	Min	Max	Min	Max	Min	Max		
t _{IOD}		0.7		0.8		0.9	ns	
t _{IOC}		1.7		1.8		1.9	ns	
t _{IOE}		1.7		1.8		1.9	ns	
t _{IOCO}		1.0		1.0		1.0	ns	
t _{IOCOMB}		0.3		0.2		0.1	ns	
t _{IOSU}	1.4		1.6		1.8		ns	
t _{IOH}	0.0		0.0		0.0		ns	
t _{IOCLR}		1.2		1.2		1.2	ns	
t _{IN}		1.5		1.6		1.7	ns	
t _{OD1}		1.1		1.4		1.7	ns	
t _{OD2}		1.6		1.9		2.2	ns	
t _{OD3}		4.6		4.9		5.2	ns	
t _{XZ}		1.4		1.6		1.8	ns	
t _{ZX1}		1.4		1.6		1.8	ns	
t _{ZX2}		1.9		2.1		2.3	ns	
t _{ZX3}		4.9		5.1		5.3	ns	

Symbol		Speed Grade							
	A	A-2		-3	A	-4			
	Min	Max	Min	Max	Min	Max	1		
t _{LABCASC}		0.3		0.4		0.4	ns		
t _{LABCARRY}		0.3		0.4		0.4	ns		
t _{LOCAL}		0.5		0.5		0.7	ns		
t _{ROW}		5.0		5.0		5.0	ns		
t _{COL}		3.0		3.0		3.0	ns		
t _{DIN_C}		5.0		5.0		5.5	ns		
t _{DIN_D}		7.0		7.0		7.5	ns		
t _{DIN_IO}		5.0		5.0		5.5	ns		

Г

٦

Symbol	Speed Grade							
	A-2		A	-3	A			
	Min	Max	Min	Max	Min	Max		
t _{IOD}		0.7		0.8		0.9	ns	
t _{IOC}		1.7		1.8		1.9	ns	
t _{IOE}		1.7		1.8		1.9	ns	
t _{IOCO}		1.0		1.0		1.0	ns	
t _{IOCOMB}		0.3		0.2		0.1	ns	
t _{IOSU}	1.4		1.6		1.8		ns	
t _{IOH}	0.0		0.0		0.0		ns	
t _{IOCLR}		1.2		1.2		1.2	ns	
t _{IN}		1.5		1.6		1.7	ns	
t _{OD1}		1.1		1.4		1.7	ns	
t _{OD2}		1.6		1.9		2.2	ns	
t _{OD3}		4.6		4.9		5.2	ns	
t _{XZ}		1.4		1.6		1.8	ns	
t _{ZX1}		1.4		1.6		1.8	ns	
t _{ZX2}		1.9		2.1		2.3	ns	
t _{ZX3}		4.9		5.1		5.3	ns	

Symbol			Speed	Grade			Unit
	A	A-2		A-3		-4	1
	Min	Max	Min	Max	Min	Max	
t _{LABCASC}		0.3		0.3		0.4	ns
t _{LABCARRY}		0.3		0.3		0.4	ns
t _{LOCAL}		0.5		0.6		0.8	ns
t _{ROW}		5.0		5.0		5.0	ns
t _{COL}		3.0		3.0		3.0	ns
t _{DIN_C}		5.0		5.0		5.5	ns
t _{DIN_D}		7.0		7.0		7.5	ns
t _{DIN IO}		5.0		5.0		5.5	ns

Γ

٦

Symbol	Speed Grade							
	A-2		A-3		A-4		7	
	Min	Max	Min	Max	Min	Max	-	
t _{IOD}		0.7		0.8		0.9	ns	
t _{IOC}		1.7		1.8		1.9	ns	
t _{IOE}		1.7		1.8		1.9	ns	
t _{IOCO}		1.0		1.0		1.0	ns	
t _{IOCOMB}		0.3		0.2		0.1	ns	
t _{IOSU}	1.4		1.6		1.8		ns	
t _{IOH}	0.0		0.0		0.0		ns	
t _{IOCLR}		1.2		1.2		1.2	ns	
t _{IN}		1.5		1.6		1.7	ns	
t _{OD1}		1.1		1.4		1.7	ns	
t _{OD2}		1.6		1.9		2.2	ns	
t _{OD3}		4.6		4.9		5.2	ns	
t _{XZ}		1.4		1.6		1.8	ns	
t _{ZX1}		1.4		1.6		1.8	ns	
t _{ZX2}		1.9		2.1		2.3	ns	
t _{ZX3}		4.9		5.1		5.3	ns	

Symbol			Speed	Grade			Unit
	A	A-2		A-3		-4	1
	Min	Max	Min	Max	Min	Max	_
t _{LABCASC}		0.3		0.3		0.4	ns
t _{LABCARRY}		0.3		0.3		0.4	ns
t _{LOCAL}		0.5		0.6		0.8	ns
t _{ROW}		5.0		5.0		5.0	ns
t _{COL}		3.0		3.0		3.0	ns
t _{DIN_C}		5.0		5.0		5.5	ns
t _{DIN_D}		7.0		7.0		7.5	ns
t _{DIN IO}		5.0		5.0		5.5	ns

٦

Symbol	Speed Grade							
	A-2		A-3		A-4			
	Min	Мах	Min	Мах	Min	Max		
t _{LUT}		2.0		2.5		3.2	ns	
t _{CLUT}		0.0		0.0		0.0	ns	
t _{RLUT}		0.9		1.1		1.5	ns	
t _{GATE}		0.0		0.0		0.0	ns	
t _{CASC}		0.6		0.7		0.9	ns	
t _{CICO}		0.4		0.5		0.6	ns	
t _{CGEN}		0.4		0.5		0.7	ns	
t _{CGENR}		0.9		1.1		1.5	ns	
t _C		1.6		2.0		2.5	ns	
t _{CH}	4.0		4.0		4.0		ns	
t _{CL}	4.0		4.0		4.0		ns	
t _{CO}		0.4		0.5		0.6	ns	
t _{COMB}		0.4		0.5		0.6	ns	
t _{SU}	0.8		1.1		1.2		ns	
t _H	0.9		1.1		1.5		ns	
t _{PRE}		0.6		0.7		0.8	ns	
t _{CLR}		0.6		0.7		0.8	ns	

Symbol	Speed Grade								
	A	-2	A-3		A-4				
	Min	Max	Min	Max	Min	Max			
t _{DRR}		16.0		20.0		25.0	ns		
t _{ODH}	1.0		1.0		1.0		ns		

Power Consumption

The supply power (P) for FLEX 8000 devices can be calculated with the following equation:

 $P = P_{INT} + P_{IO} = [(I_{CCSTANDBY} + I_{CCACTIVE}) \times V_{CC}] + P_{IO}$

Typical I_{CCSTANDBY} values are shown as I_{CC0} in Table 11 on page 28 and Table 15 on page 30. The P_{IO} value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note* 74 (*Evaluating Power for Altera Devices*). The I_{CCACTIVE} value depends on the switching frequency and the application logic. This value can be calculated based on the amount of current that each LE typically consumes.

The following equation shows the general formula for calculating $I_{\mbox{\scriptsize CCACTIVE}}$:

$$I_{CCACTIVE} = K \times f_{MAX} \times N \times tog_{LC} \times \frac{\mu A}{MHz \times LE}$$

The parameters in this equation are shown below:

f _{MAX}	=	Maximum operating frequency in MHz
Ν	=	Total number of logic cells used in the device
tog _{LC}	=	Average percentage of logic cells toggling at each clock
Κ	=	Constant, shown in Table 50

Table 50. Values for Constant K						
Device K						
5.0-V FLEX 8000 devices	75					
3.3-V FLEX 8000 devices 60						

This calculation provides an I_{CC} estimate based on typical conditions with no output load. The actual I_{CC} value should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions.

Figure 20 shows the relationship between $\rm I_{\rm CC}$ and operating frequency for several LE utilization values.

Device Pin-Outs

Tables 52 through 54 show the pin names and numbers for the dedicated pins in each FLEX 8000 device package.

Table 52. FLEX	8000 84-, 100	-, 144- & 160)-Pin Package	Pin-Outs (P	art 1 of 3)		
Pin Name	84-Pin PLCC EPF8282A	84-Pin PLCC EPF8452A EPF8636A	100-Pin TQFP EPF8282A EPF8282AV	100-Pin TQFP EPF8452A	144-Pin TQFP EPF8820A	160-Pin PGA EPF8452A	160-Pin PQFP EPF8820A (1)
nSP (2)	75	75	75	76	110	R1	1
MSELO (2)	74	74	74	75	109	P2	2
MSEL1 (2)	53	53	51	51	72	A1	44
nSTATUS (2)	32	32	24	25	37	C13	82
nCONFIG (2)	33	33	25	26	38	A15	81
dclk (2)	10	10	100	100	143	P14	125
CONF_DONE (2)	11	11	1	1	144	N13	124
nWS	30	30	22	23	33	F13	87
nRS	48	48	42	45	31	C6	89
RDCLK	49	49	45	46	12	B5	110
nCS	29	29	21	22	4	D15	118
CS	28	28	19	21	3	E15	121
RDYnBUSY	77	77	77	78	20	P3	100
CLKUSR	50	50	47	47	13	C5	107
ADD17	51	51	49	48	75	B4	40
ADD16	36	55	28	54	76	E2	39
ADD15	56	56	55	55	77	D1	38
ADD14	57	57	57	57	78	E1	37
ADD13	58	58	58	58	79	F3	36
ADD12	60	60	59	60	83	F2	32
ADD11	61	61	60	61	85	F1	30
ADD10	62	62	61	62	87	G2	28
ADD9	63	63	62	64	89	G1	26
ADD8	64	64	64	65	92	H1	22
ADD7	65	65	65	66	94	H2	20
ADD6	66	66	66	67	95	J1	18
ADD5	67	67	67	68	97	J2	16
ADD4	69	69	68	70	102	K2	11
ADD3	70	70	69	71	103	K1	10
ADD2	71	71	71	72	104	K3	8
ADD1	76	72	76	73	105	M1	7

Table 52. FLE	X 8000 84-, 100)-, 144- & 160)-Pin Package	Pin-Outs (Pa	art 2 of 3)		
Pin Name	84-Pin PLCC EPF8282A	84-Pin PLCC EPF8452A EPF8636A	100-Pin TQFP EPF8282A EPF8282AV	100-Pin TQFP EPF8452A	144-Pin TQFP EPF8820A	160-Pin PGA EPF8452A	160-Pin PQFP EPF8820A (1)
ADD0	78	76	78	77	106	N3	6
data7	3	2	90	89	131	P8	140
DATA6	4	4	91	91	132	P10	139
DATA5	6	6	92	95	133	R12	138
DATA4	7	7	95	96	134	R13	136
DATA3	8	8	97	97	135	P13	135
DATA2	9	9	99	98	137	R14	133
DATA1	13	13	4	4	138	N15	132
DATA0	14	14	5	5	140	K13	129
SDOUT (3)	79	78	79	79	23	P4	97
TDI (4)	55	45 (5)	54	-	96	-	17
TDO (4)	27	27 (5)	18	-	18	-	102
TCK (4), (6)	72	44 (5)	72	-	88	_	27
TMS (4)	20	43 (5)	11	-	86	-	29
TRST (7)	52	52 (8)	50	-	71	-	45
Dedicated Inputs (10)	12, 31, 54, 73	12, 31, 54, 73	3, 23, 53, 73	3, 24, 53, 74	9, 26, 82, 99	C3, D14, N2, R15	14, 33, 94, 113
VCCINT	17, 38, 59, 80	17, 38, 59, 80	6, 20, 37, 56, 70, 87	9, 32, 49, 59, 82	8, 28, 70, 90, 111	B2, C4, D3, D8, D12, G3, G12, H4, H13, J3, J12, M4, M7, M9, M13, N12	3, 24, 46, 92, 114, 160
VCCIO	-	-	-	-	16, 40, 60, 69, 91, 112, 122, 141	-	23, 47, 57, 69, 79, 104, 127, 137, 149, 159

Г

Pin Name	225-Pin BGA EPF8820A	232-Pin PGA EPF81188A	240-Pin PQFP EPF81188A	240-Pin PQFP EPF81500A	280-Pin PGA EPF81500A	304-Pin RQFP EPF81500A
nSP (2)	A15	C14	237	237	W1	304
MSELO (2)	B14	G15	21	19	N1	26
MSEL1 (2)	R15	L15	40	38	H3	51
nSTATUS (2)	P2	L3	141	142	G19	178
nCONFIG (2)	R1	R4	117	120	B18	152
DCLK (2)	B2	C4	184	183	U18	230
CONF_DONE (2)	A1	G3	160	161	M16	204
nWS	L4	P1	133	134	F18	167
nRS	K5	N1	137	138	G18	171
RDCLK	F1	G2	158	159	M17	202
nCS	D1	E2	166	167	N16	212
CS	C1	E3	169	170	N18	215
RDYnBUSY	J3	K2	146	147	J17	183
CLKUSR	G2	H2	155	156	K19	199
ADD17	M14	R15	58	56	E3	73
ADD16	L12	T17	56	54	E2	71
ADD15	M15	P15	54	52	F4	69
ADD14	L13	M14	47	45	G1	60
ADD13	L14	M15	45	43	H2	58
ADD12	K13	M16	43	41	H1	56
ADD11	K15	K15	36	34	J3	47
ADD10	J13	K17	34	32	К3	45
ADD9	J15	J14	32	30	K4	43
ADD8	G14	J15	29	27	L1	34
ADD7	G13	H17	27	25	L2	32
ADD6	G11	H15	25	23	M1	30
ADD5	F14	F16	18	16	N2	20
ADD4	E13	F15	16	14	N3	18
ADD3	D15	F14	14	12	N4	16
ADD2	D14	D15	7	5	U1	8
ADD1	E12	B17	5	3	U2	6
ADD0	C15	C15	3	1	V1	4
DATA7	A7	A7	205	199	W13	254
DATA6	D7	D8	203	197	W14	252
DATA5	A6	B7	200	196	W15	250