E·XFL

Altera - EPF8282AVTC100-3 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	26
Number of Logic Elements/Cells	208
Total RAM Bits	-
Number of I/O	78
Number of Gates	2500
Voltage - Supply	4.75V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=epf8282avtc100-3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FLEX 8000 devices contain an optimized microprocessor interface that permits the microprocessor to configure FLEX 8000 devices serially, in parallel, synchronously, or asynchronously. The interface also enables the microprocessor to treat a FLEX 8000 device as memory and configure the device by writing to a virtual memory location, making it very easy for the designer to create configuration software.

The FLEX 8000 family is supported by Altera's MAX+PLUS II development system, a single, integrated package that offers schematic, text—including the Altera Hardware Description Language (AHDL), VHDL, and Verilog HDL—and waveform design entry, compilation and logic synthesis, simulation and timing analysis, and device programming. The MAX+PLUS II software provides EDIF 2 0 0 and 3 0 0, library of parameterized modules (LPM), VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industrystandard PC- and UNIX workstation-based EDA tools. The MAX+PLUS II software runs on Windows-based PCs and Sun SPARCstation, HP 9000 Series 700/800, and IBM RISC System/6000 workstations.

The MAX+PLUS II software interfaces easily with common gate array EDA tools for synthesis and simulation. For example, the MAX+PLUS II software can generate Verilog HDL files for simulation with tools such as Cadence Verilog-XL. Additionally, the MAX+PLUS II software contains EDA libraries that use device-specific features such as carry chains, which are used for fast counter and arithmetic functions. For instance, the Synopsys Design Compiler library supplied with the MAX+PLUS II development system includes DesignWare functions that are optimized for the FLEX 8000 architecture.

Functional Description For more information on the MAX+PLUS II software, go to the *MAX+PLUS II Programmable Logic Development System & Software Data Sheet*.

The FLEX 8000 architecture incorporates a large matrix of compact building blocks called logic elements (LEs). Each LE contains a 4-input LUT that provides combinatorial logic capability and a programmable register that offers sequential logic capability. The fine-grained structure of the LE provides highly efficient logic implementation.

Eight LEs are grouped together to form a logic array block (LAB). Each FLEX 8000 LAB is an independent structure with common inputs, interconnections, and control signals. The LAB architecture provides a coarse-grained structure for high device performance and easy routing.

Figure 1 shows a block diagram of the FLEX 8000 architecture. Each group of eight LEs is combined into an LAB; LABs are arranged into rows and columns. The I/O pins are supported by I/O elements (IOEs) located at the ends of rows and columns. Each IOE contains a bidirectional I/O buffer and a flipflop that can be used as either an input or output register.

Signal interconnections within FLEX 8000 devices and between device pins are provided by the FastTrack Interconnect, a series of fast, continuous channels that run the entire length and width of the device. IOEs are located at the end of each row (horizontal) and column (vertical) FastTrack Interconnect path.

Altera Corporation

Logic Array Block

A logic array block (LAB) consists of eight LEs, their associated carry and cascade chains, LAB control signals, and the LAB local interconnect. The LAB provides the coarse-grained structure of the FLEX 8000 architecture. This structure enables FLEX 8000 devices to provide efficient routing, high device utilization, and high performance. Figure 2 shows a block diagram of the FLEX 8000 LAB.

Altera Corporation

The FLEX 8000 architecture provides two dedicated high-speed data paths—carry chains and cascade chains—that connect adjacent LEs without using local interconnect paths. The carry chain supports highspeed counters and adders; the cascade chain implements wide-input functions with minimum delay. Carry and cascade chains connect all LEs in an LAB and all LABs in the same row. Heavy use of carry and cascade chains can reduce routing flexibility. Therefore, the use of carry and cascade chains should be limited to speed-critical portions of a design.

Carry Chain

The carry chain provides a very fast (less than 1 ns) carry-forward function between LEs. The carry-in signal from a lower-order bit moves forward into the higher-order bit via the carry chain, and feeds into both the LUT and the next portion of the carry chain. This feature allows the FLEX 8000 architecture to implement high-speed counters and adders of arbitrary width. The MAX+PLUS II Compiler can create carry chains automatically during design processing; designers can also insert carry chain logic manually during design entry.

Figure 4 shows how an *n*-bit full adder can be implemented in n + 1 LEs with the carry chain. One portion of the LUT generates the sum of two bits using the input signals and the carry-in signal; the sum is routed to the output of the LE. The register is typically bypassed for simple adders, but can be used for an accumulator function. Another portion of the LUT and the carry chain logic generate the carry-out signal, which is routed directly to the carry-in signal of the next-higher-order bit. The final carry-out signal is routed to another LE, where it can be used as a general-purpose signal. In addition to mathematical functions, carry chain logic supports very fast counters and comparators.

Figure 4. FLEX 8000 Carry Chain Operation

Cascade Chain

With the cascade chain, the FLEX 8000 architecture can implement functions that have a very wide fan-in. Adjacent LUTs can be used to compute portions of the function in parallel; the cascade chain serially connects the intermediate values. The cascade chain can use a logical AND or logical OR (via De Morgan's inversion) to connect the outputs of adjacent LEs. Each additional LE provides four more inputs to the effective width of a function, with a delay as low as 0.6 ns per LE.

FastTrack Interconnect

In the FLEX 8000 architecture, connections between LEs and device I/O pins are provided by the FastTrack Interconnect, a series of continuous horizontal (row) and vertical (column) routing channels that traverse the entire FLEX 8000 device. This device-wide routing structure provides predictable performance even in complex designs. In contrast, the segmented routing structure in FPGAs requires switch matrices to connect a variable number of routing paths, which increases the delays between logic resources and reduces performance.

The LABs within FLEX 8000 devices are arranged into a matrix of columns and rows. Each row of LABs has a dedicated row interconnect that routes signals both into and out of the LABs in the row. The row interconnect can then drive I/O pins or feed other LABs in the device. Figure 8 shows how an LE drives the row and column interconnect.

Figure 8. FLEX 8000 LAB Connections to Row & Column Interconnect

Figure 9. FLEX 8000 Device Interconnect Resources

Each LAB is named according to its physical row (A, B, C, etc.) and column (1, 2, 3, etc.) position within the device.

I/O Element

An IOE contains a bidirectional I/O buffer and a register that can be used either as an input register for external data that requires a fast setup time, or as an output register for data that requires fast clock-to-output performance. IOEs can be used as input, output, or bidirectional pins. The MAX+PLUS II Compiler uses the programmable inversion option to automatically invert signals from the row and column interconnect where appropriate. Figure 10 shows the IOE block diagram.

Figure 10. FLEX 8000 IOE

Numbers in parentheses are for EPF81500A devices only.

Row-to-IOE Connections

Figure 11 illustrates the connection between row interconnect channels and IOEs. An input signal from an IOE can drive two separate row channels. When an IOE is used as an output, the signal is driven by an *n*-to-1 multiplexer that selects the row channels. The size of the multiplexer varies with the number of columns in a device. EPF81500A devices use a 27-to-1 multiplexer; EPF81188A, EPF8820A, EPF8636A, and EPF8452A devices use a 21-to-1 multiplexer; and EPF8282A and EPF8282AV devices use a 13-to-1 multiplexer. Eight IOEs are connected to each side of the row channels.

Figure 11. FLEX 8000 Row-to-IOE Connections

Numbers in parentheses are for EPF81500A devices. See Note (1).

Note:

- (1) n = 13 for EPF8282A and EPF8282AV devices.
 - *n* = 21 for EPF8452A, EPF8636A, EPF8820A, and EPF81188A devices.
 - n = 27 for EPF81500A devices.

Column-to-IOE Connections

Two IOEs are located at the top and bottom of the column channels (see Figure 12). When an IOE is used as an input, it can drive up to two separate column channels. The output signal to an IOE can choose from 8 of the 16 column channels through an 8-to-1 multiplexer.

Table 8	Table 8. JTAG Timing Parameters & Values							
Symbol	ol Parameter EPF EPF EPF EPF EPF		EPF8282A EPF8282AV EPF8636A EPF8820A EPF81500A					
		Min	Max					
t _{JCP}	TCK clock period	100		ns				
t _{JCH}	TCK clock high time	50		ns				
t _{JCL}	TCK clock low time	50		ns				
t _{JPSU}	JTAG port setup time	20		ns				
t _{JPH}	JTAG port hold time	45		ns				
t _{JPCO}	JTAG port clock to output		25	ns				
t _{JPZX}	JTAG port high-impedance to valid output		25	ns				
t _{JPXZ}	JTAG port valid output to high-impedance		25	ns				
t _{JSSU}	Capture register setup time	20		ns				
t _{JSH}	Capture register hold time	45		ns				
t _{JSCO}	Update register clock to output		35	ns				
t _{JSZX}	Update register high-impedance to valid output		35	ns				
t _{JSXZ}	Update register valid output to high-impedance		35	ns				

For detailed information on JTAG operation in FLEX 8000 devices, refer to *Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices)*.

Generic Testing

Each FLEX 8000 device is functionally tested and specified by Altera. Complete testing of each configurable SRAM bit and all logic functionality ensures 100% configuration yield. AC test measurements for FLEX 8000 devices are made under conditions equivalent to those shown in Figure 15. Designers can use multiple test patterns to configure devices during all stages of the production flow.

Figure 15. FLEX 8000 AC Test Conditions

Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-groundcurrent transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Numbers in parentheses are for 3.3-V devices or outputs. Numbers without parentheses are for 5.0-V devices or outputs.

Operating Conditions

Tables 9 through 12 provide information on absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for 5.0-V FLEX 8000 devices.

Table 9. FLEX 8000 5.0-V Device Absolute Maximum Ratings Note (1)								
Symbol	Parameter	Conditions	Min	Max	Unit			
V _{CC}	Supply voltage	With respect to ground (2)	-2.0	7.0	V			
VI	DC input voltage		-2.0	7.0	V			
I _{OUT}	DC output current, per pin		-25	25	mA			
T _{STG}	Storage temperature	No bias	-65	150	°C			
T _{AMB}	Ambient temperature	Under bias	-65	135	°C			
Τ _J	Junction temperature	Ceramic packages, under bias		150	°C			
		PQFP and RQFP, under bias		135	°C			

FLEX 8000 Programmable Logic Device Family Data Sheet

Table 1	Table 15. FLEX 8000 3.3-V Device DC Operating Conditions Note (4)									
Symbol	Parameter	Conditions	Min	Тур	Max	Unit				
V _{IH}	High-level input voltage		2.0		V _{CC} + 0.3	V				
V _{IL}	Low-level input voltage		-0.3		0.8	V				
V _{OH}	High-level output voltage	I _{OH} = -0.1 mA DC <i>(</i> 5 <i>)</i>	$V_{CC} - 0.2$			V				
V _{OL}	Low-level output voltage	I _{OL} = 4 mA DC <i>(5)</i>			0.45	V				
I _I	Input leakage current	$V_1 = V_{CC}$ or ground	-10		10	μA				
I _{OZ}	Tri-state output off-state current	$V_{O} = V_{CC}$ or ground	-40		40	μA				
I _{CC0}	V _{CC} supply current (standby)	V_1 = ground, no load (6)		0.3	10	mA				

Table 1	6. FLEX 8000 3.3-V Device Cap	acitance Note (7)			
Symbol	Parameter	Conditions	Min	Max	Unit
C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		10	pF

Notes to tables:

(1) See the Operating Requirements for Altera Devices Data Sheet.

(2) Minimum DC input voltage is -0.3 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.3 V for input currents less than 100 mA and periods shorter than 20 ns.

(3) The maximum V_{CC} rise time is 100 ms. \overline{V}_{CC} must rise monotonically.

(4) These values are specified in Table 14 on page 29.

(5) The I_{OH} parameter refers to high-level TTL output current; the I_{OL} parameter refers to low-level TTL output current.

(6) Typical values are for $T_A = 25^\circ \text{ C}$ and $V_{CC} = 3.3 \text{ V}$.

(7) Capacitance is sample-tested only.

Figure 16 shows the typical output drive characteristics of 5.0-V FLEX 8000 devices. The output driver is compliant with *PCI Local Bus Specification, Revision* 2.2.

Figure 16. Output Drive Characteristics of 5.0-V FLEX 8000 Devices (Except EPF8282A)

Figure 17 shows the typical output drive characteristics of 5.0-V EPF8282A devices. The output driver is compliant with *PCI Local Bus Specification, Revision 2.2.*

Figure 18 shows the typical output drive characteristics of EPF8282AV devices.

FLEX 8000 Programmable Logic Device Family Data Sheet

Table 21. FLEX 8000 Timing Model Interconnect Paths						
Source	Destination	Total Delay				
LE-Out	LE in same LAB	t _{LOCAL}				
LE-Out	LE in same row, different LAB	$t_{ROW} + t_{LOCAL}$				
LE-Out	LE in different row	$t_{COL} + t_{ROW} + t_{LOCAL}$				
LE-Out	IOE on column	t _{COL}				
LE-Out	IOE on row	t _{ROW}				
IOE on row	LE in same row	$t_{ROW} + t_{LOCAL}$				
IOE on column	Any LE	$t_{COL} + t_{ROW} + t_{LOCAL}$				

Tables 22 through 49 show the FLEX 8000 internal and external timing parameters.

Table 22. EPF8282A Internal I/O Element Timing Parameters									
Symbol			Speed	l Grade			Unit		
	A	-2	A	-3	ļ	-4			
	Min	Max	Min	Max	Min	Мах			
t _{IOD}		0.7		0.8		0.9	ns		
t _{IOC}		1.7		1.8		1.9	ns		
t _{IOE}		1.7		1.8		1.9	ns		
t _{IOCO}		1.0		1.0		1.0	ns		
t _{IOCOMB}		0.3		0.2		0.1	ns		
t _{IOSU}	1.4		1.6		1.8		ns		
t _{IOH}	0.0		0.0		0.0		ns		
t _{IOCLR}		1.2		1.2		1.2	ns		
t _{IN}		1.5		1.6		1.7	ns		
t _{OD1}		1.1		1.4		1.7	ns		
t _{OD2}		-		-		-	ns		
t _{OD3}		4.6		4.9		5.2	ns		
t _{XZ}		1.4		1.6		1.8	ns		
t _{ZX1}		1.4		1.6		1.8	ns		
t _{ZX2}		-		-		-	ns		
t _{ZX3}		4.9		5.1		5.3	ns		

Table 32. EPF8452A LE Timing Parameters								
Symbol	Speed Grade							
	A	-2	A	-3	A	-4		
	Min	Max	Min	Max	Min	Max		
t _{LUT}		2.0		2.3		3.0	ns	
t _{CLUT}		0.0		0.2		0.1	ns	
t _{RLUT}		0.9		1.6		1.6	ns	
t _{GATE}		0.0		0.0		0.0	ns	
t _{CASC}		0.6		0.7		0.9	ns	
t _{CICO}		0.4		0.5		0.6	ns	
t _{CGEN}		0.4		0.9		0.8	ns	
t _{CGENR}		0.9		1.4		1.5	ns	
t _C		1.6		1.8		2.4	ns	
t _{CH}	4.0		4.0		4.0		ns	
t _{CL}	4.0		4.0		4.0		ns	
t _{CO}		0.4		0.5		0.6	ns	
t _{COMB}		0.4		0.5		0.6	ns	
t _{SU}	0.8		1.0		1.1		ns	
t _H	0.9		1.1		1.4		ns	
t _{PRE}		0.6		0.7		0.8	ns	
t _{CLR}		0.6		0.7		0.8	ns	

Table 33. EPF8452A External Timing Parameters

Symbol	Speed Grade						Unit
	A-2		A-3		A-4		
	Min	Max	Min	Max	Min	Max	
t _{DRR}		16.0		20.0		25.0	ns
t _{ODH}	1.0		1.0		1.0		ns

Symbol			Speed	l Grade			Unit
	A	-2	A	-3	A	-4	
	Min	Max	Min	Max	Min	Мах	
t _{IOD}		0.7		0.8		0.9	ns
t _{IOC}		1.7		1.8		1.9	ns
t _{IOE}		1.7		1.8		1.9	ns
t _{IOCO}		1.0		1.0		1.0	ns
t _{IOCOMB}		0.3		0.2		0.1	ns
t _{IOSU}	1.4		1.6		1.8		ns
t _{IOH}	0.0		0.0		0.0		ns
t _{IOCLR}		1.2		1.2		1.2	ns
t _{IN}		1.5		1.6		1.7	ns
t _{OD1}		1.1		1.4		1.7	ns
t _{OD2}		1.6		1.9		2.2	ns
t _{OD3}		4.6		4.9		5.2	ns
t _{XZ}		1.4		1.6		1.8	ns
t _{ZX1}		1.4		1.6		1.8	ns
t _{ZX2}		1.9		2.1		2.3	ns
t _{ZX3}		4.9		5.1		5.3	ns

Table 39. EPF8820A Interconnect Timing Parameters									
Symbol			Speed	l Grade			Unit		
	A	A-2		A-3		A-4			
	Min	Max	Min	Max	Min	Max			
t _{LABCASC}		0.3		0.3		0.4	ns		
t _{LABCARRY}		0.3		0.3		0.4	ns		
t _{LOCAL}		0.5		0.6		0.8	ns		
t _{ROW}		5.0		5.0		5.0	ns		
t _{COL}		3.0		3.0		3.0	ns		
t _{DIN_C}		5.0		5.0		5.5	ns		
t _{DIN_D}		7.0		7.0		7.5	ns		
t _{DIN 10}		5.0		5.0		5.5	ns		

Γ

٦

Operating Modes

The FLEX 8000 architecture uses SRAM elements that require configuration data to be loaded whenever the device powers up and begins operation. The process of physically loading the SRAM programming data into the device is called *configuration*. During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. The I/O pins are tri-stated during power-up, and before and during configuration. The configuration and initialization processes together are called *command mode*; normal device operation is called *user mode*.

SRAM elements allow FLEX 8000 devices to be reconfigured in-circuit with new programming data that is loaded into the device. Real-time reconfiguration is performed by forcing the device into command mode with a device pin, loading different programming data, reinitializing the device, and resuming user-mode operation. The entire reconfiguration process requires less than 100 ms and can be used to dynamically reconfigure an entire system. In-field upgrades can be performed by distributing new configuration files.

Configuration Schemes

The configuration data for a FLEX 8000 device can be loaded with one of six configuration schemes, chosen on the basis of the target application. Both active and passive schemes are available. In the active configuration schemes, the FLEX 8000 device functions as the controller, directing the loading operation, controlling external configuration devices, and completing the loading process. The clock source for all active configuration schemes is an oscillator on the FLEX 8000 device that operates between 2 MHz and 6 MHz. In the passive configuration schemes, an external controller guides the FLEX 8000 device. Table 51 shows the data source for each of the six configuration schemes.

Table 51. Data Source for Configuration							
Configuration Scheme	Acronym	Data Source					
Active serial	AS	Altera configuration device					
Active parallel up	APU	Parallel configuration device					
Active parallel down	APD	Parallel configuration device					
Passive serial	PS	Serial data path					
Passive parallel synchronous	PPS	Intelligent host					
Passive parallel asynchronous	PPA	Intelligent host					

Device Pin-Outs

Tables 52 through 54 show the pin names and numbers for the dedicated pins in each FLEX 8000 device package.

Table 52. FLEX 8000 84-, 100-, 144- & 160-Pin Package Pin-Outs (Part 1 of 3)							
Pin Name	84-Pin PLCC EPF8282A	84-Pin PLCC EPF8452A EPF8636A	100-Pin TQFP EPF8282A EPF8282AV	100-Pin TQFP EPF8452A	144-Pin TQFP EPF8820A	160-Pin PGA EPF8452A	160-Pin PQFP EPF8820A (1)
nSP <i>(</i> 2 <i>)</i>	75	75	75	76	110	R1	1
MSELO (2)	74	74	74	75	109	P2	2
MSEL1 (2)	53	53	51	51	72	A1	44
nSTATUS (2)	32	32	24	25	37	C13	82
nCONFIG (2)	33	33	25	26	38	A15	81
DCLK (2)	10	10	100	100	143	P14	125
CONF_DONE (2)	11	11	1	1	144	N13	124
nWS	30	30	22	23	33	F13	87
nRS	48	48	42	45	31	C6	89
RDCLK	49	49	45	46	12	B5	110
nCS	29	29	21	22	4	D15	118
CS	28	28	19	21	3	E15	121
RDYnBUSY	77	77	77	78	20	P3	100
CLKUSR	50	50	47	47	13	C5	107
ADD17	51	51	49	48	75	B4	40
ADD16	36	55	28	54	76	E2	39
ADD15	56	56	55	55	77	D1	38
ADD14	57	57	57	57	78	E1	37
ADD13	58	58	58	58	79	F3	36
ADD12	60	60	59	60	83	F2	32
ADD11	61	61	60	61	85	F1	30
ADD10	62	62	61	62	87	G2	28
ADD9	63	63	62	64	89	G1	26
ADD8	64	64	64	65	92	H1	22
ADD7	65	65	65	66	94	H2	20
ADD6	66	66	66	67	95	J1	18
ADD5	67	67	67	68	97	J2	16
ADD4	69	69	68	70	102	K2	11
ADD3	70	70	69	71	103	K1	10
ADD2	71	71	71	72	104	K3	8
ADD1	76	72	76	73	105	M1	7

Table 53. FLEX 8000 160-, 192- & 208-Pin Package Pin-Outs (Part 1 of 2)						
Pin Name	160-Pin PQFP EPF8452A	160-Pin PQFP EPF8636A	192-Pin PGA EPF8636A EPF8820A	208-Pin PQFP EPF8636A (1)	208-Pin PQFP EPF8820A (1)	208-Pin PQFP EPF81188A <i>(1)</i>
nSP (2)	120	1	R15	207	207	5
MSELO (2)	117	3	T15	4	4	21
MSEL1 (2)	84	38	Т3	49	49	33
nSTATUS (2)	37	83	B3	108	108	124
nCONFIG (2)	40	81	C3	103	103	107
DCLK (2)	1	120	C15	158	158	154
CONF_DONE (2)	4	118	B15	153	153	138
n₩S	30	89	C5	114	114	118
nRS	71	50	B5	66	116	121
RDCLK	73	48	C11	64	137	137
nCS	29	91	B13	116	145	142
CS	27	93	A16	118	148	144
RDYnBUSY	125	155	A8	201	127	128
CLKUSR	76	44	A10	59	134	134
ADD17	78	43	R5	57	43	46
ADD16	91	33	U3	43	42	45
ADD15	92	31	Т5	41	41	44
ADD14	94	29	U4	39	40	39
ADD13	95	27	R6	37	39	37
ADD12	96	24	Т6	31	35	36
ADD11	97	23	R7	30	33	31
ADD10	98	22	Т7	29	31	30
ADD9	99	21	Т8	28	29	29
ADD8	101	20	U9	24	25	26
ADD7	102	19	U10	23	23	25
ADD6	103	18	U11	22	21	24
ADD5	104	17	U12	21	19	18
ADD4	105	13	R12	14	14	17
ADD3	106	11	U14	12	13	16
ADD2	109	9	U15	10	11	10
ADD1	110	7	R13	8	10	9
ADD0	123	157	U16	203	9	8
DATA7	144	137	H17	178	178	177
DATA6	150	132	G17	172	176	175
DATA5	152	129	F17	169	174	172

Altera Corporation

Table 53. FLEX 8000 160-, 192- & 208-Pin Package Pin-Outs (Part 2 of 2)						
Pin Name	160-Pin PQFP EPE8452A	160-Pin PQFP EPE8636A	192-Pin PGA EPF8636A EPE8820A	208-Pin PQFP EPE8636A (1)	208-Pin PQFP EPE8820A (1)	208-Pin PQFP EPE81188A (1)
	LFT04JZA	LFT 0030A		LFT 0030A (7)	LF10020A (1)	
DATA4	154	127	E17	165	172	170
DATA3	157	124	G15	162	1/1	168
DATA2	159	122	F15	160	167	166
DATA1	11	115	E16	149	165	163
DATA0	12	113	C16	147	162	161
SDOUT (3)	128	152	C7 (11)	198	124	119
TDI (4)	-	55	R11	72	20	-
TDO <i>(4)</i>	_	95	B9	120	129	_
TCK (4), (6)	_	57	U8	74	30	_
TMS (4)	-	59	U7	76	32	-
TRST (7)	-	40	R3	54	54	-
Dedicated Inputs (10)	5, 36, 85, 116	6, 35, 87, 116	A5, U5, U13, A13	7, 45, 112, 150	17, 36, 121, 140	13, 41, 116, 146
VCCINT (5.0 V)	21, 41, 53, 67, 80, 81, 100, 121, 133, 147, 160	4, 5, 26, 85, 106	C8, C9, C10, R8, R9, R10, R14	5, 6, 33, 110, 137	5, 6, 27, 48, 119, 141	4, 20, 35, 48, 50, 102, 114, 131, 147
VCCIO (5.0 V or 3.3 V)	_	25, 41, 60, 70, 80, 107, 121, 140, 149, 160	D3, D4, D9, D14, D15, G4, G14, L4, L14, P4, P9, P14	32, 55, 78, 91, 102, 138, 159, 182, 193, 206	26, 55, 69, 87, 102, 131, 159, 173, 191, 206	3, 19, 34, 49, 69, 87, 106, 123, 140, 156, 174, 192
GND	13, 14, 28, 46, 60, 75, 93, 107, 108, 126, 140, 155	15, 16, 36, 37, 45, 51, 75, 84, 86, 96, 97, 117, 126, 131, 154	C4, D7, D8, D10, D11, H4, H14, K4, K14, P7, P8, P10, P11	19, 20, 46, 47, 60, 67, 96, 109, 111, 124, 125, 151, 164, 171, 200	15, 16, 37, 38, 60, 78, 96, 109, 110, 120, 130, 142, 152, 164, 182, 200	11, 12, 27, 28, 42, 43, 60, 78, 96, 105, 115, 122, 132, 139, 148, 155, 159, 165, 183, 201
No Connect (N.C.)	2, 3, 38, 39, 70, 82, 83, 118, 119, 148	2, 39, 82, 119	C6, C12, C13, C14, E3, E15, F3, J3, J4, J14, J15, N3, N15, P3, P15, R4 <i>(12)</i>	$\begin{array}{c} 1, 2, 3, 16, 17, \\ 18, 25, 26, 27, \\ 34, 35, 36, 50, \\ 51, 52, 53, \\ 104, 105, 106, \\ 107, 121, 122, \\ 123, 130, 131, \\ 132, 139, 140, \\ 141, 154, 155, \\ 156, 157, 208 \end{array}$	1, 2, 3, 50, 51, 52, 53, 104, 105, 106, 107, 154, 155, 156, 157, 208	1, 2, 51, 52, 53, 54, 103, 104, 157, 158, 207, 208
Total User I/O Pins (9)	116	114	132, 148 (13)	132	148	144