

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	42
Number of Logic Elements/Cells	336
Total RAM Bits	-
Number of I/O	78
Number of Gates	-
Voltage - Supply	4.75V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=epf8452atc100-3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FLEX 8000 devices provide a large number of storage elements for applications such as digital signal processing (DSP), wide-data-path manipulation, and data transformation. These devices are an excellent choice for bus interfaces, TTL integration, coprocessor functions, and high-speed controllers. The high-pin-count packages can integrate multiple 32-bit buses into a single device. Table 3 shows FLEX 8000 performance and LE requirements for typical applications.

Table 3. FLEX 8000 Performance								
Application	LEs Used		Units					
		A-2	A-3	A-4				
16-bit loadable counter	16	125	95	83	MHz			
16-bit up/down counter	16	125	95	83	MHz			
24-bit accumulator	24	87	67	58	MHz			
16-bit address decode	4	4.2	4.9	6.3	ns			
16-to-1 multiplexer	10	6.6	7.9	9.5	ns			

All FLEX 8000 device packages provide four dedicated inputs for synchronous control signals with large fan-outs. Each I/O pin has an associated register on the periphery of the device. As outputs, these registers provide fast clock-to-output times; as inputs, they offer quick setup times.

The logic and interconnections in the FLEX 8000 architecture are configured with CMOS SRAM elements. FLEX 8000 devices are configured at system power-up with data stored in an industry-standard parallel EPROM or an Altera serial configuration devices, or with data provided by a system controller. Altera offers the EPC1, EPC1213, EPC1064, and EPC1441 configuration devices, which configure FLEX 8000 devices via a serial data stream. Configuration data can also be stored in an industry-standard 32 K \times 8 bit or larger configuration device, or downloaded from system RAM. After a FLEX 8000 device has been configured, it can be reconfigured in-circuit by resetting the device and loading new data. Because reconfiguration requires less than 100 ms, real-time changes can be made during system operation. For information on how to configure FLEX 8000 devices, go to the following documents:

- Configuration Devices for APEX & FLEX Devices Data Sheet
- BitBlaster Serial Download Cable Data Sheet
- ByteBlasterMV Parallel Port Download Cable Data Sheet
- Application Note 33 (Configuring FLEX 8000 Devices)
- Application Note 38 (Configuring Multiple FLEX 8000 Devices)

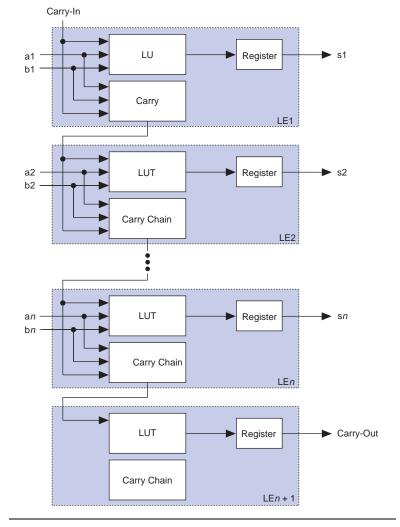


Figure 4. FLEX 8000 Carry Chain Operation

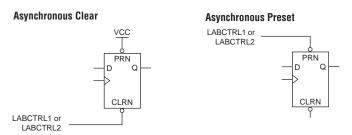
Cascade Chain

With the cascade chain, the FLEX 8000 architecture can implement functions that have a very wide fan-in. Adjacent LUTs can be used to compute portions of the function in parallel; the cascade chain serially connects the intermediate values. The cascade chain can use a logical AND or logical OR (via De Morgan's inversion) to connect the outputs of adjacent LEs. Each additional LE provides four more inputs to the effective width of a function, with a delay as low as 0.6 ns per LE.

Internal Tri-State Emulation

Internal tri-state emulation provides internal tri-stating without the limitations of a physical tri-state bus. In a physical tri-state bus, the tri-state buffers' output enable signals select the signal that drives the bus. However, if multiple output enable signals are active, contending signals can be driven onto the bus. Conversely, if no output enable signals are active, the bus will float. Internal tri-state emulation resolves contending tri-state buffers to a low value and floating buses to a high value, thereby eliminating these problems. The MAX+PLUS II software automatically implements tri-state bus functionality with a multiplexer.

Clear & Preset Logic Control

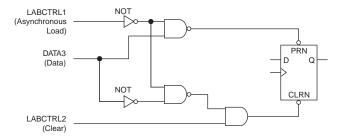

Logic for the programmable register's clear and preset functions is controlled by the DATA3, LABCTRL1, and LABCTRL2 inputs to the LE. The clear and preset control structure of the LE is used to asynchronously load signals into a register. The register can be set up so that LABCTRL1 implements an asynchronous load. The data to be loaded is driven to DATA3; when LABCTRL1 is asserted, DATA3 is loaded into the register.

During compilation, the MAX+PLUS II Compiler automatically selects the best control signal implementation. Because the clear and preset functions are active-low, the Compiler automatically assigns a logic high to an unused clear or preset.

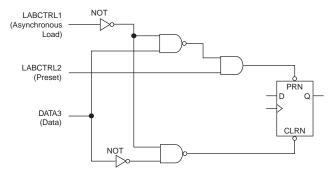
The clear and preset logic is implemented in one of the following six asynchronous modes, which are chosen during design entry. LPM functions that use registers will automatically use the correct asynchronous mode. See Figure 7.

- Clear only
- Preset only
- Clear and preset
- Load with clear
- Load with preset
- Load without clear or preset

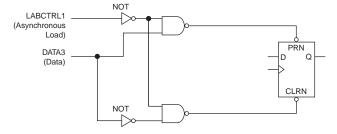
Figure 7. FLEX 8000 LE Asynchronous Clear & Preset Modes



Asynchronous Clear & Preset LABCTRL1 PRN D Q PRN Q


LABCTRL2

CLRN


Asynchronous Load with Clear

Asynchronous Load with Preset

Asynchronous Load without Clear or Preset

FastTrack Interconnect

In the FLEX 8000 architecture, connections between LEs and device I/O pins are provided by the FastTrack Interconnect, a series of continuous horizontal (row) and vertical (column) routing channels that traverse the entire FLEX 8000 device. This device-wide routing structure provides predictable performance even in complex designs. In contrast, the segmented routing structure in FPGAs requires switch matrices to connect a variable number of routing paths, which increases the delays between logic resources and reduces performance.

The LABs within FLEX 8000 devices are arranged into a matrix of columns and rows. Each row of LABs has a dedicated row interconnect that routes signals both into and out of the LABs in the row. The row interconnect can then drive I/O pins or feed other LABs in the device. Figure 8 shows how an LE drives the row and column interconnect.

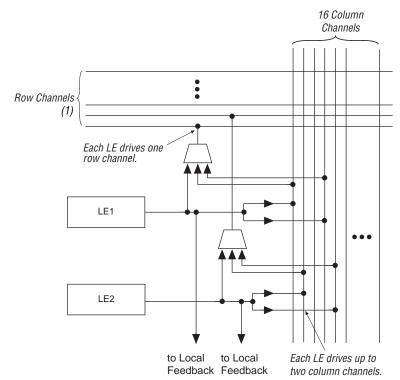


Figure 8. FLEX 8000 LAB Connections to Row & Column Interconnect

Note:

(1) See Table 4 for the number of row channels.

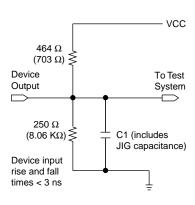
Table 5 lists the source of the peripheral control signal for each FLEX 8000 device by row.

Peripheral Control Signal	EPF8282A EPF8282AV	EPF8452A	EPF8636A	EPF8820A	EPF81188A	EPF81500A
CLK0	Row A	Row A	Row A	Row A	Row E	Row E
CLK1/OE1	Row B	Row B	Row C	Row C	Row B	Row B
CLR0	Row A	Row A	Row B	Row B	Row F	Row F
CLR1/OE0	Row B	Row B	Row C	Row D	Row C	Row C
OE2	Row A	Row A	Row A	Row A	Row D	Row A
OE3	Row B	Row B	Row B	Row B	Row A	Row A
OE4	_	_	-	_	-	Row B
OE5	_	_	-	_	-	Row C
OE6	-	-	-	-	-	Row D
OE7	-	-	-	-	-	Row D
OE8	-	-	-	-	-	Row E
OE9	_	_	_	_	-	Row F

Output Configuration

This section discusses slew-rate control and MultiVolt I/O interface operation for FLEX 8000 devices.

Slew-Rate Control


The output buffer in each IOE has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A slow slew rate reduces system noise by slowing signal transitions, adding a maximum delay of 3.5 ns. The slow slew-rate setting affects only the falling edge of a signal. The fast slew rate should be used for speed-critical outputs in systems that are adequately protected against noise. Designers can specify the slew rate on a pin-by-pin basis during design entry or assign a default slew rate to all pins on a global basis.

For more information on high-speed system design, go to *Application Note 75 (High-Speed Board Designs)*.

Figure 15. FLEX 8000 AC Test Conditions

Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-groundcurrent transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Numbers in parentheses are for 3.3-V devices or outputs. Numbers without parentheses are for 5.0-V devices or outputs.

Operating Conditions

Tables 9 through 12 provide information on absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for 5.0-V FLEX 8000 devices.

Table 9	Table 9. FLEX 8000 5.0-V Device Absolute Maximum Ratings Note (1)									
Symbol	Parameter	Conditions	Min	Max	Unit					
V _{CC}	Supply voltage	With respect to ground (2)	-2.0	7.0	V					
V _I	DC input voltage		-2.0	7.0	V					
I _{OUT}	DC output current, per pin		-25	25	mA					
T _{STG}	Storage temperature	No bias	- 65	150	° C					
T_{AMB}	Ambient temperature	Under bias	- 65	135	° C					
T _J	Junction temperature	Ceramic packages, under bias		150	° C					
		PQFP and RQFP, under bias		135	° C					

Table 1	Table 15. FLEX 8000 3.3-V Device DC Operating Conditions Note (4)									
Symbol	Parameter	Conditions	Min	Тур	Max	Unit				
V _{IH}	High-level input voltage		2.0		V _{CC} + 0.3	V				
V_{IL}	Low-level input voltage		-0.3		0.8	V				
V_{OH}	High-level output voltage	$I_{OH} = -0.1 \text{ mA DC } (5)$	V _{CC} - 0.2			V				
V_{OL}	Low-level output voltage	I _{OL} = 4 mA DC (5)			0.45	V				
I _I	Input leakage current	$V_I = V_{CC}$ or ground	-10		10	μΑ				
I_{OZ}	Tri-state output off-state current	$V_O = V_{CC}$ or ground	-40		40	μΑ				
I _{CC0}	V _{CC} supply current (standby)	V _I = ground, no load (6)		0.3	10	mA				

Table 16. FLEX 8000 3.3-V Device CapacitanceNote (7)							
Symbol	Parameter	Conditions	Min	Max	Unit		
C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF		
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		10	pF		

Notes to tables:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input voltage is –0.3 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to 5.3 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) The maximum V_{CC} rise time is 100 ms. V_{CC} must rise monotonically.
- (4) These values are specified in Table 14 on page 29.
- (5) The I_{OH} parameter refers to high-level TTL output current; the I_{OL} parameter refers to low-level TTL output current.
- (6) Typical values are for $T_A = 25^{\circ}$ C and $V_{CC} = 3.3$ V.
- (7) Capacitance is sample-tested only.

Figure 16 shows the typical output drive characteristics of 5.0-V FLEX 8000 devices. The output driver is compliant with *PCI Local Bus Specification, Revision 2.2*.

Table 19. FLEX 8000 Interconnect Timing Parameters Note (1)					
Symbol	Parameter				
t _{LABCASC}	Cascade delay between LEs in different LABs				
t _{LABCARRY}	Carry delay between LEs in different LABs				
t _{LOCAL}	LAB local interconnect delay				
t _{ROW}	Row interconnect routing delay (4)				
t _{COL}	Column interconnect routing delay				
t _{DIN_C}	Dedicated input to LE control delay				
t _{DIN_D}	Dedicated input to LE data delay (4)				
t _{DIN_IO}	Dedicated input to IOE control delay				

Table 20. FLEX 8000 External Reference Timing Characteristics Note (5)					
Symbol	Parameter				
t _{DRR}	Register-to-register delay via 4 LEs, 3 row interconnects, and 4 local interconnects (6)				
t _{ODH}	Output data hold time after clock (7)				

Notes to tables:

- (1) Internal timing parameters cannot be measured explicitly. They are worst-case delays based on testable and external parameters specified by Altera. Internal timing parameters should be used for estimating device performance. Post-compilation timing simulation or timing analysis is required to determine actual worst-case performance.
- (2) These values are specified in Table 10 on page 28 or Table 14 on page 29.
- (3) For the t_{OD3} and t_{ZX3} parameters, $V_{CCIO} = 3.3 \text{ V or } 5.0 \text{ V}$.
- (4) The t_{ROW} and t_{DIN_D} delays are worst-case values for typical applications. Post-compilation timing simulation or timing analysis is required to determine actual worst-case performance.
- (5) External reference timing characteristics are factory-tested, worst-case values specified by Altera. A representative subset of signal paths is tested to approximate typical device applications.
- (6) For more information on test conditions, see *Application Note 76* (*Understanding FLEX 8000 Timing*).
- (7) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies to global and non-global clocking, and for LE and I/O element registers.

The FLEX 8000 timing model shows the delays for various paths and functions in the circuit. See Figure 19. This model contains three distinct parts: the LE; the IOE; and the interconnect, including the row and column FastTrack Interconnect, LAB local interconnect, and carry and cascade interconnect paths. Each parameter shown in Figure 19 is expressed as a worst-case value in Tables 22 through 49. Hand-calculations that use the FLEX 8000 timing model and these timing parameters can be used to estimate FLEX 8000 device performance. Timing simulation or timing analysis after compilation is required to determine the final worst-case performance. Table 21 summarizes the interconnect paths shown in Figure 19.

For more information on timing parameters, go to *Application Note 76* (*Understanding FLEX 8000 Timing*).

Symbol			Speed	Grade			Unit
	А	-2	А	-3	А	-4	1
	Min	Max	Min	Max	Min	Max	1
t _{LABCASC}		0.3		0.3		0.4	ns
t _{LABCARRY}		0.3		0.3		0.4	ns
t _{LOCAL}		0.5		0.6		0.8	ns
t _{ROW}		4.2		4.2		4.2	ns
t_{COL}		2.5		2.5		2.5	ns
t _{DIN_C}		5.0		5.0		5.5	ns
t _{DIN_D}		7.2		7.2		7.2	ns
t _{DIN_IO}		5.0		5.0		5.5	ns

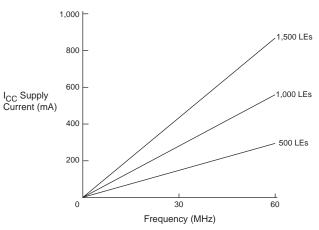

Table 28. EPF8282AV Logic Element Timing Parameters							
Symbol		Unit					
	A-3		A	-4			
	Min	Max	Min	Max	•		
t_{LUT}		3.2		7.3	ns		
t _{CLUT}		0.0		1.4	ns		
t _{RLUT}		1.5		5.1	ns		
t _{GATE}		0.0		0.0	ns		
t _{CASC}		0.9		2.8	ns		
t _{CICO}		0.6		1.5	ns		
t _{CGEN}		0.7		2.2	ns		
t _{CGENR}		1.5		3.7	ns		
$t_{\rm C}$		2.5		4.7	ns		
t _{CH}	4.0		6.0		ns		
t_{CL}	4.0		6.0		ns		
t_{CO}		0.6		0.9	ns		
t _{COMB}		0.6		0.9	ns		
t _{SU}	1.2		2.4		ns		
t_H	1.5		4.6		ns		
t _{PRE}		0.8		1.3	ns		
t _{CLR}		0.8		1.3	ns		

Table 29. EPF8282AV External Timing Parameters								
Symbol		Speed Grade U						
	-	A-3	А					
	Min	Max	Min	Max				
t _{DRR}		24.8		50.1	ns			
t _{ODH}	1.0		1.0		ns			

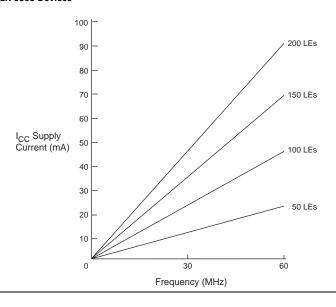

Table 40. EPF8820A LE Timing Parameters								
Symbol	Speed Grade							
	А	-2	A	-3	A	1-4		
	Min	Max	Min	Max	Min	Max		
t_{LUT}		2.0		2.5		3.2	ns	
t _{CLUT}		0.0		0.0		0.0	ns	
t _{RLUT}		0.9		1.1		1.5	ns	
t_{GATE}		0.0		0.0		0.0	ns	
t _{CASC}		0.6		0.7		0.9	ns	
t _{CICO}		0.4		0.5		0.6	ns	
t _{CGEN}		0.4		0.5		0.7	ns	
t _{CGENR}		0.9		1.1		1.5	ns	
t_C		1.6		2.0		2.5	ns	
t _{CH}	4.0		4.0		4.0		ns	
t _{CL}	4.0		4.0		4.0		ns	
t_{CO}		0.4		0.5		0.6	ns	
t _{COMB}		0.4		0.5		0.6	ns	
t _{SU}	0.8		1.1		1.2		ns	
t _H	0.9		1.1		1.5		ns	
t _{PRE}		0.6		0.7		0.8	ns	
t _{CLR}		0.6		0.7		0.8	ns	

Table 41. EPF882	?OA External T	iming Parame	ters				
Symbol	Speed Grade						
	А	A-2		A-3		A-4	
	Min	Max	Min	Max	Min	Max	
t _{DRR}		16.0		20.0		25.0	ns
t _{ODH}	1.0		1.0		1.0		ns

Figure 20. FLEX 8000 I_{CCACTIVE} vs. Operating Frequency 5.0-V FLEX 8000 Devices

3.3-V FLEX 8000 Devices

Configuration & Operation

The FLEX 8000 architecture supports several configuration schemes to load a design into the device(s) on the circuit board. This section summarizes the device operating modes and available device configuration schemes.

For more information, go to *Application Note 33 (Configuring FLEX 8000 Devices)* and *Application Note 38 (Configuring Multiple FLEX 8000 Devices)*.

Operating Modes

The FLEX 8000 architecture uses SRAM elements that require configuration data to be loaded whenever the device powers up and begins operation. The process of physically loading the SRAM programming data into the device is called *configuration*. During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. The I/O pins are tri-stated during power-up, and before and during configuration. The configuration and initialization processes together are called *command mode*; normal device operation is called *user mode*.

SRAM elements allow FLEX 8000 devices to be reconfigured in-circuit with new programming data that is loaded into the device. Real-time reconfiguration is performed by forcing the device into command mode with a device pin, loading different programming data, reinitializing the device, and resuming user-mode operation. The entire reconfiguration process requires less than 100 ms and can be used to dynamically reconfigure an entire system. In-field upgrades can be performed by distributing new configuration files.

Configuration Schemes

The configuration data for a FLEX 8000 device can be loaded with one of six configuration schemes, chosen on the basis of the target application. Both active and passive schemes are available. In the active configuration schemes, the FLEX 8000 device functions as the controller, directing the loading operation, controlling external configuration devices, and completing the loading process. The clock source for all active configuration schemes is an oscillator on the FLEX 8000 device that operates between 2 MHz and 6 MHz. In the passive configuration schemes, an external controller guides the FLEX 8000 device. Table 51 shows the data source for each of the six configuration schemes.

Table 51. Data Source for Configuration							
Configuration Scheme	Acronym	Data Source					
Active serial	AS	Altera configuration device					
Active parallel up	APU	Parallel configuration device					
Active parallel down	APD	Parallel configuration device					
Passive serial	PS	Serial data path					
Passive parallel synchronous	PPS	Intelligent host					
Passive parallel asynchronous	PPA	Intelligent host					

Device Pin-Outs

Tables 52 through 54 show the pin names and numbers for the dedicated pins in each FLEX 8000 device package.

Table 52. FLEX	8000 84-, 100	I-, 144- & 16l	J-PIN Package	Pin-Uuts (P	art 1 of 3)		
Pin Name	84-Pin PLCC EPF8282A	84-Pin PLCC EPF8452A EPF8636A	100-Pin TQFP EPF8282A EPF8282AV	100-Pin TQFP EPF8452A	144-Pin TQFP EPF8820A	160-Pin PGA EPF8452A	160-Pin PQFP EPF8820A (1)
nSP (2)	75	75	75	76	110	R1	1
MSEL0 (2)	74	74	74	75	109	P2	2
MSEL1 (2)	53	53	51	51	72	A1	44
nSTATUS (2)	32	32	24	25	37	C13	82
nCONFIG (2)	33	33	25	26	38	A15	81
DCLK (2)	10	10	100	100	143	P14	125
CONF_DONE (2)	11	11	1	1	144	N13	124
nWS	30	30	22	23	33	F13	87
nRS	48	48	42	45	31	C6	89
RDCLK	49	49	45	46	12	B5	110
nCS	29	29	21	22	4	D15	118
CS	28	28	19	21	3	E15	121
RDYnBUSY	77	77	77	78	20	P3	100
CLKUSR	50	50	47	47	13	C5	107
ADD17	51	51	49	48	75	B4	40
ADD16	36	55	28	54	76	E2	39
ADD15	56	56	55	55	77	D1	38
ADD14	57	57	57	57	78	E1	37
ADD13	58	58	58	58	79	F3	36
ADD12	60	60	59	60	83	F2	32
ADD11	61	61	60	61	85	F1	30
ADD10	62	62	61	62	87	G2	28
ADD9	63	63	62	64	89	G1	26
ADD8	64	64	64	65	92	H1	22
ADD7	65	65	65	66	94	H2	20
ADD6	66	66	66	67	95	J1	18
ADD5	67	67	67	68	97	J2	16
ADD4	69	69	68	70	102	K2	11
ADD3	70	70	69	71	103	K1	10
ADD2	71	71	71	72	104	K3	8
ADD1	76	72	76	73	105	M1	7

Pin Name	84-Pin	84-Pin	100-Pin	100-Pin	144-Pin	160-Pin	160-Pin
	PLCC EPF8282A	PLCC EPF8452A EPF8636A	TQFP EPF8282A EPF8282AV	TQFP EPF8452A	TQFP EPF8820A	PGA EPF8452A	PQFP EPF8820A (1)
ADD0	78	76	78	77	106	N3	6
DATA7	3	2	90	89	131	P8	140
DATA6	4	4	91	91	132	P10	139
DATA5	6	6	92	95	133	R12	138
DATA4	7	7	95	96	134	R13	136
DATA3	8	8	97	97	135	P13	135
DATA2	9	9	99	98	137	R14	133
DATA1	13	13	4	4	138	N15	132
DATA0	14	14	5	5	140	K13	129
SDOUT (3)	79	78	79	79	23	P4	97
TDI (4)	55	45 (5)	54	_	96	_	17
TDO (4)	27	27 (5)	18	_	18	_	102
TCK (4), (6)	72	44 (5)	72	_	88	_	27
TMS (4)	20	43 (5)	11	_	86	_	29
TRST (7)	52	52 (8)	50	_	71	_	45
Dedicated	12, 31, 54,	12, 31, 54,	3, 23, 53, 73	3, 24, 53,	9, 26, 82,	C3, D14,	14, 33, 94,
Inputs (10)	73	73		74	99	N2, R15	113
VCCINT	17, 38, 59, 80	17, 38, 59, 80	6, 20, 37, 56, 70, 87	9, 32, 49, 59, 82	8, 28, 70, 90, 111	B2, C4, D3, D8, D12, G3, G12, H4, H13, J3, J12, M4, M7, M9, M13, N12	3, 24, 46, 92, 114, 160
VCCIO	-	_	_	_	16, 40, 60, 69, 91, 112, 122, 141	_	23, 47, 57, 69, 79, 104, 127, 137, 149, 159

Pin Name	160-Pin PQFP EPF8452A	160-Pin PQFP EPF8636A	192-Pin PGA EPF8636A EPF8820A	208-Pin PQFP EPF8636A (1)	208-Pin PQFP EPF8820A (1)	208-Pin PQFP EPF81188A (1)
DATA4	154	127	E17	165	172	170
DATA3	157	124	G15	162	171	168
DATA2	159	122	F15	160	167	166
DATA1	11	115	E16	149	165	163
DATA0	12	113	C16	147	162	161
SDOUT (3)	128	152	C7 (11)	198	124	119
TDI (4)	_	55	R11	72	20	_
TDO (4)	_	95	B9	120	129	_
TCK (4), (6)	_	57	U8	74	30	_
TMS (4)	_	59	U7	76	32	_
TRST (7)	-	40	R3	54	54	-
Dedicated Inputs (10)	5, 36, 85, 116	6, 35, 87, 116	A5, U5, U13, A13	7, 45, 112, 150	17, 36, 121, 140	13, 41, 116, 146
VCCINT (5.0 V)	21, 41, 53, 67, 80, 81, 100, 121, 133, 147, 160	4, 5, 26, 85, 106	C8, C9, C10, R8, R9, R10, R14	5, 6, 33, 110, 137	5, 6, 27, 48, 119, 141	4, 20, 35, 48, 50, 102, 114, 131, 147
VCCIO (5.0 V or 3.3 V)	_	25, 41, 60, 70, 80, 107, 121, 140, 149, 160	D3, D4, D9, D14, D15, G4, G14, L4, L14, P4, P9, P14	32, 55, 78, 91, 102, 138, 159, 182, 193, 206	26, 55, 69, 87, 102, 131, 159, 173, 191, 206	3, 19, 34, 49, 69, 87, 106, 123, 140, 156, 174, 192
GND	13, 14, 28, 46, 60, 75, 93, 107, 108, 126, 140, 155	15, 16, 36, 37, 45, 51, 75, 84, 86, 96, 97, 117, 126, 131, 154	C4, D7, D8, D10, D11, H4, H14, K4, K14, P7, P8, P10, P11	19, 20, 46, 47, 60, 67, 96, 109, 111, 124, 125, 151, 164, 171, 200	15, 16, 37, 38, 60, 78, 96, 109, 110, 120, 130, 142, 152, 164, 182, 200	11, 12, 27, 28, 42, 43, 60, 78, 96, 105, 115, 122, 132, 139, 148, 155, 159, 165, 183, 201
No Connect (N.C.)	2, 3, 38, 39, 70, 82, 83, 118, 119, 148	2, 39, 82, 119	C6, C12, C13, C14, E3, E15, F3, J3, J4, J14, J15, N3, N15, P3, P15, R4 (12)	1, 2, 3, 16, 17, 18, 25, 26, 27, 34, 35, 36, 50, 51, 52, 53, 104, 105, 106, 107, 121, 122, 123, 130, 131, 132, 139, 140, 141, 154, 155, 156, 157, 208	1, 2, 3, 50, 51, 52, 53, 104, 105, 106, 107, 154, 155, 156, 157, 208	1, 2, 51, 52, 53, 54, 103, 104, 157, 158, 207, 208
Total User I/O Pins (9)	116	114	132, 148 (13)	132	148	144

Pin Name	225-Pin BGA	232-Pin PGA	240-Pin PQFP	240-Pin PQFP	280-Pin PGA	304-Pin RQFP
	EPF8820A	EPF81188A	EPF81188A	EPF81500A	EPF81500A	EPF81500A
nSP <i>(2)</i>	A15	C14	237	237	W1	304
MSEL0 (2)	B14	G15	21	19	N1	26
MSEL1 (2)	R15	L15	40	38	H3	51
nSTATUS (2)	P2	L3	141	142	G19	178
nCONFIG (2)	R1	R4	117	120	B18	152
DCLK (2)	B2	C4	184	183	U18	230
CONF_DONE (2)	A1	G3	160	161	M16	204
nWS	L4	P1	133	134	F18	167
nRS	K5	N1	137	138	G18	171
RDCLK	F1	G2	158	159	M17	202
nCS	D1	E2	166	167	N16	212
CS	C1	E3	169	170	N18	215
RDYnBUSY	J3	K2	146	147	J17	183
CLKUSR	G2	H2	155	156	K19	199
ADD17	M14	R15	58	56	E3	73
ADD16	L12	T17	56	54	E2	71
ADD15	M15	P15	54	52	F4	69
ADD14	L13	M14	47	45	G1	60
ADD13	L14	M15	45	43	H2	58
ADD12	K13	M16	43	41	H1	56
ADD11	K15	K15	36	34	J3	47
ADD10	J13	K17	34	32	K3	45
ADD9	J15	J14	32	30	K4	43
ADD8	G14	J15	29	27	L1	34
ADD7	G13	H17	27	25	L2	32
ADD6	G11	H15	25	23	M1	30
ADD5	F14	F16	18	16	N2	20
ADD4	E13	F15	16	14	N3	18
ADD3	D15	F14	14	12	N4	16
ADD2	D14	D15	7	5	U1	8
ADD1	E12	B17	5	3	U2	6
ADD0	C15	C15	3	1	V1	4
DATA7	A7	A7	205	199	W13	254
DATA6	D7	D8	203	197	W14	252
DATA5	A6	B7	200	196	W15	250

Pin Name	225-Pin BGA EPF8820A	232-Pin PGA EPF81188A	240-Pin PQFP	240-Pin PQFP	280-Pin PGA EPF81500A	304-Pin RQFP
			EPF81188A	EPF81500A		EPF81500A
DATA4	A5	C7	198	194	W16	248
DATA3	B5	D7	196	193	W17	246
DATA2	E6	B5	194	190	V16	243
DATA1	D5	A3	191	189	U16	241
DATA0	C4	A2	189	187	V17	239
SDOUT (3)	K1	N2	135	136	F19	169
TDI	F15 (4)	_	_	63 (14)	B1 (14)	80 (14)
TDO	J2 (4)	_	_	117	C17	149
TCK (6)	J14 (4)	_	_	116 (14)	A19 (14)	148 (14)
TMS	J12 (4)	_	_	64 (14)	C2 (14)	81 (14)
TRST (7)	P14	_	_	115 (14)	A18 (14)	145 (14)
Dedicated Inputs	F4, L1, K12,	C1, C17, R1,	10, 51, 130,	8, 49, 131,	F1, F16, P3,	12, 64, 164,
(10)	E15	R17	171	172	P19	217
VCCINT	F5, F10, E1,	E4, H4, L4,	20, 42, 64, 66,	18, 40, 60, 62,	B17, D3, D15,	24, 54, 77,
(5.0 V)	L2, K4, M12,	P12, L14,	114, 128, 150,	91, 114, 129,	E8, E10, E12,	144, 79, 115,
	P15, H13,	H14, E14,	172, 236		E14, R7, R9,	162, 191, 218,
	H14, B15,	R14, U1		236	R11, R13,	266, 301
	C13				R14, T14	
VCCIO	H3, H2, P6,	N10, M13,	19, 41, 65, 81,	17, 39, 61, 78,	D14, E7, E9,	22, 53, 78, 99,
(5.0 V or 3.3 V)	R6, P10, N10,		99, 116, 140,	94, 108, 130,	E11, E13, R6,	
	R14, N13,	H13, H5, F5,	162, 186, 202,		R8, R10, R12,	
	H15, H12,	E10, E8, N8,	220, 235	205, 221, 235	T13, T15	262, 282, 300
	D12, A14,	F13				
	B10, A10, B6,					
	C6, A2, C3,					
Ì	M4, R2					

Table 54. FLEX	Table 54. FLEX 8000 225-, 232-, 240-, 280- & 304-Pin Package Pin-Outs (Part 3 of 3)							
Pin Name	225-Pin BGA EPF8820A	232-Pin PGA EPF81188A	240-Pin PQFP EPF81188A	240-Pin PQFP EPF81500A	280-Pin PGA EPF81500A	304-Pin RQFP EPF81500A		
GND	B1, D4, E14, F7, F8, F9, F12, G6, G7, G8, G9, G10, H1, H4, H5, H6, H7, H8, H9, H10, H11, J6, J7, J8, J9, J10, K6, K7, K8, K9, K11, L15, N3, P1	A1, D6, E11, E7, E9, G4, G5, G13, G14, J5, J13, K4, K14, L5, L13, N4, N7, N9, N11, N14	173, 185, 187, 193, 211, 229	119, 140, 141, 162, 163, 184,	E15, E16, F5, F15, G5, G15, H5, H15, J5, J15, K5, K15,	151,175,177, 206,208,231, 232,237,253, 265, 273, 291		
No Connect (N.C.)		_	61, 62, 119, 120, 181, 182, 239, 240	_	_	10, 21, 23, 25, 35, 37, 39, 40, 41, 42, 52, 55, 66, 68, 146, 147, 161, 173, 174, 176, 187, 188, 189, 190, 192, 194, 195, 205, 207, 219, 221, 233, 234, 235, 236, 302, 303		
Total User I/O Pins (9)	148	180	180	177	204	204		