E·XFL

Intel - EPF8452ATC100-3N Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	42
Number of Logic Elements/Cells	336
Total RAM Bits	-
Number of I/O	78
Number of Gates	4000
Voltage - Supply	4.75V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf8452atc100-3n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1 shows a block diagram of the FLEX 8000 architecture. Each group of eight LEs is combined into an LAB; LABs are arranged into rows and columns. The I/O pins are supported by I/O elements (IOEs) located at the ends of rows and columns. Each IOE contains a bidirectional I/O buffer and a flipflop that can be used as either an input or output register.

Signal interconnections within FLEX 8000 devices and between device pins are provided by the FastTrack Interconnect, a series of fast, continuous channels that run the entire length and width of the device. IOEs are located at the end of each row (horizontal) and column (vertical) FastTrack Interconnect path.

Altera Corporation

The FLEX 8000 architecture provides two dedicated high-speed data paths—carry chains and cascade chains—that connect adjacent LEs without using local interconnect paths. The carry chain supports highspeed counters and adders; the cascade chain implements wide-input functions with minimum delay. Carry and cascade chains connect all LEs in an LAB and all LABs in the same row. Heavy use of carry and cascade chains can reduce routing flexibility. Therefore, the use of carry and cascade chains should be limited to speed-critical portions of a design.

Carry Chain

The carry chain provides a very fast (less than 1 ns) carry-forward function between LEs. The carry-in signal from a lower-order bit moves forward into the higher-order bit via the carry chain, and feeds into both the LUT and the next portion of the carry chain. This feature allows the FLEX 8000 architecture to implement high-speed counters and adders of arbitrary width. The MAX+PLUS II Compiler can create carry chains automatically during design processing; designers can also insert carry chain logic manually during design entry.

Figure 4 shows how an *n*-bit full adder can be implemented in n + 1 LEs with the carry chain. One portion of the LUT generates the sum of two bits using the input signals and the carry-in signal; the sum is routed to the output of the LE. The register is typically bypassed for simple adders, but can be used for an accumulator function. Another portion of the LUT and the carry chain logic generate the carry-out signal, which is routed directly to the carry-in signal of the next-higher-order bit. The final carry-out signal is routed to another LE, where it can be used as a general-purpose signal. In addition to mathematical functions, carry chain logic supports very fast counters and comparators.

The MAX+PLUS II Compiler can create cascade chains automatically during design processing; designers can also insert cascade chain logic manually during design entry. Cascade chains longer than eight LEs are automatically implemented by linking LABs together. The last LE of an LAB cascades to the first LE of the next LAB.

Figure 5 shows how the cascade function can connect adjacent LEs to form functions with a wide fan-in. These examples show functions of 4n variables implemented with n LEs. For a device with an A-2 speed grade, the LE delay is 2.4 ns; the cascade chain delay is 0.6 ns. With the cascade chain, 4.2 ns is needed to decode a 16-bit address.

Figure 5. FLEX 8000 Cascade Chain Operation

LE Operating Modes

The FLEX 8000 LE can operate in one of four modes, each of which uses LE resources differently. See Figure 6. In each mode, seven of the ten available inputs to the LE—the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE—are directed to different destinations to implement the desired logic function. The three remaining inputs to the LE provide clock, clear, and preset control for the register. The MAX+PLUS II software automatically chooses the appropriate mode for each application. Design performance can also be enhanced by designing for the operating mode that supports the desired application.

Normal Mode

The normal mode is suitable for general logic applications and wide decoding functions that can take advantage of a cascade chain. In normal mode, four data inputs from the LAB local interconnect and the carry-in signal are the inputs to a 4-input LUT. Using a configurable SRAM bit, the MAX+PLUS II Compiler automatically selects the carry-in or the DATA3 signal as an input. The LUT output can be combined with the cascade-in signal to form a cascade chain through the cascade-out signal. The LE-Out signal—the data output of the LE—is either the combinatorial output of the LUT and cascade chain, or the data output (Q) of the programmable register.

Arithmetic Mode

The arithmetic mode offers two 3-input LUTs that are ideal for implementing adders, accumulators, and comparators. One LUT provides a 3-bit function; the other generates a carry bit. As shown in Figure 6, the first LUT uses the carry-in signal and two data inputs from the LAB local interconnect to generate a combinatorial or registered output. For example, in an adder, this output is the sum of three bits: a, b, and the carry-in. The second LUT uses the same three signals to generate a carry-out signal, thereby creating a carry chain. The arithmetic mode also supports a cascade chain.

Up/Down Counter Mode

The up/down counter mode offers counter enable, synchronous up/down control, and data loading options. These control signals are generated by the data inputs from the LAB local interconnect, the carry-in signal, and output feedback from the programmable register. Two 3-input LUTs are used: one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading. Data can also be loaded asynchronously with the clear and preset register control signals, without using the LUT resources.

Clearable Counter Mode

The clearable counter mode is similar to the up/down counter mode, but supports a synchronous clear instead of the up/down control; the clear function is substituted for the cascade-in signal in the up/down counter mode. Two 3-input LUTs are used: one generates the counter data, and the other generates the fast carry bit. Synchronous loading is provided by a 2-to-1 multiplexer, and the output of this multiplexer is ANDed with a synchronous clear.

Figure 7. FLEX 8000 LE Asynchronous Clear & Preset Modes

Asynchronous Load with Clear

Asynchronous Load with Preset

Asynchronous Load without Clear or Preset

Asynchronous Clear

A register is cleared by one of the two LABCTRL signals. When the CLRn port receives a low signal, the register is set to zero.

Asynchronous Preset

An asynchronous preset is implemented as either an asynchronous load or an asynchronous clear. If DATA3 is tied to VCC, asserting LABCTRL1 asynchronously loads a 1 into the register. Alternatively, the MAX+PLUS II software can provide preset control by using the clear and inverting the input and output of the register. Inversion control is available for the inputs to both LEs and IOEs. Therefore, if a register is preset by only one of the two LABCTRL signals, the DATA3 input is not needed and can be used for one of the LE operating modes.

Asynchronous Clear & Preset

When implementing asynchronous clear and preset, LABCTRL1 controls the preset and LABCTRL2 controls the clear. The DATA3 input is tied to VCC; therefore, asserting LABCTRL1 asynchronously loads a 1 into the register, effectively presetting the register. Asserting LABCTRL2 clears the register.

Asynchronous Load with Clear

When implementing an asynchronous load with the clear, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear. LABCTRL2 implements the clear by controlling the register clear.

Asynchronous Load with Preset

When implementing an asynchronous load in conjunction with a preset, the MAX+PLUS II software provides preset control by using the clear and inverting the input and output of the register. Asserting LABCTRL2 clears the register, while asserting LABCTRL1 loads the register. The MAX+PLUS II software inverts the signal that drives the DATA3 signal to account for the inversion of the register's output.

Asynchronous Load without Clear or Preset

When implementing an asynchronous load without the clear or preset, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear.

FastTrack Interconnect

In the FLEX 8000 architecture, connections between LEs and device I/O pins are provided by the FastTrack Interconnect, a series of continuous horizontal (row) and vertical (column) routing channels that traverse the entire FLEX 8000 device. This device-wide routing structure provides predictable performance even in complex designs. In contrast, the segmented routing structure in FPGAs requires switch matrices to connect a variable number of routing paths, which increases the delays between logic resources and reduces performance.

The LABs within FLEX 8000 devices are arranged into a matrix of columns and rows. Each row of LABs has a dedicated row interconnect that routes signals both into and out of the LABs in the row. The row interconnect can then drive I/O pins or feed other LABs in the device. Figure 8 shows how an LE drives the row and column interconnect.

Figure 8. FLEX 8000 LAB Connections to Row & Column Interconnect

Figure 12. FLEX 8000 Column-to-IOE Connections

In addition to general-purpose I/O pins, FLEX 8000 devices have four dedicated input pins. These dedicated inputs provide low-skew, device-wide signal distribution, and are typically used for global clock, clear, and preset control signals. The signals from the dedicated inputs are available as control signals for all LABs and I/O elements in the device. The dedicated inputs can also be used as general-purpose data inputs because they can feed the local interconnect of each LAB in the device.

Signals enter the FLEX 8000 device either from the I/O pins that provide general-purpose input capability or from the four dedicated inputs. The IOEs are located at the ends of the row and column interconnect channels.

I/O pins can be used as input, output, or bidirectional pins. Each I/O pin has a register that can be used either as an input register for external data that requires fast setup times, or as an output register for data that requires fast clock-to-output performance. The MAX+PLUS II Compiler uses the programmable inversion option to invert signals automatically from the row and column interconnect when appropriate.

The clock, clear, and output enable controls for the IOEs are provided by a network of I/O control signals. These signals can be supplied by either the dedicated input pins or by internal logic. The IOE control-signal paths are designed to minimize the skew across the device. All control-signal sources are buffered onto high-speed drivers that drive the signals around the periphery of the device. This "peripheral bus" can be configured to provide up to four output enable signals (10 in EPF81500A devices), and up to two clock or clear signals. Figure 13 on page 22 shows how two output enable signals are shared with one clock and one clear signal. The instruction register length for FLEX 8000 devices is three bits. Table 7 shows the boundary-scan register length for FLEX 8000 devices.

Table 7. FLEX 8000 Boundary-Scan Register Length					
Device Boundary-Scan Register Le					
EPF8282A, EPF8282AV	273				
EPF8636A	417				
EPF8820A	465				
EPF81500A	645				

FLEX 8000 devices that support JTAG include weak pull-ups on the JTAG pins. Figure 14 shows the timing requirements for the JTAG signals.

Figure 14. EPF8282A, EPF8282AV, EPF8636A, EPF8820A & EPF81500A JTAG Waveforms

Table 8 shows the timing parameters and values for EPF8282A, EPF8282AV, EPF8636A, EPF8820A, and EPF81500A devices.

Table 17. F	LEX 8000 Internal Timing Parameters Note (1)
Symbol	Parameter
t _{IOD}	IOE register data delay
t _{IOC}	IOE register control signal delay
t _{IOE}	Output enable delay
t _{IOCO}	IOE register clock-to-output delay
t _{IOCOMB}	IOE combinatorial delay
t _{IOSU}	IOE register setup time before clock; IOE register recovery time after asynchronous clear
t _{IOH}	IOE register hold time after clock
t _{IOCLR}	IOE register clear delay
t _{IN}	Input pad and buffer delay
t _{OD1}	Output buffer and pad delay, slow slew rate = off, $V_{CCIO} = 5.0 \text{ V C1} = 35 \text{ pF}$ (2)
t _{OD2}	Output buffer and pad delay, slow slew rate = off, V_{CCIO} = 3.3 V C1 = 35 pF (2)
t _{OD3}	Output buffer and pad delay, slow slew rate = on, $C1 = 35 \text{ pF}$ (3)
t _{XZ}	Output buffer disable delay, C1 = 5 pF
t _{ZX1}	Output buffer enable delay, slow slew rate = off, V_{CCIO} = 5.0 V, C1 = 35 pF (2)
t _{ZX2}	Output buffer enable delay, slow slew rate = off, V_{CCIO} = 3.3 V, C1 = 35 pF (2)
t _{ZX3}	Output buffer enable delay, slow slew rate = on, C1 = 35 pF (3)

Table 18. F	LEX 8000 LE Timing Parameters Note (1)
Symbol	Parameter
t _{LUT}	LUT delay for data-in
t _{CLUT}	LUT delay for carry-in
t _{RLUT}	LUT delay for LE register feedback
t _{GATE}	Cascade gate delay
t _{CASC}	Cascade chain routing delay
t _{CICO}	Carry-in to carry-out delay
t _{CGEN}	Data-in to carry-out delay
t _{CGENR}	LE register feedback to carry-out delay
t _C	LE register control signal delay
t _{CH}	LE register clock high time
t _{CL}	LE register clock low time
t _{CO}	LE register clock-to-output delay
t _{COMB}	Combinatorial delay
t _{SU}	LE register setup time before clock; LE register recovery time after asynchronous preset, clear, or load
t _H	LE register hold time after clock
t _{PRE}	LE register preset delay
t _{CLR}	LE register clear delay

Altera Corporation

Altera Corporation

Figure 19. FLEX 8000 Timing Model

FLEX 8000 Programmable Logic Device Family Data She	eet
---	-----

Table 26. EPF8282AV I/O Element Timing Parameters							
Symbol		Unit					
	A-3		A				
	Min	Max	Min	Max			
t _{IOD}		0.9		2.2	ns		
t _{IOC}		1.9		2.0	ns		
t _{IOE}		1.9		2.0	ns		
t _{IOCO}		1.0		2.0	ns		
t _{IOCOMB}		0.1		0.0	ns		
t _{IOSU}	1.8		2.8		ns		
t _{IOH}	0.0		0.2		ns		
t _{IOCLR}		1.2		2.3	ns		
t _{IN}		1.7		3.4	ns		
t _{OD1}		1.7		4.1	ns		
t _{OD2}		-		-	ns		
t _{OD3}		5.2		7.1	ns		
t _{XZ}		1.8		4.3	ns		
t _{ZX1}		1.8		4.3	ns		
t _{ZX2}		-		-	ns		
t _{ZX3}		5.3		8.3	ns		

Symbol		Speed Grade						
	A	-3	A					
	Min	Max	Min	Max				
t _{LABCASC}		0.4		1.3	ns			
t _{LABCARRY}		0.4		0.8	ns			
t _{LOCAL}		0.8		1.5	ns			
t _{ROW}		4.2		6.3	ns			
t _{COL}		2.5		3.8	ns			
t _{DIN_C}		5.5		8.0	ns			
t _{DIN_D}		7.2		10.8	ns			
t _{DIN IO}		5.5		9.0	ns			

Symbol		Speed Grade							
	A-2		A	A-3		-4	1		
	Min	Мах	Min	Мах	Min	Max	1		
t _{IOD}		0.7		0.8		0.9	ns		
t _{IOC}		1.7		1.8		1.9	ns		
t _{IOE}		1.7		1.8		1.9	ns		
t _{IOCO}		1.0		1.0		1.0	ns		
t _{IOCOMB}		0.3		0.2		0.1	ns		
t _{IOSU}	1.4		1.6		1.8		ns		
t _{IOH}	0.0		0.0		0.0		ns		
t _{IOCLR}		1.2		1.2		1.2	ns		
t _{IN}		1.5		1.6		1.7	ns		
t _{OD1}		1.1		1.4		1.7	ns		
t _{OD2}		1.6		1.9		2.2	ns		
t _{OD3}		4.6		4.9		5.2	ns		
t _{XZ}		1.4		1.6		1.8	ns		
t _{ZX1}		1.4		1.6		1.8	ns		
t _{ZX2}		1.9		2.1		2.3	ns		
t _{ZX3}		4.9		5.1		5.3	ns		

Table 43. EPF81188A Interconnect Timing Parameters							
Symbol			Speed	l Grade			Unit
	ļ	A-2		A-3		-4	1
	Min	Max	Min	Max	Min	Max	
t _{LABCASC}		0.3		0.3		0.4	ns
t _{LABCARRY}		0.3		0.3		0.4	ns
t _{LOCAL}		0.5		0.6		0.8	ns
t _{ROW}		5.0		5.0		5.0	ns
t _{COL}		3.0		3.0		3.0	ns
t _{DIN_C}		5.0		5.0		5.5	ns
t _{DIN_D}		7.0		7.0		7.5	ns
t _{DIN_IO}		5.0		5.0		5.5	ns

٦

Table 44. EPF81188	Table 44. EPF81188A LE Timing Parameters							
Symbol	Speed Grade							
	A-2		A	A-3		-4		
	Min	Max	Min	Max	Min	Max		
t _{LUT}		2.0		2.5		3.2	ns	
t _{CLUT}		0.0		0.0		0.0	ns	
t _{RLUT}		0.9		1.1		1.5	ns	
t _{GATE}		0.0		0.0		0.0	ns	
t _{CASC}		0.6		0.7		0.9	ns	
t _{CICO}		0.4		0.5		0.6	ns	
t _{CGEN}		0.4		0.5		0.7	ns	
t _{CGENR}		0.9		1.1		1.5	ns	
t _C		1.6		2.0		2.5	ns	
t _{CH}	4.0		4.0		4.0		ns	
t _{CL}	4.0		4.0		4.0		ns	
t _{CO}		0.4		0.5		0.6	ns	
t _{COMB}		0.4		0.5		0.6	ns	
t _{SU}	0.8		1.1		1.2		ns	
t _H	0.9		1.1		1.5		ns	
t _{PRE}		0.6		0.7		0.8	ns	
t _{CLR}		0.6		0.7		0.8	ns	

Table 45. EPF81188A External	Timing Parameters
------------------------------	-------------------

Symbol	Speed Grade						
	A-2		A-3		A-4]
	Min	Max	Min	Max	Min	Max	
t _{DRR}		16.0		20.0		25.0	ns
t _{ODH}	1.0		1.0		1.0		ns

Power Consumption

The supply power (P) for FLEX 8000 devices can be calculated with the following equation:

 $P = P_{INT} + P_{IO} = [(I_{CCSTANDBY} + I_{CCACTIVE}) \times V_{CC}] + P_{IO}$

Typical I_{CCSTANDBY} values are shown as I_{CC0} in Table 11 on page 28 and Table 15 on page 30. The P_{IO} value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note* 74 (*Evaluating Power for Altera Devices*). The I_{CCACTIVE} value depends on the switching frequency and the application logic. This value can be calculated based on the amount of current that each LE typically consumes.

The following equation shows the general formula for calculating $I_{\mbox{\scriptsize CCACTIVE}}$:

$$I_{CCACTIVE} = K \times f_{MAX} \times N \times tog_{LC} \times \frac{\mu A}{MHz \times LE}$$

The parameters in this equation are shown below:

f _{MAX}	=	Maximum operating frequency in MHz
Ν	=	Total number of logic cells used in the device
tog _{LC}	=	Average percentage of logic cells toggling at each clock
Κ	=	Constant, shown in Table 50

Table 50. Values for Constant K					
Device	K				
5.0-V FLEX 8000 devices	75				
3.3-V FLEX 8000 devices	60				

This calculation provides an I_{CC} estimate based on typical conditions with no output load. The actual I_{CC} value should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions.

Figure 20 shows the relationship between $\rm I_{\rm CC}$ and operating frequency for several LE utilization values.

Device Pin-Outs

Tables 52 through 54 show the pin names and numbers for the dedicated pins in each FLEX 8000 device package.

Table 52. FLEX 8000 84-, 100-, 144- & 160-Pin Package Pin-Outs (Part 1 of 3)								
Pin Name	84-Pin PLCC EPF8282A	84-Pin PLCC EPF8452A EPF8636A	100-Pin TQFP EPF8282A EPF8282AV	100-Pin TQFP EPF8452A	144-Pin TQFP EPF8820A	160-Pin PGA EPF8452A	160-Pin PQFP EPF8820A (1)	
nSP <i>(</i> 2 <i>)</i>	75	75	75	76	110	R1	1	
MSELO (2)	74	74	74	75	109	P2	2	
MSEL1 (2)	53	53	51	51	72	A1	44	
nSTATUS (2)	32	32	24	25	37	C13	82	
nCONFIG (2)	33	33	25	26	38	A15	81	
DCLK (2)	10	10	100	100	143	P14	125	
CONF_DONE (2)	11	11	1	1	144	N13	124	
nWS	30	30	22	23	33	F13	87	
nRS	48	48	42	45	31	C6	89	
RDCLK	49	49	45	46	12	B5	110	
nCS	29	29	21	22	4	D15	118	
CS	28	28	19	21	3	E15	121	
RDYnBUSY	77	77	77	78	20	P3	100	
CLKUSR	50	50	47	47	13	C5	107	
ADD17	51	51	49	48	75	B4	40	
ADD16	36	55	28	54	76	E2	39	
ADD15	56	56	55	55	77	D1	38	
ADD14	57	57	57	57	78	E1	37	
ADD13	58	58	58	58	79	F3	36	
ADD12	60	60	59	60	83	F2	32	
ADD11	61	61	60	61	85	F1	30	
ADD10	62	62	61	62	87	G2	28	
ADD9	63	63	62	64	89	G1	26	
ADD8	64	64	64	65	92	H1	22	
ADD7	65	65	65	66	94	H2	20	
ADD6	66	66	66	67	95	J1	18	
ADD5	67	67	67	68	97	J2	16	
ADD4	69	69	68	70	102	K2	11	
ADD3	70	70	69	71	103	K1	10	
ADD2	71	71	71	72	104	K3	8	
ADD1	76	72	76	73	105	M1	7	

IAUIC 52. FLEN 0000 04-, 100-, 144- & 100-FIII FACKAYE FIII-DUIS (FAIL2 01 5)								
Pin Name	84-Pin PLCC EPF8282A	84-Pin PLCC EPF8452A EPF8636A	100-Pin TQFP EPF8282A EPF8282AV	100-Pin TQFP EPF8452A	144-Pin TQFP EPF8820A	160-Pin PGA EPF8452A	160-Pin PQFP EPF8820A (1)	
ADD0	78	76	78	77	106	N3	6	
DATA7	3	2	90	89	131	P8	140	
DATA6	4	4	91	91	132	P10	139	
DATA5	6	6	92	95	133	R12	138	
DATA4	7	7	95	96	134	R13	136	
DATA3	8	8	97	97	135	P13	135	
DATA2	9	9	99	98	137	R14	133	
DATA1	13	13	4	4	138	N15	132	
DATA0	14	14	5	5	140	K13	129	
SDOUT (3)	79	78	79	79	23	P4	97	
TDI <i>(4)</i>	55	45 (5)	54	-	96	-	17	
TDO (4)	27	27 (5)	18	-	18	-	102	
TCK (4), (6)	72	44 (5)	72	-	88	-	27	
TMS (4)	20	43 (5)	11	-	86	-	29	
TRST (7)	52	52 (8)	50	-	71	-	45	
Dedicated	12, 31, 54,	12, 31, 54,	3, 23, 53, 73	3, 24, 53,	9, 26, 82,	C3, D14,	14, 33, 94,	
Inputs (10)	73	73		74	99	N2, R15	113	
VCCINT	17, 38, 59, 80	17, 38, 59, 80	6, 20, 37, 56, 70, 87	9, 32, 49, 59, 82	8, 28, 70, 90, 111	B2, C4, D3, D8, D12, G3, G12, H4, H13, J3, J12, M4, M7, M9, M13, N12	3, 24, 46, 92, 114, 160	
VCCIO	-	_	-	-	16, 40, 60, 69, 91, 112, 122, 141	_	23, 47, 57, 69, 79, 104, 127, 137, 149, 159	

Г

Pin Name	225-Pin	232-Pin	240-Pin	240-Pin	280-Pin	304-Pin
	BGA EPF8820A	PGA EPF81188A	PQFP EPF81188A	PQFP EPF81500A	PGA EPF81500A	RQFP EPF81500A
nSP (2)	A15	C14	237	237	W1	304
MSELO (2)	B14	G15	21	19	N1	26
MSEL1 (2)	R15	L15	40	38	H3	51
nSTATUS (2)	P2	L3	141	142	G19	178
nCONFIG (2)	R1	R4	117	120	B18	152
DCLK (2)	B2	C4	184	183	U18	230
CONF_DONE (2)	A1	G3	160	161	M16	204
nWS	L4	P1	133	134	F18	167
nRS	K5	N1	137	138	G18	171
RDCLK	F1	G2	158	159	M17	202
nCS	D1	E2	166	167	N16	212
CS	C1	E3	169	170	N18	215
RDYnBUSY	J3	K2	146	147	J17	183
CLKUSR	G2	H2	155	156	K19	199
ADD17	M14	R15	58	56	E3	73
ADD16	L12	T17	56	54	E2	71
ADD15	M15	P15	54	52	F4	69
ADD14	L13	M14	47	45	G1	60
ADD13	L14	M15	45	43	H2	58
ADD12	K13	M16	43	41	H1	56
ADD11	K15	K15	36	34	J3	47
ADD10	J13	K17	34	32	К3	45
ADD9	J15	J14	32	30	K4	43
ADD8	G14	J15	29	27	L1	34
ADD7	G13	H17	27	25	L2	32
ADD6	G11	H15	25	23	M1	30
ADD5	F14	F16	18	16	N2	20
ADD4	E13	F15	16	14	N3	18
ADD3	D15	F14	14	12	N4	16
ADD2	D14	D15	7	5	U1	8
ADD1	E12	B17	5	3	U2	6
ADD0	C15	C15	3	1	V1	4
DATA7	A7	A7	205	199	W13	254
DATA6	D7	D8	203	197	W14	252
DATA5	A6	B7	200	196	W15	250

Table 54. FLEX 8000 225-, 232-, 240-, 280- & 304-Pin Package Pin-Outs (Part 2 of 3)							
Pin Name	225-Pin BGA EPF8820A	232-Pin PGA EPF81188A	240-Pin PQFP EPF81188A	240-Pin PQFP EPF81500A	280-Pin PGA EPF81500A	304-Pin RQFP EPF81500A	
DATA4	A5	C7	198	194	W16	248	
data3	B5	D7	196	193	W17	246	
DATA2	E6	B5	194	190	V16	243	
DATA1	D5	A3	191	189	U16	241	
DATA0	C4	A2	189	187	V17	239	
SDOUT (3)	K1	N2	135	136	F19	169	
TDI	F15 <i>(4)</i>	-	-	63 (14)	B1 (14)	80 (14)	
TDO	J2 (4)	-	-	117	C17	149	
TCK (6)	J14 <i>(4)</i>	-	-	116 (14)	A19 (14)	148 (14)	
TMS	J12 <i>(4)</i>	-	-	64 (14)	C2 (14)	81 (14)	
TRST (7)	P14	-	-	115 (14)	A18 (14)	145 (14)	
Dedicated Inputs (10)	F4, L1, K12, E15	C1, C17, R1, R17	10, 51, 130, 171	8, 49, 131, 172	F1, F16, P3, P19	12, 64, 164, 217	
VCCINT (5.0 V)	F5, F10, E1, L2, K4, M12, P15, H13, H14, B15, C13	E4, H4, L4, P12, L14, H14, E14, R14, U1	20, 42, 64, 66, 114, 128, 150, 172, 236	18, 40, 60, 62, 91, 114, 129, 151, 173, 209, 236	B17, D3, D15, E8, E10, E12, E14, R7, R9, R11, R13, R14, T14	24, 54, 77, 144, 79, 115, 162, 191, 218, 266, 301	
VCCIO (5.0 V or 3.3 V)	H3, H2, P6, R6, P10, N10, R14, N13, H15, H12, D12, A14, B10, A10, B6, C6, A2, C3, M4, R2	N10, M13, M5, K13, K5, H13, H5, F5, E10, E8, N8, F13	19, 41, 65, 81, 99, 116, 140, 162, 186, 202, 220, 235	17, 39, 61, 78, 94, 108, 130, 152, 174, 191, 205, 221, 235	D14, E7, E9, E11, E13, R6, R8, R10, R12, T13, T15	22, 53, 78, 99, 119, 137, 163, 193, 220, 244, 262, 282, 300	

-

FLEX 8000 Programmable Logic Device Family Data Sheet

Notes to tables:

- Perform a complete thermal analysis before committing a design to this device package. See Application Note 74 (Evaluating Power for Altera Devices) for more information.
- (2) This pin is a dedicated pin and is not available as a user I/O pin.
- (3) SDOUT will drive out during configuration. After configuration, it may be used as a user I/O pin. By default, the MAX+PLUS II software will not use SDOUT as a user I/O pin; the user can override the MAX+PLUS II software and use SDOUT as a user I/O pin.
- (4) If the device is not configured to use the JTAG BST circuitry, this pin is available as a user I/O pin.
- (5) JTAG pins are available for EPF8636A devices only. These pins are dedicated user I/O pins.
- (6) If this pin is used as an input in user mode, ensure that it does not toggle before or during configuration.
- (7) TRST is a dedicated input pin for JTAG use. This pin must be grounded if JTAG BST is not used.
- (8) Pin 52 is a V_{CC} pin on EPF8452A devices only.
- (9) The user I/O pin count includes dedicated input pins and all I/O pins.
- (10) Unused dedicated inputs should be tied to ground on the board.
- (11) SDOUT does not exist in the EPF8636GC192 device.
- (12) These pins are no connect (N.C.) pins for EPF8636A devices only. They are user I/O pins in EPF8820A devices.
- (13) EPF8636A devices have 132 user I/O pins; EPF8820A devices have 148 user I/O pins.
- (14) For EPF81500A devices, these pins are dedicated JTAG pins and are not available as user I/O pins. If JTAG BST is not used, TDI, TCK, TMS, and TRST should be tied to GND.

Revision History The information contained in the *FLEX 8000 Programmable Logic Device Family Data Sheet* version 11.1 supersedes information published in previous versions. The *FLEX 8000 Programmable Logic Device Family Data Sheet* version 11.1 contains the following change: minor textual updates.