E·XFL

Intel - EPF8636ALC84-4N Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	63
Number of Logic Elements/Cells	504
Total RAM Bits	-
Number of I/O	68
Number of Gates	6000
Voltage - Supply	4.75V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	84-LCC (J-Lead)
Supplier Device Package	84-PLCC (29.31x29.31)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf8636alc84-4n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

JTAG BST circuitry	Yes	No	Yes	Yes	No	Yes

...and More Features

Peripheral register for fast setup and clock-to-output delay
 Fabricated on an educated CDAM succession

- Fabricated on an advanced SRAM process
 - Available in a variety of packages with 84 to 304 pins (see Table 2)
 Software design support and automatic place-and-route provided by the Altera[®] MAX+PLUS[®] II development system for Windows-based PCs, as well as Sun SPARCstation, HP 9000 Series 700/800, and IBM RISC System/6000 workstations
 - Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, and Veribest

Table 2. FLE	Table 2. FLEX 8000 Package Options & I/O Pin Count Note (1)											
Device	84- Pin PLCC	100- Pin TQFP	144- Pin TQFP	160- Pin PQFP	160- Pin PGA	192- Pin PGA	208- Pin PQFP	225- Pin BGA	232- Pin PGA	240- Pin PQFP	280- Pin PGA	304- Pin RQFP
EPF8282A	68	78										
EPF8282AV		78										
EPF8452A	68	68		120	120							
EPF8636A	68			118		136	136					
EPF8820A			112	120		152	152	152				
EPF81188A							148		184	184		
EPF81500A										181	208	208

Note:

(1) FLEX 8000 device package types include plastic J-lead chip carrier (PLCC), thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat pack (RQFP), ball-grid array (BGA), and pin-grid array (PGA) packages.

General Description

Altera's Flexible Logic Element MatriX (FLEX[®]) family combines the benefits of both erasable programmable logic devices (EPLDs) and fieldprogrammable gate arrays (FPGAs). The FLEX 8000 device family is ideal for a variety of applications because it combines the fine-grained architecture and high register count characteristics of FPGAs with the high speed and predictable interconnect delays of EPLDs. Logic is implemented in LEs that include compact 4-input look-up tables (LUTs) and programmable registers. High performance is provided by a fast, continuous network of routing resources. Figure 1 shows a block diagram of the FLEX 8000 architecture. Each group of eight LEs is combined into an LAB; LABs are arranged into rows and columns. The I/O pins are supported by I/O elements (IOEs) located at the ends of rows and columns. Each IOE contains a bidirectional I/O buffer and a flipflop that can be used as either an input or output register.

Signal interconnections within FLEX 8000 devices and between device pins are provided by the FastTrack Interconnect, a series of fast, continuous channels that run the entire length and width of the device. IOEs are located at the end of each row (horizontal) and column (vertical) FastTrack Interconnect path.

Altera Corporation

Figure 4. FLEX 8000 Carry Chain Operation

Cascade Chain

With the cascade chain, the FLEX 8000 architecture can implement functions that have a very wide fan-in. Adjacent LUTs can be used to compute portions of the function in parallel; the cascade chain serially connects the intermediate values. The cascade chain can use a logical AND or logical OR (via De Morgan's inversion) to connect the outputs of adjacent LEs. Each additional LE provides four more inputs to the effective width of a function, with a delay as low as 0.6 ns per LE.

The MAX+PLUS II Compiler can create cascade chains automatically during design processing; designers can also insert cascade chain logic manually during design entry. Cascade chains longer than eight LEs are automatically implemented by linking LABs together. The last LE of an LAB cascades to the first LE of the next LAB.

Figure 5 shows how the cascade function can connect adjacent LEs to form functions with a wide fan-in. These examples show functions of 4n variables implemented with n LEs. For a device with an A-2 speed grade, the LE delay is 2.4 ns; the cascade chain delay is 0.6 ns. With the cascade chain, 4.2 ns is needed to decode a 16-bit address.

Figure 5. FLEX 8000 Cascade Chain Operation

LE Operating Modes

The FLEX 8000 LE can operate in one of four modes, each of which uses LE resources differently. See Figure 6. In each mode, seven of the ten available inputs to the LE—the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE—are directed to different destinations to implement the desired logic function. The three remaining inputs to the LE provide clock, clear, and preset control for the register. The MAX+PLUS II software automatically chooses the appropriate mode for each application. Design performance can also be enhanced by designing for the operating mode that supports the desired application.

Normal Mode

The normal mode is suitable for general logic applications and wide decoding functions that can take advantage of a cascade chain. In normal mode, four data inputs from the LAB local interconnect and the carry-in signal are the inputs to a 4-input LUT. Using a configurable SRAM bit, the MAX+PLUS II Compiler automatically selects the carry-in or the DATA3 signal as an input. The LUT output can be combined with the cascade-in signal to form a cascade chain through the cascade-out signal. The LE-Out signal—the data output of the LE—is either the combinatorial output of the LUT and cascade chain, or the data output (Q) of the programmable register.

Arithmetic Mode

The arithmetic mode offers two 3-input LUTs that are ideal for implementing adders, accumulators, and comparators. One LUT provides a 3-bit function; the other generates a carry bit. As shown in Figure 6, the first LUT uses the carry-in signal and two data inputs from the LAB local interconnect to generate a combinatorial or registered output. For example, in an adder, this output is the sum of three bits: a, b, and the carry-in. The second LUT uses the same three signals to generate a carry-out signal, thereby creating a carry chain. The arithmetic mode also supports a cascade chain.

Up/Down Counter Mode

The up/down counter mode offers counter enable, synchronous up/down control, and data loading options. These control signals are generated by the data inputs from the LAB local interconnect, the carry-in signal, and output feedback from the programmable register. Two 3-input LUTs are used: one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading. Data can also be loaded asynchronously with the clear and preset register control signals, without using the LUT resources.

Clearable Counter Mode

The clearable counter mode is similar to the up/down counter mode, but supports a synchronous clear instead of the up/down control; the clear function is substituted for the cascade-in signal in the up/down counter mode. Two 3-input LUTs are used: one generates the counter data, and the other generates the fast carry bit. Synchronous loading is provided by a 2-to-1 multiplexer, and the output of this multiplexer is ANDed with a synchronous clear.

FastTrack Interconnect

In the FLEX 8000 architecture, connections between LEs and device I/O pins are provided by the FastTrack Interconnect, a series of continuous horizontal (row) and vertical (column) routing channels that traverse the entire FLEX 8000 device. This device-wide routing structure provides predictable performance even in complex designs. In contrast, the segmented routing structure in FPGAs requires switch matrices to connect a variable number of routing paths, which increases the delays between logic resources and reduces performance.

The LABs within FLEX 8000 devices are arranged into a matrix of columns and rows. Each row of LABs has a dedicated row interconnect that routes signals both into and out of the LABs in the row. The row interconnect can then drive I/O pins or feed other LABs in the device. Figure 8 shows how an LE drives the row and column interconnect.

Figure 8. FLEX 8000 LAB Connections to Row & Column Interconnect

Figure 10. FLEX 8000 IOE

Numbers in parentheses are for EPF81500A devices only.

Row-to-IOE Connections

Figure 11 illustrates the connection between row interconnect channels and IOEs. An input signal from an IOE can drive two separate row channels. When an IOE is used as an output, the signal is driven by an *n*-to-1 multiplexer that selects the row channels. The size of the multiplexer varies with the number of columns in a device. EPF81500A devices use a 27-to-1 multiplexer; EPF81188A, EPF8820A, EPF8636A, and EPF8452A devices use a 21-to-1 multiplexer; and EPF8282A and EPF8282AV devices use a 13-to-1 multiplexer. Eight IOEs are connected to each side of the row channels.

Table 8	Table 8. JTAG Timing Parameters & Values						
Symbol	ol Parameter EPF8282/ EPF8282/ EPF8366/ EPF8820/ EPF81500		282A 282AV 536A 520A 1500A	Unit			
		Min	Max				
t _{JCP}	TCK clock period	100		ns			
t _{JCH}	TCK clock high time	50		ns			
t _{JCL}	TCK clock low time	50		ns			
t _{JPSU}	JTAG port setup time	20		ns			
t _{JPH}	JTAG port hold time	45		ns			
t _{JPCO}	JTAG port clock to output		25	ns			
t _{JPZX}	JTAG port high-impedance to valid output		25	ns			
t _{JPXZ}	JTAG port valid output to high-impedance		25	ns			
t _{JSSU}	Capture register setup time	20		ns			
t _{JSH}	Capture register hold time	45		ns			
t _{JSCO}	Update register clock to output		35	ns			
t _{JSZX}	Update register high-impedance to valid output		35	ns			
t _{JSXZ}	Update register valid output to high-impedance		35	ns			

For detailed information on JTAG operation in FLEX 8000 devices, refer to *Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices)*.

Generic Testing

Each FLEX 8000 device is functionally tested and specified by Altera. Complete testing of each configurable SRAM bit and all logic functionality ensures 100% configuration yield. AC test measurements for FLEX 8000 devices are made under conditions equivalent to those shown in Figure 15. Designers can use multiple test patterns to configure devices during all stages of the production flow.

Table 1	Table 10. FLEX 8000 5.0-V Device Recommended Operating Conditions									
Symbol	Parameter	Conditions	Min	Max	Unit					
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4)	4.75 (4.50)	5.25 (5.50)	V					
V _{CCIO}	Supply voltage for output buffers, 5.0-V operation	(3), (4)	4.75 (4.50)	5.25 (5.50)	V					
	Supply voltage for output buffers, 3.3-V operation	(3), (4)	3.00 (3.00)	3.60 (3.60)	V					
VI	Input voltage		-0.5	V_{CCINT} + 0.5	V					
Vo	Output voltage		0	V _{CCIO}	V					
Τ _Α	Operating temperature	For commercial use	0	70	°C					
		For industrial use	-40	85	°C					
t _R	Input rise time			40	ns					
t _F	Input fall time			40	ns					

Table 11. FLEX 8000 5.0-V Device DC Operating ConditionsNotes (5), (6)								
Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
V _{IH}	High-level input voltage		2.0		V_{CCINT} + 0.5	V		
V _{IL}	Low-level input voltage		-0.5		0.8	V		
V _{OH}	5.0-V high-level TTL output voltage	I _{OH} = -4 mA DC <i>(7)</i> V _{CCIO} = 4.75 V	2.4			V		
	3.3-V high-level TTL output voltage	I _{OH} = -4 mA DC <i>(7)</i> V _{CCIO} = 3.00 V	2.4			V		
	3.3-V high-level CMOS output voltage	I _{OH} = -0.1 mA DC (7) V _{CCIO} = 3.00 V	V _{CCIO} – 0.2			V		
V _{OL}	5.0-V low-level TTL output voltage	I _{OL} = 12 mA DC <i>(</i> 7 <i>)</i> V _{CCIO} = 4.75 V			0.45	V		
	3.3-V low-level TTL output voltage	I _{OL} = 12 mA DC <i>(</i> 7 <i>)</i> V _{CCIO} = 3.00 V			0.45	V		
	3.3-V low-level CMOS output voltage	I _{OL} = 0.1 mA DC <i>(7)</i> V _{CCIO} = 3.00 V			0.2	V		
I _I	Input leakage current	$V_{I} = V_{CC}$ or ground	-10		10	μA		
I _{OZ}	Tri-state output off-state current	$V_{O} = V_{CC}$ or ground	-40		40	μA		
I _{CC0}	V _{CC} supply current (standby)	V _I = ground, no load		0.5	10	mA		

Table 1	Table 12. FLEX 8000 5.0-V Device Capacitance Note (8)				
Symbol	Parameter	Conditions	Min	Max	Unit
C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		10	pF

Notes to tables:

(1) See the Operating Requirements for Altera Devices Data Sheet.

- (2) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 7.0 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) The maximum V_{CC} rise time is 100 ms.
- (4) Numbers in parentheses are for industrial-temperature-range devices.
- (5) Typical values are for $T_A = 25^{\circ} \text{ C}$ and $V_{CC} = 5.0 \text{ V}$.
- (6) These values are specified in Table 10 on page 28.
- (7) The I_{OH} parameter refers to high-level TTL or CMOS output current; the I_{OL} parameter refers to low-level TTL or CMOS output current.
- (8) Capacitance is sample-tested only.

Tables 13 through 16 provide information on absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for 3.3-V FLEX 8000 devices.

Table 13. FLEX 8000 3.3-V Device Absolute Maximum Ratings Note (1)									
Symbol	Parameter	Conditions	Min	Max	Unit				
V _{CC}	Supply voltage	With respect to ground (2)	-2.0	5.3	V				
VI	DC input voltage		-2.0	5.3	V				
I _{OUT}	DC output current, per pin		-25	25	mA				
T _{STG}	Storage temperature	No bias	-65	150	°C				
T _{AMB}	Ambient temperature	Under bias	-65	135	°C				
TJ	Junction temperature	Plastic packages, under bias		135	°C				

Table 14. FLEX 8000 3.3-V Device Recommended Operating Conditions								
Symbol	Parameter	Conditions	Min	Max	Unit			
V _{CC}	Supply voltage	(3)	3.0	3.6	V			
VI	Input voltage		-0.3	V _{CC} + 0.3	V			
Vo	Output voltage		0	V _{CC}	V			
Τ _Α	Operating temperature	For commercial use	0	70	°C			
t _R	Input rise time			40	ns			
t _F	Input fall time			40	ns			

FLEX 8000 Programmable Logic Device Family Data Sheet

Table 1	Table 15. FLEX 8000 3.3-V Device DC Operating Conditions Note (4)								
Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
V _{IH}	High-level input voltage		2.0		V _{CC} + 0.3	V			
V _{IL}	Low-level input voltage		-0.3		0.8	V			
V _{OH}	High-level output voltage	I _{OH} = -0.1 mA DC <i>(</i> 5 <i>)</i>	$V_{CC} - 0.2$			V			
V _{OL}	Low-level output voltage	I _{OL} = 4 mA DC <i>(5)</i>			0.45	V			
I _I	Input leakage current	$V_1 = V_{CC}$ or ground	-10		10	μA			
I _{OZ}	Tri-state output off-state current	$V_{O} = V_{CC}$ or ground	-40		40	μA			
I _{CC0}	V _{CC} supply current (standby)	V_1 = ground, no load (6)		0.3	10	mA			

Table 1	6. FLEX 8000 3.3-V Device Cap	acitance Note (7)			
Symbol	Parameter	Conditions	Min	Max	Unit
C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		10	pF

Notes to tables:

(1) See the Operating Requirements for Altera Devices Data Sheet.

(2) Minimum DC input voltage is -0.3 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.3 V for input currents less than 100 mA and periods shorter than 20 ns.

(3) The maximum V_{CC} rise time is 100 ms. \overline{V}_{CC} must rise monotonically.

(4) These values are specified in Table 14 on page 29.

(5) The I_{OH} parameter refers to high-level TTL output current; the I_{OL} parameter refers to low-level TTL output current.

(6) Typical values are for $T_A = 25^\circ \text{ C}$ and $V_{CC} = 3.3 \text{ V}$.

(7) Capacitance is sample-tested only.

Figure 16 shows the typical output drive characteristics of 5.0-V FLEX 8000 devices. The output driver is compliant with *PCI Local Bus Specification, Revision* 2.2.

Altera Corporation

Figure 19. FLEX 8000 Timing Model

FLEX 8000 Programmable Logic Device Family Data Sheet

Table 21. FLEX 8000 Timing	able 21. FLEX 8000 Timing Model Interconnect Paths				
Source	Destination	Total Delay			
LE-Out	LE in same LAB	t _{LOCAL}			
LE-Out	LE in same row, different LAB	$t_{ROW} + t_{LOCAL}$			
LE-Out	LE in different row	$t_{COL} + t_{ROW} + t_{LOCAL}$			
LE-Out	IOE on column	t _{COL}			
LE-Out	IOE on row	t _{ROW}			
IOE on row	LE in same row	$t_{ROW} + t_{LOCAL}$			
IOE on column	Any LE	$t_{COL} + t_{ROW} + t_{LOCAL}$			

Tables 22 through 49 show the FLEX 8000 internal and external timing parameters.

Table 22. EPF82	Table 22. EPF8282A Internal I/O Element Timing Parameters											
Symbol			Speed	l Grade			Unit					
	A-2		A-3		A-4		1					
	Min	Max	Min	Max	Min	Мах						
t _{IOD}		0.7		0.8		0.9	ns					
t _{IOC}		1.7		1.8		1.9	ns					
t _{IOE}		1.7		1.8		1.9	ns					
t _{IOCO}		1.0		1.0		1.0	ns					
t _{IOCOMB}		0.3		0.2		0.1	ns					
t _{IOSU}	1.4		1.6		1.8		ns					
t _{IOH}	0.0		0.0		0.0		ns					
t _{IOCLR}		1.2		1.2		1.2	ns					
t _{IN}		1.5		1.6		1.7	ns					
t _{OD1}		1.1		1.4		1.7	ns					
t _{OD2}		-		-		-	ns					
t _{OD3}		4.6		4.9		5.2	ns					
t _{XZ}		1.4		1.6		1.8	ns					
t _{ZX1}		1.4		1.6		1.8	ns					
t _{ZX2}		-		-		-	ns					
t _{ZX3}		4.9		5.1		5.3	ns					

Table 32. EPF8452A LE Timing Parameters										
Symbol			Speed	Grade			Unit			
	A-2		A-3		A-4					
	Min	Max	Min	Max	Min	Max	-			
t _{LUT}		2.0		2.3		3.0	ns			
t _{CLUT}		0.0		0.2		0.1	ns			
t _{RLUT}		0.9		1.6		1.6	ns			
t _{GATE}		0.0		0.0		0.0	ns			
t _{CASC}		0.6		0.7		0.9	ns			
t _{CICO}		0.4		0.5		0.6	ns			
t _{CGEN}		0.4		0.9		0.8	ns			
t _{CGENR}		0.9		1.4		1.5	ns			
t _C		1.6		1.8		2.4	ns			
t _{CH}	4.0		4.0		4.0		ns			
t _{CL}	4.0		4.0		4.0		ns			
t _{CO}		0.4		0.5		0.6	ns			
t _{COMB}		0.4		0.5		0.6	ns			
t _{SU}	0.8		1.0		1.1		ns			
t _H	0.9		1.1		1.4		ns			
t _{PRE}		0.6		0.7		0.8	ns			
t _{CLR}		0.6		0.7		0.8	ns			

Table 33. EPF8452A External Timing Parameters

Symbol	Speed Grade							
	A	A-2 A-3 A-4						
	Min	Max	Min	Max	Min	Max		
t _{DRR}		16.0		20.0		25.0	ns	
t _{ODH}	1.0		1.0		1.0		ns	

Table 36. EPF8636A LE Timing Parameters										
Symbol			Speed G	irade			Unit			
	A-2		A-3		A-4		1			
	Min	Max	Min	Max	Min	Max				
t _{LUT}		2.0		2.3		3.0	ns			
t _{CLUT}		0.0		0.2		0.1	ns			
t _{RLUT}		0.9		1.6		1.6	ns			
t _{GATE}		0.0		0.0		0.0	ns			
t _{CASC}		0.6		0.7		0.9	ns			
t _{CICO}		0.4		0.5		0.6	ns			
t _{CGEN}		0.4		0.9		0.8	ns			
t _{CGENR}		0.9		1.4		1.5	ns			
t _C		1.6		1.8		2.4	ns			
t _{CH}	4.0		4.0		4.0		ns			
t _{CL}	4.0		4.0		4.0		ns			
t _{CO}		0.4		0.5		0.6	ns			
t _{COMB}		0.4		0.5		0.6	ns			
t _{SU}	0.8		1.0		1.1		ns			
t _H	0.9		1.1		1.4		ns			
t _{PRE}		0.6		0.7		0.8	ns			
t _{CLR}		0.6		0.7		0.8	ns			

Table 37. EPF8636A External Timing Parameters

Symbol	Speed Grade								
	A	A-2 A-3 A							
	Min	Max	Min	Max	Min	Max			
t _{DRR}		16.0		20.0		25.0	ns		
t _{ODH}	1.0		1.0		1.0		ns		

Symbol			Speed	l Grade			Unit
	A	-2	A	A-3		-4	1
	Min	Max	Min	Max	Min	Мах	
t _{IOD}		0.7		0.8		0.9	ns
t _{IOC}		1.7		1.8		1.9	ns
t _{IOE}		1.7		1.8		1.9	ns
t _{IOCO}		1.0		1.0		1.0	ns
t _{IOCOMB}		0.3		0.2		0.1	ns
t _{IOSU}	1.4		1.6		1.8		ns
t _{IOH}	0.0		0.0		0.0		ns
t _{IOCLR}		1.2		1.2		1.2	ns
t _{IN}		1.5		1.6		1.7	ns
t _{OD1}		1.1		1.4		1.7	ns
t _{OD2}		1.6		1.9		2.2	ns
t _{OD3}		4.6		4.9		5.2	ns
t _{XZ}		1.4		1.6		1.8	ns
t _{ZX1}		1.4		1.6		1.8	ns
t _{ZX2}		1.9		2.1		2.3	ns
t _{ZX3}		4.9		5.1		5.3	ns

Table 39. EPF8820A Interconnect Timing Parameters											
Symbol		Speed Grade									
	A-2		A-3		A-4		1				
	Min	Max	Min	Max	Min	Max					
t _{LABCASC}		0.3		0.3		0.4	ns				
t _{LABCARRY}		0.3		0.3		0.4	ns				
t _{LOCAL}		0.5		0.6		0.8	ns				
t _{ROW}		5.0		5.0		5.0	ns				
t _{COL}		3.0		3.0		3.0	ns				
t _{DIN_C}		5.0		5.0		5.5	ns				
t _{DIN_D}		7.0		7.0		7.5	ns				
t _{DIN 10}		5.0		5.0		5.5	ns				

Γ

Symbol			Speed	Grade			Unit
	A	-2	A-3		A-4]
	Min	Мах	Min	Мах	Min	Max	
t _{IOD}		0.7		0.8		0.9	ns
t _{IOC}		1.7		1.8		1.9	ns
t _{IOE}		1.7		1.8		1.9	ns
t _{IOCO}		1.0		1.0		1.0	ns
t _{IOCOMB}		0.3		0.2		0.1	ns
t _{IOSU}	1.4		1.6		1.8		ns
t _{IOH}	0.0		0.0		0.0		ns
t _{IOCLR}		1.2		1.2		1.2	ns
t _{IN}		1.5		1.6		1.7	ns
t _{OD1}		1.1		1.4		1.7	ns
t _{OD2}		1.6		1.9		2.2	ns
t _{OD3}		4.6		4.9		5.2	ns
t _{XZ}		1.4		1.6		1.8	ns
t _{ZX1}		1.4		1.6		1.8	ns
t _{ZX2}		1.9		2.1		2.3	ns
t _{ZX3}		4.9		5.1		5.3	ns

Table 43. EPF81188A Interconnect Timing Parameters											
Symbol			Speed	l Grade			Unit				
	A-2		A-3		A-4		1				
	Min	Max	Min	Max	Min	Max					
t _{LABCASC}		0.3		0.3		0.4	ns				
t _{LABCARRY}		0.3		0.3		0.4	ns				
t _{LOCAL}		0.5		0.6		0.8	ns				
t _{ROW}		5.0		5.0		5.0	ns				
t _{COL}		3.0		3.0		3.0	ns				
t _{DIN_C}		5.0		5.0		5.5	ns				
t _{DIN_D}		7.0		7.0		7.5	ns				
t _{DIN_IO}		5.0		5.0		5.5	ns				

Table 46. EPF815	Table 46. EPF81500A I/O Element Timing Parameters											
Symbol			Speed	l Grade			Unit					
	A-2		A-3		A-4		1					
	Min	Max	Min	Max	Min	Max						
t _{IOD}		0.7		0.8		0.9	ns					
t _{IOC}		1.7		1.8		1.9	ns					
t _{IOE}		1.7		1.8		1.9	ns					
t _{IOCO}		1.0		1.0		1.0	ns					
t _{IOCOMB}		0.3		0.2		0.1	ns					
t _{IOSU}	1.4		1.6		1.8		ns					
t _{IOH}	0.0		0.0		0.0		ns					
t _{IOCLR}		1.2		1.2		1.2	ns					
t _{IN}		1.5		1.6		1.7	ns					
t _{OD1}		1.1		1.4		1.7	ns					
t _{OD2}		1.6		1.9		2.2	ns					
t _{OD3}		4.6		4.9		5.2	ns					
t _{XZ}		1.4		1.6		1.8	ns					
t _{ZX1}		1.4		1.6		1.8	ns					
t _{ZX2}		1.9		2.1		2.3	ns					
t _{ZX3}		4.9		5.1		5.3	ns					

Symbol			Speed	Grade			Unit
	A-2		A-3		A	-4	
	Min	Max	Min	Max	Min	Max	
t _{LABCASC}		0.3		0.3		0.4	ns
t _{LABCARRY}		0.3		0.3		0.4	ns
t _{LOCAL}		0.5		0.6		0.8	ns
t _{ROW}		6.2		6.2		6.2	ns
t _{COL}		3.0		3.0		3.0	ns
t _{DIN_C}		5.0		5.0		5.5	ns
t _{DIN_D}		8.2		8.2		8.7	ns
t _{DIN_IO}		5.0		5.0		5.5	ns

ſ

	10000 04-, 100	Γ-, 144- α ΙΟυ	-riii raukaye			1	1
Pin Name	84-Pin PLCC EPF8282A	84-Pin PLCC EPF8452A EPF8636A	100-Pin TQFP EPF8282A EPF8282AV	100-Pin TQFP EPF8452A	144-Pin TQFP EPF8820A	160-Pin PGA EPF8452A	160-Pin PQFP EPF8820A (1)
ADD0	78	76	78	77	106	N3	6
DATA7	3	2	90	89	131	P8	140
DATA6	4	4	91	91	132	P10	139
DATA5	6	6	92	95	133	R12	138
DATA4	7	7	95	96	134	R13	136
DATA3	8	8	97	97	135	P13	135
DATA2	9	9	99	98	137	R14	133
DATA1	13	13	4	4	138	N15	132
DATA0	14	14	5	5	140	K13	129
SDOUT (3)	79	78	79	79	23	P4	97
TDI <i>(4)</i>	55	45 (5)	54	-	96	-	17
TDO (4)	27	27 (5)	18	-	18	-	102
TCK (4), (6)	72	44 (5)	72	-	88	-	27
TMS (4)	20	43 (5)	11	-	86	-	29
TRST (7)	52	52 (8)	50	-	71	-	45
Dedicated	12, 31, 54,	12, 31, 54,	3, 23, 53, 73	3, 24, 53,	9, 26, 82,	C3, D14,	14, 33, 94,
Inputs (10)	73	73		74	99	N2, R15	113
VCCINT	17, 38, 59, 80	17, 38, 59, 80	6, 20, 37, 56, 70, 87	9, 32, 49, 59, 82	8, 28, 70, 90, 111	B2, C4, D3, D8, D12, G3, G12, H4, H13, J3, J12, M4, M7, M9, M13, N12	3, 24, 46, 92, 114, 160
VCCIO	-	-	-	-	16, 40, 60, 69, 91, 112, 122, 141	_	23, 47, 57, 69, 79, 104, 127, 137, 149, 159

Г

Table 53. FLEX 8000 160-, 192- & 208-Pin Package Pin-Outs (Part 1 of 2)						
Pin Name	160-Pin PQFP EPF8452A	160-Pin PQFP EPF8636A	192-Pin PGA EPF8636A EPF8820A	208-Pin PQFP EPF8636A (1)	208-Pin PQFP EPF8820A (1)	208-Pin PQFP EPF81188A <i>(1)</i>
nSP (2)	120	1	R15	207	207	5
MSELO (2)	117	3	T15	4	4	21
MSEL1 (2)	84	38	Т3	49	49	33
nSTATUS (2)	37	83	B3	108	108	124
nCONFIG (2)	40	81	C3	103	103	107
DCLK (2)	1	120	C15	158	158	154
CONF_DONE (2)	4	118	B15	153	153	138
n₩S	30	89	C5	114	114	118
nRS	71	50	B5	66	116	121
RDCLK	73	48	C11	64	137	137
nCS	29	91	B13	116	145	142
CS	27	93	A16	118	148	144
RDYnBUSY	125	155	A8	201	127	128
CLKUSR	76	44	A10	59	134	134
ADD17	78	43	R5	57	43	46
ADD16	91	33	U3	43	42	45
ADD15	92	31	Т5	41	41	44
ADD14	94	29	U4	39	40	39
ADD13	95	27	R6	37	39	37
ADD12	96	24	Т6	31	35	36
ADD11	97	23	R7	30	33	31
ADD10	98	22	Т7	29	31	30
ADD9	99	21	Т8	28	29	29
ADD8	101	20	U9	24	25	26
ADD7	102	19	U10	23	23	25
ADD6	103	18	U11	22	21	24
ADD5	104	17	U12	21	19	18
ADD4	105	13	R12	14	14	17
ADD3	106	11	U14	12	13	16
ADD2	109	9	U15	10	11	10
ADD1	110	7	R13	8	10	9
ADD0	123	157	U16	203	9	8
DATA7	144	137	H17	178	178	177
DATA6	150	132	G17	172	176	175
DATA5	152	129	F17	169	174	172

Altera Corporation