Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 63 | | Number of Logic Elements/Cells | 504 | | Total RAM Bits | - | | Number of I/O | 118 | | Number of Gates | 6000 | | Voltage - Supply | 4.75V ~ 5.25V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 70°C (TA) | | Package / Case | 160-BQFP | | Supplier Device Package | 160-PQFP (28x28) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epf8636aqc160-2 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong ## ...and More Features - Peripheral register for fast setup and clock-to-output delay - Fabricated on an advanced SRAM process - Available in a variety of packages with 84 to 304 pins (see Table 2) - Software design support and automatic place-and-route provided by the Altera® MAX+PLUS® II development system for Windows-based PCs, as well as Sun SPARCstation, HP 9000 Series 700/800, and IBM RISC System/6000 workstations - Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, and Veribest | Table 2. FLE. | Table 2. FLEX 8000 Package Options & I/O Pin Count Note (1) | | | | | | | | | | | | |---------------|---|---------------------|---------------------|---------------------|--------------------|--------------------|---------------------|--------------------|--------------------|---------------------|--------------------|---------------------| | Device | 84-
Pin
PLCC | 100-
Pin
TQFP | 144-
Pin
TQFP | 160-
Pin
PQFP | 160-
Pin
PGA | 192-
Pin
PGA | 208-
Pin
PQFP | 225-
Pin
BGA | 232-
Pin
PGA | 240-
Pin
PQFP | 280-
Pin
PGA | 304-
Pin
RQFP | | EPF8282A | 68 | 78 | | | | | | | | | | | | EPF8282AV | | 78 | | | | | | | | | | | | EPF8452A | 68 | 68 | | 120 | 120 | | | | | | | | | EPF8636A | 68 | | | 118 | | 136 | 136 | | | | | | | EPF8820A | | | 112 | 120 | | 152 | 152 | 152 | | | | | | EPF81188A | | | | | | | 148 | | 184 | 184 | | | | EPF81500A | | | | | | | | | | 181 | 208 | 208 | #### Note: # General Description Altera's Flexible Logic Element MatriX (FLEX®) family combines the benefits of both erasable programmable logic devices (EPLDs) and field-programmable gate arrays (FPGAs). The FLEX 8000 device family is ideal for a variety of applications because it combines the fine-grained architecture and high register count characteristics of FPGAs with the high speed and predictable interconnect delays of EPLDs. Logic is implemented in LEs that include compact 4-input look-up tables (LUTs) and programmable registers. High performance is provided by a fast, continuous network of routing resources. ⁽¹⁾ FLEX 8000 device package types include plastic J-lead chip carrier (PLCC), thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat pack (RQFP), ball-grid array (BGA), and pin-grid array (PGA) packages. Figure 1 shows a block diagram of the FLEX 8000 architecture. Each group of eight LEs is combined into an LAB; LABs are arranged into rows and columns. The I/O pins are supported by I/O elements (IOEs) located at the ends of rows and columns. Each IOE contains a bidirectional I/O buffer and a flipflop that can be used as either an input or output register. Figure 1. FLEX 8000 Device Block Diagram Signal interconnections within FLEX 8000 devices and between device pins are provided by the FastTrack Interconnect, a series of fast, continuous channels that run the entire length and width of the device. IOEs are located at the end of each row (horizontal) and column (vertical) FastTrack Interconnect path. Figure 4. FLEX 8000 Carry Chain Operation ### Cascade Chain With the cascade chain, the FLEX 8000 architecture can implement functions that have a very wide fan-in. Adjacent LUTs can be used to compute portions of the function in parallel; the cascade chain serially connects the intermediate values. The cascade chain can use a logical AND or logical OR (via De Morgan's inversion) to connect the outputs of adjacent LEs. Each additional LE provides four more inputs to the effective width of a function, with a delay as low as 0.6 ns per LE. #### Normal Mode The normal mode is suitable for general logic applications and wide decoding functions that can take advantage of a cascade chain. In normal mode, four data inputs from the LAB local interconnect and the carry-in signal are the inputs to a 4-input LUT. Using a configurable SRAM bit, the MAX+PLUS II Compiler automatically selects the carry-in or the DATA3 signal as an input. The LUT output can be combined with the cascade-in signal to form a cascade chain through the cascade-out signal. The LE-Out signal—the data output of the LE—is either the combinatorial output of the LUT and cascade chain, or the data output (Q) of the programmable register. #### Arithmetic Mode The arithmetic mode offers two 3-input LUTs that are ideal for implementing adders, accumulators, and comparators. One LUT provides a 3-bit function; the other generates a carry bit. As shown in Figure 6, the first LUT uses the carry-in signal and two data inputs from the LAB local interconnect to generate a combinatorial or registered output. For example, in an adder, this output is the sum of three bits: a, b, and the carry-in. The second LUT uses the same three signals to generate a carry-out signal, thereby creating a carry chain. The arithmetic mode also supports a cascade chain. ### Up/Down Counter Mode The up/down counter mode offers counter enable, synchronous up/down control, and data loading options. These control signals are generated by the data inputs from the LAB local interconnect, the carry-in signal, and output feedback from the programmable register. Two 3-input LUTs are used: one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading. Data can also be loaded asynchronously with the clear and preset register control signals, without using the LUT resources. #### Clearable Counter Mode The clearable counter mode is similar to the up/down counter mode, but supports a synchronous clear instead of the up/down control; the clear function is substituted for the cascade-in signal in the up/down counter mode. Two 3-input LUTs are used: one generates the counter data, and the other generates the fast carry bit. Synchronous loading is provided by a 2-to-1 multiplexer, and the output of this multiplexer is ANDed with a synchronous clear. #### Asynchronous Clear A register is cleared by one of the two LABCTRL signals. When the CLRn port receives a low signal, the register is set to zero. #### **Asynchronous Preset** An asynchronous preset is implemented as either an asynchronous load or an asynchronous clear. If DATA3 is tied to VCC, asserting LABCTRL1 asynchronously loads a 1 into the register. Alternatively, the MAX+PLUS II software can provide preset control by using the clear and inverting the input and output of the register. Inversion control is available for the inputs to both LEs and IOEs. Therefore, if a register is preset by only one of the two LABCTRL signals, the DATA3 input is not needed and can be used for one of the LE operating modes. ### Asynchronous Clear & Preset When implementing asynchronous clear and preset, LABCTRL1 controls the preset and LABCTRL2 controls the clear. The DATA3 input is tied to VCC; therefore, asserting LABCTRL1 asynchronously loads a 1 into the register, effectively presetting the register. Asserting LABCTRL2 clears the register. ## Asynchronous Load with Clear When implementing an asynchronous load with the clear, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear. LABCTRL2 implements the clear by controlling the register clear. #### Asynchronous Load with Preset When implementing an asynchronous load in conjunction with a preset, the MAX+PLUS II software provides preset control by using the clear and inverting the input and output of the register. Asserting LABCTRL2 clears the register, while asserting LABCTRL1 loads the register. The MAX+PLUS II software inverts the signal that drives the DATA3 signal to account for the inversion of the register's output. #### Asynchronous Load without Clear or Preset When implementing an asynchronous load without the clear or preset, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear. ## Figure 10. FLEX 8000 IOE Numbers in parentheses are for EPF81500A devices only. ## Row-to-IOE Connections Figure 11 illustrates the connection between row interconnect channels and IOEs. An input signal from an IOE can drive two separate row channels. When an IOE is used as an output, the signal is driven by an *n*-to-1 multiplexer that selects the row channels. The size of the multiplexer varies with the number of columns in a device. EPF81500A devices use a 27-to-1 multiplexer; EPF81188A, EPF8820A, EPF8636A, and EPF8452A devices use a 21-to-1 multiplexer; and EPF8282A and EPF8282AV devices use a 13-to-1 multiplexer. Eight IOEs are connected to each side of the row channels. The signals for the peripheral bus can be generated by any of the four dedicated inputs or signals on the row interconnect channels, as shown in Figure 13. The number of row channels in a row that can drive the peripheral bus correlates to the number of columns in the FLEX 8000 device. EPF8282A and EPF8282AV devices use 13 channels; EPF8452A, EPF8636A, EPF8820A, and EPF81188A devices use 21 channels; and EPF81500A devices use 27 channels. The first LE in each LAB is the source of the row channel signal. The six peripheral control signals (12 in EPF81500A devices) can be accessed by each IOE. Figure 13. FLEX 8000 Peripheral Bus Numbers in parentheses are for EPF81500A devices. #### Note: (1) n = 13 for EPF8282A and EPF8282AV devices. n = 21 for EPF8452A, EPF8636A, EPF8820A, and EPF81188A devices. n = 27 for EPF81500A devices. Table 5 lists the source of the peripheral control signal for each FLEX 8000 device by row. | Peripheral
Control Signal | EPF8282A
EPF8282AV | EPF8452A | EPF8636A | EPF8820A | EPF81188A | EPF81500A | |------------------------------|-----------------------|----------|----------|----------|-----------|-----------| | CLK0 | Row A | Row A | Row A | Row A | Row E | Row E | | CLK1/OE1 | Row B | Row B | Row C | Row C | Row B | Row B | | CLR0 | Row A | Row A | Row B | Row B | Row F | Row F | | CLR1/OE0 | Row B | Row B | Row C | Row D | Row C | Row C | | OE2 | Row A | Row A | Row A | Row A | Row D | Row A | | OE3 | Row B | Row B | Row B | Row B | Row A | Row A | | OE4 | _ | _ | - | _ | - | Row B | | OE5 | _ | _ | - | _ | - | Row C | | OE6 | - | - | - | - | - | Row D | | OE7 | - | - | - | - | - | Row D | | OE8 | - | - | - | - | - | Row E | | OE9 | _ | _ | _ | _ | - | Row F | ## Output Configuration This section discusses slew-rate control and MultiVolt I/O interface operation for FLEX 8000 devices. ## **Slew-Rate Control** The output buffer in each IOE has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A slow slew rate reduces system noise by slowing signal transitions, adding a maximum delay of 3.5 ns. The slow slew-rate setting affects only the falling edge of a signal. The fast slew rate should be used for speed-critical outputs in systems that are adequately protected against noise. Designers can specify the slew rate on a pin-by-pin basis during design entry or assign a default slew rate to all pins on a global basis. For more information on high-speed system design, go to *Application Note 75 (High-Speed Board Designs)*. ## Figure 15. FLEX 8000 AC Test Conditions Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-groundcurrent transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Numbers in parentheses are for 3.3-V devices or outputs. Numbers without parentheses are for 5.0-V devices or outputs. # Operating Conditions Tables 9 through 12 provide information on absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for 5.0-V FLEX 8000 devices. | Table 9. FLEX 8000 5.0-V Device Absolute Maximum Ratings Note (1) | | | | | | | | | |---|----------------------------|------------------------------|------|-----|------|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | V _{CC} | Supply voltage | With respect to ground (2) | -2.0 | 7.0 | V | | | | | V _I | DC input voltage | | -2.0 | 7.0 | V | | | | | I _{OUT} | DC output current, per pin | | -25 | 25 | mA | | | | | T _{STG} | Storage temperature | No bias | -65 | 150 | ° C | | | | | T_{AMB} | Ambient temperature | Under bias | -65 | 135 | ° C | | | | | T_J | Junction temperature | Ceramic packages, under bias | | 150 | ° C | | | | | | | PQFP and RQFP, under bias | | 135 | ° C | | | | | Symbol | Parameter | Conditions | Min | Max | Unit | |--------------------|---|--------------------|-------------|--------------------------|------| | V _{CCINT} | Supply voltage for internal logic and input buffers | (3), (4) | 4.75 (4.50) | 5.25 (5.50) | V | | V _{CCIO} | Supply voltage for output buffers, 5.0-V operation | (3), (4) | 4.75 (4.50) | 5.25 (5.50) | V | | | Supply voltage for output buffers, 3.3-V operation | (3), (4) | 3.00 (3.00) | 3.60 (3.60) | V | | V _I | Input voltage | | -0.5 | V _{CCINT} + 0.5 | V | | Vo | Output voltage | | 0 | V _{CCIO} | V | | T _A | Operating temperature | For commercial use | 0 | 70 | °C | | | | For industrial use | -40 | 85 | °C | | t _R | Input rise time | | | 40 | ns | | t _F | Input fall time | | | 40 | ns | | Table 1 | 1. FLEX 8000 5.0-V Device DO | Operating Conditions | Notes (5), (6) | | | | |------------------|--|---|-------------------------|-----|--------------------------|------| | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | | V_{IH} | High-level input voltage | | 2.0 | | V _{CCINT} + 0.5 | V | | V _{IL} | Low-level input voltage | | -0.5 | | 0.8 | V | | V _{OH} | 5.0-V high-level TTL output voltage | $I_{OH} = -4 \text{ mA DC } (7)$
$V_{CCIO} = 4.75 \text{ V}$ | 2.4 | | | V | | | 3.3-V high-level TTL output voltage | $I_{OH} = -4 \text{ mA DC } (7)$
$V_{CCIO} = 3.00 \text{ V}$ | 2.4 | | | V | | | 3.3-V high-level CMOS output voltage | $I_{OH} = -0.1 \text{ mA DC } (7)$
$V_{CCIO} = 3.00 \text{ V}$ | V _{CCIO} - 0.2 | | | V | | V _{OL} | 5.0-V low-level TTL output voltage | I _{OL} = 12 mA DC (7)
V _{CCIO} = 4.75 V | | | 0.45 | V | | | 3.3-V low-level TTL output voltage | I _{OL} = 12 mA DC (7)
V _{CCIO} = 3.00 V | | | 0.45 | V | | | 3.3-V low-level CMOS output voltage | I _{OL} = 0.1 mA DC (7)
V _{CCIO} = 3.00 V | | | 0.2 | V | | I _I | Input leakage current | $V_I = V_{CC}$ or ground | -10 | | 10 | μΑ | | I _{OZ} | Tri-state output off-state current | $V_O = V_{CC}$ or ground | -40 | | 40 | μA | | I _{CC0} | V _{CC} supply current (standby) | V _I = ground, no load | | 0.5 | 10 | mA | Figure 16. Output Drive Characteristics of 5.0-V FLEX 8000 Devices (Except EPF8282A) Figure 17 shows the typical output drive characteristics of 5.0-V EPF8282A devices. The output driver is compliant with *PCI Local Bus Specification, Revision* 2.2. Figure 17. Output Drive Characteristics of EPF8282A Devices with 5.0-V V_{CCIO} Figure 18 shows the typical output drive characteristics of EPF8282AV devices. | Table 19. FLE) | Table 19. FLEX 8000 Interconnect Timing Parameters Note (1) | | | | | | | |-----------------------|---|--|--|--|--|--|--| | Symbol | Parameter | | | | | | | | t _{LABCASC} | Cascade delay between LEs in different LABs | | | | | | | | t _{LABCARRY} | Carry delay between LEs in different LABs | | | | | | | | t _{LOCAL} | LAB local interconnect delay | | | | | | | | t _{ROW} | Row interconnect routing delay (4) | | | | | | | | t_{COL} | Column interconnect routing delay | | | | | | | | t _{DIN_C} | Dedicated input to LE control delay | | | | | | | | t _{DIN_D} | Dedicated input to LE data delay (4) | | | | | | | | t _{DIN_IO} | Dedicated input to IOE control delay | | | | | | | | Table 20. FLEX 8 | 2000 External Reference Timing Characteristics Note (5) | | | | | |------------------|--|--|--|--|--| | Symbol | Parameter | | | | | | t _{DRR} | Register-to-register delay via 4 LEs, 3 row interconnects, and 4 local interconnects (6) | | | | | | t _{ODH} | Output data hold time after clock (7) | | | | | #### Notes to tables: - (1) Internal timing parameters cannot be measured explicitly. They are worst-case delays based on testable and external parameters specified by Altera. Internal timing parameters should be used for estimating device performance. Post-compilation timing simulation or timing analysis is required to determine actual worst-case performance. - (2) These values are specified in Table 10 on page 28 or Table 14 on page 29. - (3) For the t_{OD3} and t_{ZX3} parameters, $V_{CCIO} = 3.3 \text{ V or } 5.0 \text{ V}$. - (4) The t_{ROW} and t_{DIN_D} delays are worst-case values for typical applications. Post-compilation timing simulation or timing analysis is required to determine actual worst-case performance. - (5) External reference timing characteristics are factory-tested, worst-case values specified by Altera. A representative subset of signal paths is tested to approximate typical device applications. - (6) For more information on test conditions, see *Application Note 76* (*Understanding FLEX 8000 Timing*). - (7) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies to global and non-global clocking, and for LE and I/O element registers. The FLEX 8000 timing model shows the delays for various paths and functions in the circuit. See Figure 19. This model contains three distinct parts: the LE; the IOE; and the interconnect, including the row and column FastTrack Interconnect, LAB local interconnect, and carry and cascade interconnect paths. Each parameter shown in Figure 19 is expressed as a worst-case value in Tables 22 through 49. Hand-calculations that use the FLEX 8000 timing model and these timing parameters can be used to estimate FLEX 8000 device performance. Timing simulation or timing analysis after compilation is required to determine the final worst-case performance. Table 21 summarizes the interconnect paths shown in Figure 19. For more information on timing parameters, go to *Application Note 76* (*Understanding FLEX 8000 Timing*). | Symbol | | | Speed | Grade | | | Unit | |-----------------------|-----|-----|-------|-------|-----|-----|------| | | А | -2 | А | -3 | А | 1 | | | | Min | Max | Min | Max | Min | Max | 1 | | t _{LABCASC} | | 0.3 | | 0.3 | | 0.4 | ns | | t _{LABCARRY} | | 0.3 | | 0.3 | | 0.4 | ns | | t _{LOCAL} | | 0.5 | | 0.6 | | 0.8 | ns | | t _{ROW} | | 4.2 | | 4.2 | | 4.2 | ns | | t_{COL} | | 2.5 | | 2.5 | | 2.5 | ns | | t _{DIN_C} | | 5.0 | | 5.0 | | 5.5 | ns | | t _{DIN_D} | | 7.2 | | 7.2 | | 7.2 | ns | | t _{DIN_IO} | | 5.0 | | 5.0 | | 5.5 | ns | | Symbol | Speed Grade | | | | | | | | | |--------------------|-------------|-----|-----|-----|-----|-----|----|--|--| | | A | -2 | A | -3 | А | | | | | | | Min | Max | Min | Max | Min | Max | | | | | t_{LUT} | | 2.0 | | 2.5 | | 3.2 | ns | | | | t _{CLUT} | | 0.0 | | 0.0 | | 0.0 | ns | | | | t _{RLUT} | | 0.9 | | 1.1 | | 1.5 | ns | | | | t _{GATE} | | 0.0 | | 0.0 | | 0.0 | ns | | | | t _{CASC} | | 0.6 | | 0.7 | | 0.9 | ns | | | | t _{CICO} | | 0.4 | | 0.5 | | 0.6 | ns | | | | t _{CGEN} | | 0.4 | | 0.5 | | 0.7 | ns | | | | t _{CGENR} | | 0.9 | | 1.1 | | 1.5 | ns | | | | t_C | | 1.6 | | 2.0 | | 2.5 | ns | | | | t _{CH} | 4.0 | | 4.0 | | 4.0 | | ns | | | | t_{CL} | 4.0 | | 4.0 | | 4.0 | | ns | | | | t_{CO} | | 0.4 | | 0.5 | | 0.6 | ns | | | | t _{COMB} | | 0.4 | | 0.5 | | 0.6 | ns | | | | t _{SU} | 0.8 | | 1.1 | | 1.2 | | ns | | | | t _H | 0.9 | | 1.1 | | 1.5 | | ns | | | | t _{PRE} | | 0.6 | | 0.7 | | 0.8 | ns | | | | t _{CLR} | | 0.6 | | 0.7 | | 0.8 | ns | | | | Table 25. EPF8. | 282A External | Timing Paran | neters | | | | | |------------------|---------------|--------------|--------|---------|-----|------|------| | Symbol | | | Speed | l Grade | | | Unit | | | A | -2 | A | -3 | A- | 7 | | | | Min | Max | Min | Max | Min | Max | | | t _{DRR} | | 15.8 | | 19.8 | | 24.8 | ns | | t _{ODH} | 1.0 | | 1.0 | | 1.0 | | ns | | Symbol | Speed Grade | | | | | | | | | |---------------------|-------------|-----|-----|-----|-----|-----|----|--|--| | | A-2 | | A-3 | | А | -4 | | | | | | Min | Max | Min | Max | Min | Max | | | | | t_{IOD} | | 0.7 | | 0.8 | | 0.9 | ns | | | | t _{IOC} | | 1.7 | | 1.8 | | 1.9 | ns | | | | t _{IOE} | | 1.7 | | 1.8 | | 1.9 | ns | | | | t _{IOCO} | | 1.0 | | 1.0 | | 1.0 | ns | | | | t _{IOCOMB} | | 0.3 | | 0.2 | | 0.1 | ns | | | | t _{IOSU} | 1.4 | | 1.6 | | 1.8 | | ns | | | | t _{IOH} | 0.0 | | 0.0 | | 0.0 | | ns | | | | t _{IOCLR} | | 1.2 | | 1.2 | | 1.2 | ns | | | | t _{IN} | | 1.5 | | 1.6 | | 1.7 | ns | | | | t _{OD1} | | 1.1 | | 1.4 | | 1.7 | ns | | | | t_{OD2} | | 1.6 | | 1.9 | | 2.2 | ns | | | | t _{OD3} | | 4.6 | | 4.9 | | 5.2 | ns | | | | t_{XZ} | | 1.4 | | 1.6 | | 1.8 | ns | | | | t_{ZX1} | | 1.4 | | 1.6 | | 1.8 | ns | | | | t_{ZX2} | | 1.9 | | 2.1 | | 2.3 | ns | | | | t_{ZX3} | | 4.9 | | 5.1 | | 5.3 | ns | | | | Symbol | | | Speed (| Grade | | | Unit | |-----------------------|-----|-----|---------|-------|-----|-----|------| | | A-2 | | A-3 | | A-4 | | | | | Min | Max | Min | Max | Min | Max | | | t _{LABCASC} | | 0.3 | | 0.4 | | 0.4 | ns | | t _{LABCARRY} | | 0.3 | | 0.4 | | 0.4 | ns | | t _{LOCAL} | | 0.5 | | 0.5 | | 0.7 | ns | | t _{ROW} | | 5.0 | | 5.0 | | 5.0 | ns | | t_{COL} | | 3.0 | | 3.0 | | 3.0 | ns | | t _{DIN_C} | | 5.0 | | 5.0 | | 5.5 | ns | | t _{DIN_D} | | 7.0 | | 7.0 | | 7.5 | ns | | t _{DIN IO} | | 5.0 | | 5.0 | | 5.5 | ns | | Symbol | Speed Grade | | | | | | | | | |--------------------|-------------|-----|-----|-----|-----|-----|----|--|--| | | A-2 | | A-3 | | A-4 | | | | | | | Min | Max | Min | Max | Min | Max | | | | | t_{LUT} | | 2.0 | | 2.5 | | 3.2 | ns | | | | t_{CLUT} | | 0.0 | | 0.0 | | 0.0 | ns | | | | t _{RLUT} | | 0.9 | | 1.1 | | 1.5 | ns | | | | t_{GATE} | | 0.0 | | 0.0 | | 0.0 | ns | | | | t _{CASC} | | 0.6 | | 0.7 | | 0.9 | ns | | | | t_{CICO} | | 0.4 | | 0.5 | | 0.6 | ns | | | | t _{CGEN} | | 0.4 | | 0.5 | | 0.7 | ns | | | | t _{CGENR} | | 0.9 | | 1.1 | | 1.5 | ns | | | | t_{C} | | 1.6 | | 2.0 | | 2.5 | ns | | | | t _{CH} | 4.0 | | 4.0 | | 4.0 | | ns | | | | t_{CL} | 4.0 | | 4.0 | | 4.0 | | ns | | | | t_{CO} | | 0.4 | | 0.5 | | 0.6 | ns | | | | t _{COMB} | | 0.4 | | 0.5 | | 0.6 | ns | | | | t _{SU} | 0.8 | | 1.1 | | 1.2 | | ns | | | | t _H | 0.9 | | 1.1 | | 1.5 | | ns | | | | t _{PRE} | | 0.6 | | 0.7 | | 0.8 | ns | | | | t _{CLR} | | 0.6 | | 0.7 | | 0.8 | ns | | | | Table 41. EPF882 | 20A External T | iming Parame | ters | | | | | | | |------------------|----------------|--------------|------|------|-----|------|----|--|--| | Symbol | Speed Grade | | | | | | | | | | | A-2 | | A-3 | | A-4 | | | | | | | Min | Max | Min | Max | Min | Max | | | | | t _{DRR} | | 16.0 | | 20.0 | | 25.0 | ns | | | | t _{ODH} | 1.0 | | 1.0 | | 1.0 | | ns | | | | Symbol | Speed Grade | | | | | | | | |---------------------|-------------|-----|-----|-----|-----|-----|----|--| | | A-2 | | A-3 | | A-4 | | | | | | Min | Max | Min | Max | Min | Max | | | | t_{IOD} | | 0.7 | | 0.8 | | 0.9 | ns | | | t _{IOC} | | 1.7 | | 1.8 | | 1.9 | ns | | | t _{IOE} | | 1.7 | | 1.8 | | 1.9 | ns | | | t _{IOCO} | | 1.0 | | 1.0 | | 1.0 | ns | | | t _{IOCOMB} | | 0.3 | | 0.2 | | 0.1 | ns | | | t _{IOSU} | 1.4 | | 1.6 | | 1.8 | | ns | | | t _{IOH} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{IOCLR} | | 1.2 | | 1.2 | | 1.2 | ns | | | t _{IN} | | 1.5 | | 1.6 | | 1.7 | ns | | | t _{OD1} | | 1.1 | | 1.4 | | 1.7 | ns | | | t _{OD2} | | 1.6 | | 1.9 | | 2.2 | ns | | | t _{OD3} | | 4.6 | | 4.9 | | 5.2 | ns | | | t_{XZ} | | 1.4 | | 1.6 | | 1.8 | ns | | | t_{ZX1} | | 1.4 | | 1.6 | | 1.8 | ns | | | t_{ZX2} | | 1.9 | | 2.1 | | 2.3 | ns | | | t_{ZX3} | | 4.9 | | 5.1 | | 5.3 | ns | | | Symbol | | | Speed | Grade | | | Unit | |-----------------------|-----|-----|-------|-------|-----|-----|------| | | A-2 | | A-3 | | A-4 | | | | | Min | Max | Min | Max | Min | Max | | | t _{LABCASC} | | 0.3 | | 0.3 | | 0.4 | ns | | t _{LABCARRY} | | 0.3 | | 0.3 | | 0.4 | ns | | t _{LOCAL} | | 0.5 | | 0.6 | | 0.8 | ns | | t_{ROW} | | 6.2 | | 6.2 | | 6.2 | ns | | t _{COL} | | 3.0 | | 3.0 | | 3.0 | ns | | t _{DIN_C} | | 5.0 | | 5.0 | | 5.5 | ns | | t _{DIN_D} | | 8.2 | | 8.2 | | 8.7 | ns | | t _{DIN IO} | | 5.0 | | 5.0 | | 5.5 | ns | | Pin Name | 84-Pin | 84-Pin | 100-Pin | 100-Pin | 144-Pin | 160-Pin | 160-Pin | |--------------|-------------------|------------------------------|-------------------------------|----------------------|--|---|---| | | PLCC
EPF8282A | PLCC
EPF8452A
EPF8636A | TQFP
EPF8282A
EPF8282AV | TQFP
EPF8452A | TQFP
EPF8820A | PGA
EPF8452A | PQFP
EPF8820A
(1) | | ADD0 | 78 | 76 | 78 | 77 | 106 | N3 | 6 | | DATA7 | 3 | 2 | 90 | 89 | 131 | P8 | 140 | | DATA6 | 4 | 4 | 91 | 91 | 132 | P10 | 139 | | DATA5 | 6 | 6 | 92 | 95 | 133 | R12 | 138 | | DATA4 | 7 | 7 | 95 | 96 | 134 | R13 | 136 | | DATA3 | 8 | 8 | 97 | 97 | 135 | P13 | 135 | | DATA2 | 9 | 9 | 99 | 98 | 137 | R14 | 133 | | DATA1 | 13 | 13 | 4 | 4 | 138 | N15 | 132 | | DATA0 | 14 | 14 | 5 | 5 | 140 | K13 | 129 | | SDOUT (3) | 79 | 78 | 79 | 79 | 23 | P4 | 97 | | TDI (4) | 55 | 45 (5) | 54 | _ | 96 | _ | 17 | | TDO (4) | 27 | 27 (5) | 18 | _ | 18 | _ | 102 | | TCK (4), (6) | 72 | 44 (5) | 72 | _ | 88 | _ | 27 | | TMS (4) | 20 | 43 (5) | 11 | _ | 86 | _ | 29 | | TRST (7) | 52 | 52 (8) | 50 | _ | 71 | _ | 45 | | Dedicated | 12, 31, 54, | 12, 31, 54, | 3, 23, 53, 73 | 3, 24, 53, | 9, 26, 82, | C3, D14, | 14, 33, 94, | | Inputs (10) | 73 | 73 | | 74 | 99 | N2, R15 | 113 | | VCCINT | 17, 38, 59,
80 | 17, 38, 59,
80 | 6, 20, 37, 56,
70, 87 | 9, 32, 49,
59, 82 | 8, 28, 70,
90, 111 | B2, C4, D3,
D8, D12,
G3, G12,
H4, H13,
J3, J12,
M4, M7,
M9, M13,
N12 | 3, 24, 46,
92, 114,
160 | | VCCIO | - | _ | _ | _ | 16, 40, 60,
69, 91,
112, 122,
141 | _ | 23, 47, 57,
69, 79,
104, 127,
137, 149,
159 | | Pin Name | 160-Pin
PQFP
EPF8452A | 160-Pin
PQFP
EPF8636A | 192-Pin PGA
EPF8636A
EPF8820A | 208-Pin
PQFP
EPF8636A (1) | 208-Pin
PQFP
EPF8820A (1) | 208-Pin
PQFP
EPF81188A (1) | |---------------|-----------------------------|-----------------------------|-------------------------------------|---------------------------------|---------------------------------|----------------------------------| | nSP (2) | 120 | 1 | R15 | 207 | 207 | 5 | | MSELO (2) | 117 | 3 | T15 | 4 | 4 | 21 | | MSEL1 (2) | 84 | 38 | Т3 | 49 | 49 | 33 | | nSTATUS (2) | 37 | 83 | B3 | 108 | 108 | 124 | | nCONFIG (2) | 40 | 81 | C3 | 103 | 103 | 107 | | DCLK (2) | 1 | 120 | C15 | 158 | 158 | 154 | | CONF_DONE (2) | 4 | 118 | B15 | 153 | 153 | 138 | | nWS | 30 | 89 | C5 | 114 | 114 | 118 | | nRS | 71 | 50 | B5 | 66 | 116 | 121 | | RDCLK | 73 | 48 | C11 | 64 | 137 | 137 | | nCS | 29 | 91 | B13 | 116 | 145 | 142 | | CS | 27 | 93 | A16 | 118 | 148 | 144 | | RDYnBUSY | 125 | 155 | A8 | 201 | 127 | 128 | | CLKUSR | 76 | 44 | A10 | 59 | 134 | 134 | | ADD17 | 78 | 43 | R5 | 57 | 43 | 46 | | ADD16 | 91 | 33 | U3 | 43 | 42 | 45 | | ADD15 | 92 | 31 | T5 | 41 | 41 | 44 | | ADD14 | 94 | 29 | U4 | 39 | 40 | 39 | | ADD13 | 95 | 27 | R6 | 37 | 39 | 37 | | ADD12 | 96 | 24 | T6 | 31 | 35 | 36 | | ADD11 | 97 | 23 | R7 | 30 | 33 | 31 | | ADD10 | 98 | 22 | T7 | 29 | 31 | 30 | | ADD9 | 99 | 21 | Т8 | 28 | 29 | 29 | | ADD8 | 101 | 20 | U9 | 24 | 25 | 26 | | ADD7 | 102 | 19 | U10 | 23 | 23 | 25 | | ADD6 | 103 | 18 | U11 | 22 | 21 | 24 | | ADD5 | 104 | 17 | U12 | 21 | 19 | 18 | | ADD4 | 105 | 13 | R12 | 14 | 14 | 17 | | ADD3 | 106 | 11 | U14 | 12 | 13 | 16 | | ADD2 | 109 | 9 | U15 | 10 | 11 | 10 | | ADD1 | 110 | 7 | R13 | 8 | 10 | 9 | | ADD0 | 123 | 157 | U16 | 203 | 9 | 8 | | DATA7 | 144 | 137 | H17 | 178 | 178 | 177 | | DATA6 | 150 | 132 | G17 | 172 | 176 | 175 | | DATA5 | 152 | 129 | F17 | 169 | 174 | 172 | | Table 54. FLEX | 8000 225-, 232 | -, 240-, 280- & | 304-Pin Packa | ge Pin-Outs (Pa | ort 3 of 3) | | |----------------------------|--|--|--|----------------------------------|---|---| | Pin Name | 225-Pin
BGA
EPF8820A | 232-Pin
PGA
EPF81188A | 240-Pin
PQFP
EPF81188A | 240-Pin
PQFP
EPF81500A | 280-Pin
PGA
EPF81500A | 304-Pin
RQFP
EPF81500A | | GND | B1, D4, E14,
F7, F8, F9,
F12, G6, G7,
G8, G9, G10,
H1, H4, H5,
H6, H7, H8,
H9, H10, H11,
J6, J7, J8, J9,
J10, K6, K7,
K8, K9, K11,
L15, N3, P1 | A1, D6, E11,
E7, E9, G4,
G5, G13,
G14, J5, J13,
K4, K14, L5,
L13, N4, N7,
N9, N11, N14 | 173, 185, 187,
193, 211, 229 | 119, 140, 141,
162, 163, 184, | E15, E16, F5,
F15, G5, G15,
H5, H15, J5,
J15, K5, K15, | 151,175,177,
206,208,231,
232,237,253,
265, 273, 291 | | No Connect
(N.C.) | | _ | 61, 62, 119,
120, 181, 182,
239, 240 | _ | _ | 10, 21, 23, 25, 35, 37, 39, 40, 41, 42, 52, 55, 66, 68, 146, 147, 161, 173, 174, 176, 187, 188, 189, 190, 192, 194, 195, 205, 207, 219, 221, 233, 234, 235, 236, 302, 303 | | Total User I/O
Pins (9) | 148 | 180 | 180 | 177 | 204 | 204 |