Welcome to **E-XFL.COM** ## Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. #### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 63 | | Number of Logic Elements/Cells | 504 | | Total RAM Bits | - | | Number of I/O | 118 | | Number of Gates | 6000 | | Voltage - Supply | 4.75V ~ 5.25V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 70°C (TA) | | Package / Case | 160-BQFP | | Supplier Device Package | 160-PQFP (28x28) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epf8636aqc160-4 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong ### ...and More Features - Peripheral register for fast setup and clock-to-output delay - Fabricated on an advanced SRAM process - Available in a variety of packages with 84 to 304 pins (see Table 2) - Software design support and automatic place-and-route provided by the Altera® MAX+PLUS® II development system for Windows-based PCs, as well as Sun SPARCstation, HP 9000 Series 700/800, and IBM RISC System/6000 workstations - Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, and Veribest | Table 2. FLE. | Table 2. FLEX 8000 Package Options & I/O Pin Count Note (1) | | | | | | | | | | | | |---------------|---|---------------------|---------------------|---------------------|--------------------|--------------------|---------------------|--------------------|--------------------|---------------------|--------------------|---------------------| | Device | 84-
Pin
PLCC | 100-
Pin
TQFP | 144-
Pin
TQFP | 160-
Pin
PQFP | 160-
Pin
PGA | 192-
Pin
PGA | 208-
Pin
PQFP | 225-
Pin
BGA | 232-
Pin
PGA | 240-
Pin
PQFP | 280-
Pin
PGA | 304-
Pin
RQFP | | EPF8282A | 68 | 78 | | | | | | | | | | | | EPF8282AV | | 78 | | | | | | | | | | | | EPF8452A | 68 | 68 | | 120 | 120 | | | | | | | | | EPF8636A | 68 | | | 118 | | 136 | 136 | | | | | | | EPF8820A | | | 112 | 120 | | 152 | 152 | 152 | | | | | | EPF81188A | | | | | | | 148 | | 184 | 184 | | | | EPF81500A | | | | | | | | | | 181 | 208 | 208 | #### Note: ## General Description Altera's Flexible Logic Element MatriX (FLEX®) family combines the benefits of both erasable programmable logic devices (EPLDs) and field-programmable gate arrays (FPGAs). The FLEX 8000 device family is ideal for a variety of applications because it combines the fine-grained architecture and high register count characteristics of FPGAs with the high speed and predictable interconnect delays of EPLDs. Logic is implemented in LEs that include compact 4-input look-up tables (LUTs) and programmable registers. High performance is provided by a fast, continuous network of routing resources. ⁽¹⁾ FLEX 8000 device package types include plastic J-lead chip carrier (PLCC), thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat pack (RQFP), ball-grid array (BGA), and pin-grid array (PGA) packages. Each LAB provides four control signals that can be used in all eight LEs. Two of these signals can be used as clocks, and the other two for clear/preset control. The LAB control signals can be driven directly from a dedicated input pin, an I/O pin, or any internal signal via the LAB local interconnect. The dedicated inputs are typically used for global clock, clear, or preset signals because they provide synchronous control with very low skew across the device. FLEX 8000 devices support up to four individual global clock, clear, or preset control signals. If logic is required on a control signal, it can be generated in one or more LEs in any LAB and driven into the local interconnect of the target LAB. #### Logic Element The logic element (LE) is the smallest unit of logic in the FLEX 8000 architecture, with a compact size that provides efficient logic utilization. Each LE contains a 4-input LUT, a programmable flipflop, a carry chain, and cascade chain. Figure 3 shows a block diagram of an LE. Figure 3. FLEX 8000 LE The LUT is a function generator that can quickly compute any function of four variables. The programmable flipflop in the LE can be configured for D, T, JK, or SR operation. The clock, clear, and preset control signals on the flipflop can be driven by dedicated input pins, general-purpose I/O pins, or any internal logic. For purely combinatorial functions, the flipflop is bypassed and the output of the LUT goes directly to the output of the LE. The FLEX 8000 architecture provides two dedicated high-speed data paths—carry chains and cascade chains—that connect adjacent LEs without using local interconnect paths. The carry chain supports high-speed counters and adders; the cascade chain implements wide-input functions with minimum delay. Carry and cascade chains connect all LEs in an LAB and all LABs in the same row. Heavy use of carry and cascade chains can reduce routing flexibility. Therefore, the use of carry and cascade chains should be limited to speed-critical portions of a design. #### Carry Chain The carry chain provides a very fast (less than 1 ns) carry-forward function between LEs. The carry-in signal from a lower-order bit moves forward into the higher-order bit via the carry chain, and feeds into both the LUT and the next portion of the carry chain. This feature allows the FLEX 8000 architecture to implement high-speed counters and adders of arbitrary width. The MAX+PLUS II Compiler can create carry chains automatically during design processing; designers can also insert carry chain logic manually during design entry. Figure 4 shows how an n-bit full adder can be implemented in n+1 LEs with the carry chain. One portion of the LUT generates the sum of two bits using the input signals and the carry-in signal; the sum is routed to the output of the LE. The register is typically bypassed for simple adders, but can be used for an accumulator function. Another portion of the LUT and the carry chain logic generate the carry-out signal, which is routed directly to the carry-in signal of the next-higher-order bit. The final carry-out signal is routed to another LE, where it can be used as a general-purpose signal. In addition to mathematical functions, carry chain logic supports very fast counters and comparators. Figure 6. FLEX 8000 LE Operating Modes #### **Normal Mode** #### **Arithmetic Mode** #### **Up/Down Counter Mode** #### **Clearable Counter Mode** #### Internal Tri-State Emulation Internal tri-state emulation provides internal tri-stating without the limitations of a physical tri-state bus. In a physical tri-state bus, the tri-state buffers' output enable signals select the signal that drives the bus. However, if multiple output enable signals are active, contending signals can be driven onto the bus. Conversely, if no output enable signals are active, the bus will float. Internal tri-state emulation resolves contending tri-state buffers to a low value and floating buses to a high value, thereby eliminating these problems. The MAX+PLUS II software automatically implements tri-state bus functionality with a multiplexer. #### Clear & Preset Logic Control Logic for the programmable register's clear and preset functions is controlled by the DATA3, LABCTRL1, and LABCTRL2 inputs to the LE. The clear and preset control structure of the LE is used to asynchronously load signals into a register. The register can be set up so that LABCTRL1 implements an asynchronous load. The data to be loaded is driven to DATA3; when LABCTRL1 is asserted, DATA3 is loaded into the register. During compilation, the MAX+PLUS II Compiler automatically selects the best control signal implementation. Because the clear and preset functions are active-low, the Compiler automatically assigns a logic high to an unused clear or preset. The clear and preset logic is implemented in one of the following six asynchronous modes, which are chosen during design entry. LPM functions that use registers will automatically use the correct asynchronous mode. See Figure 7. - Clear only - Preset only - Clear and preset - Load with clear - Load with preset - Load without clear or preset Figure 12. FLEX 8000 Column-to-IOE Connections In addition to general-purpose I/O pins, FLEX 8000 devices have four dedicated input pins. These dedicated inputs provide low-skew, device-wide signal distribution, and are typically used for global clock, clear, and preset control signals. The signals from the dedicated inputs are available as control signals for all LABs and I/O elements in the device. The dedicated inputs can also be used as general-purpose data inputs because they can feed the local interconnect of each LAB in the device. Signals enter the FLEX 8000 device either from the I/O pins that provide general-purpose input capability or from the four dedicated inputs. The IOEs are located at the ends of the row and column interconnect channels. I/O pins can be used as input, output, or bidirectional pins. Each I/O pin has a register that can be used either as an input register for external data that requires fast setup times, or as an output register for data that requires fast clock-to-output performance. The MAX+PLUS II Compiler uses the programmable inversion option to invert signals automatically from the row and column interconnect when appropriate. The clock, clear, and output enable controls for the IOEs are provided by a network of I/O control signals. These signals can be supplied by either the dedicated input pins or by internal logic. The IOE control-signal paths are designed to minimize the skew across the device. All control-signal sources are buffered onto high-speed drivers that drive the signals around the periphery of the device. This "peripheral bus" can be configured to provide up to four output enable signals (10 in EPF81500A devices), and up to two clock or clear signals. Figure 13 on page 22 shows how two output enable signals are shared with one clock and one clear signal. The signals for the peripheral bus can be generated by any of the four dedicated inputs or signals on the row interconnect channels, as shown in Figure 13. The number of row channels in a row that can drive the peripheral bus correlates to the number of columns in the FLEX 8000 device. EPF8282A and EPF8282AV devices use 13 channels; EPF8452A, EPF8636A, EPF8820A, and EPF81188A devices use 21 channels; and EPF81500A devices use 27 channels. The first LE in each LAB is the source of the row channel signal. The six peripheral control signals (12 in EPF81500A devices) can be accessed by each IOE. Figure 13. FLEX 8000 Peripheral Bus Numbers in parentheses are for EPF81500A devices. #### Note: (1) n = 13 for EPF8282A and EPF8282AV devices. n = 21 for EPF8452A, EPF8636A, EPF8820A, and EPF81188A devices. n = 27 for EPF81500A devices. Table 5 lists the source of the peripheral control signal for each FLEX 8000 device by row. | Peripheral
Control Signal | EPF8282A
EPF8282AV | EPF8452A | EPF8636A | EPF8820A | EPF81188A | EPF81500A | |------------------------------|-----------------------|----------|----------|----------|-----------|-----------| | CLK0 | Row A | Row A | Row A | Row A | Row E | Row E | | CLK1/OE1 | Row B | Row B | Row C | Row C | Row B | Row B | | CLR0 | Row A | Row A | Row B | Row B | Row F | Row F | | CLR1/OE0 | Row B | Row B | Row C | Row D | Row C | Row C | | OE2 | Row A | Row A | Row A | Row A | Row D | Row A | | OE3 | Row B | Row B | Row B | Row B | Row A | Row A | | OE4 | _ | _ | - | _ | - | Row B | | OE5 | _ | _ | - | _ | - | Row C | | OE6 | - | - | - | - | - | Row D | | OE7 | - | - | - | - | - | Row D | | OE8 | - | - | - | - | - | Row E | | OE9 | _ | _ | _ | _ | - | Row F | ## Output Configuration This section discusses slew-rate control and MultiVolt I/O interface operation for FLEX 8000 devices. #### **Slew-Rate Control** The output buffer in each IOE has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A slow slew rate reduces system noise by slowing signal transitions, adding a maximum delay of 3.5 ns. The slow slew-rate setting affects only the falling edge of a signal. The fast slew rate should be used for speed-critical outputs in systems that are adequately protected against noise. Designers can specify the slew rate on a pin-by-pin basis during design entry or assign a default slew rate to all pins on a global basis. For more information on high-speed system design, go to *Application Note 75 (High-Speed Board Designs)*. | Table 1 | Table 15. FLEX 8000 3.3-V Device DC Operating Conditions Note (4) | | | | | | | | | |------------------|---|--------------------------------------|-----------------------|-----|-----------------------|------|--|--|--| | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | | | | | V _{IH} | High-level input voltage | | 2.0 | | V _{CC} + 0.3 | V | | | | | V_{IL} | Low-level input voltage | | -0.3 | | 0.8 | V | | | | | V_{OH} | High-level output voltage | $I_{OH} = -0.1 \text{ mA DC } (5)$ | V _{CC} - 0.2 | | | V | | | | | V_{OL} | Low-level output voltage | I _{OL} = 4 mA DC (5) | | | 0.45 | V | | | | | I _I | Input leakage current | $V_I = V_{CC}$ or ground | -10 | | 10 | μΑ | | | | | I_{OZ} | Tri-state output off-state current | $V_O = V_{CC}$ or ground | -40 | | 40 | μΑ | | | | | I _{CC0} | V _{CC} supply current (standby) | V _I = ground, no load (6) | | 0.3 | 10 | mA | | | | | Table 1 | Table 16. FLEX 8000 3.3-V Device Capacitance Note (7) | | | | | | | | |------------------|---|-------------------------------------|-----|-----|------|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | C _{IN} | Input capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 10 | pF | | | | | C _{OUT} | Output capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 10 | pF | | | | #### Notes to tables: - (1) See the Operating Requirements for Altera Devices Data Sheet. - (2) Minimum DC input voltage is –0.3 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to 5.3 V for input currents less than 100 mA and periods shorter than 20 ns. - (3) The maximum V_{CC} rise time is 100 ms. V_{CC} must rise monotonically. - (4) These values are specified in Table 14 on page 29. - (5) The I_{OH} parameter refers to high-level TTL output current; the I_{OL} parameter refers to low-level TTL output current. - (6) Typical values are for $T_A = 25^{\circ}$ C and $V_{CC} = 3.3$ V. - (7) Capacitance is sample-tested only. Figure 16 shows the typical output drive characteristics of 5.0-V FLEX 8000 devices. The output driver is compliant with *PCI Local Bus Specification, Revision 2.2*. Figure 18. Output Drive Characteristics of EPF8282AV Devices ### **Timing Model** The continuous, high-performance FastTrack Interconnect routing structure ensures predictable performance and accurate simulation and timing analysis. This predictable performance contrasts with that of FPGAs, which use a segmented connection scheme and hence have unpredictable performance. Timing simulation and delay prediction are available with the MAX+PLUS II Simulator and Timing Analyzer, or with industry-standard EDA tools. The Simulator offers both pre-synthesis functional simulation to evaluate logic design accuracy and post-synthesis timing simulation with 0.1-ns resolution. The Timing Analyzer provides point-to-point timing delay information, setup and hold time prediction, and device-wide performance analysis. Tables 17 through 20 describe the FLEX 8000 timing parameters and their symbols. | Cumbal | Parameter | |---------------------|---| | Symbol | Faiailietei | | t _{IOD} | IOE register data delay | | t _{IOC} | IOE register control signal delay | | t _{IOE} | Output enable delay | | t _{IOCO} | IOE register clock-to-output delay | | t _{IOCOMB} | IOE combinatorial delay | | t _{IOSU} | IOE register setup time before clock; IOE register recovery time after asynchronous clear | | t _{IOH} | IOE register hold time after clock | | t _{IOCLR} | IOE register clear delay | | t _{IN} | Input pad and buffer delay | | t _{OD1} | Output buffer and pad delay, slow slew rate = off, $V_{CCIO} = 5.0 \text{ V C1} = 35 \text{ pF}$ (2) | | t _{OD2} | Output buffer and pad delay, slow slew rate = off, $V_{CCIO} = 3.3 \text{ V C1} = 35 \text{ pF } (2)$ | | t _{OD3} | Output buffer and pad delay, slow slew rate = on, C1 = 35 pF (3) | | t_{XZ} | Output buffer disable delay, C1 = 5 pF | | t_{ZX1} | Output buffer enable delay, slow slew rate = off, V _{CCIO} = 5.0 V, C1 = 35 pF (2) | | t_{ZX2} | Output buffer enable delay, slow slew rate = off, V _{CCIO} = 3.3 V, C1 = 35 pF (2) | | t_{ZX3} | Output buffer enable delay, slow slew rate = on, C1 = 35 pF (3) | | Table 18. F | Table 18. FLEX 8000 LE Timing ParametersNote (1) | | | | | | |--------------------|--|--|--|--|--|--| | Symbol | Parameter | | | | | | | t_{LUT} | LUT delay for data-in | | | | | | | t _{CLUT} | LUT delay for carry-in | | | | | | | t _{RLUT} | LUT delay for LE register feedback | | | | | | | t _{GATE} | Cascade gate delay | | | | | | | t _{CASC} | Cascade chain routing delay | | | | | | | t _{CICO} | Carry-in to carry-out delay | | | | | | | t _{CGEN} | Data-in to carry-out delay | | | | | | | t _{CGENR} | LE register feedback to carry-out delay | | | | | | | t_{C} | LE register control signal delay | | | | | | | t _{CH} | LE register clock high time | | | | | | | t _{CL} | LE register clock low time | | | | | | | t_{CO} | LE register clock-to-output delay | | | | | | | t _{COMB} | Combinatorial delay | | | | | | | t _{SU} | LE register setup time before clock; LE register recovery time after asynchronous preset, clear, or load | | | | | | | t_H | LE register hold time after clock | | | | | | | t _{PRE} | LE register preset delay | | | | | | | t _{CLR} | LE register clear delay | | | | | | | Table 19. FLE) | Table 19. FLEX 8000 Interconnect Timing Parameters Note (1) | | | | | | | |-----------------------|---|--|--|--|--|--|--| | Symbol | Parameter | | | | | | | | t _{LABCASC} | Cascade delay between LEs in different LABs | | | | | | | | t _{LABCARRY} | Carry delay between LEs in different LABs | | | | | | | | t _{LOCAL} | LAB local interconnect delay | | | | | | | | t _{ROW} | Row interconnect routing delay (4) | | | | | | | | t_{COL} | Column interconnect routing delay | | | | | | | | t _{DIN_C} | Dedicated input to LE control delay | | | | | | | | t _{DIN_D} | Dedicated input to LE data delay (4) | | | | | | | | t _{DIN_IO} | Dedicated input to IOE control delay | | | | | | | | Table 20. FLEX 8 | 2000 External Reference Timing Characteristics Note (5) | | | | | |------------------|--|--|--|--|--| | Symbol | Parameter | | | | | | t _{DRR} | Register-to-register delay via 4 LEs, 3 row interconnects, and 4 local interconnects (6) | | | | | | t _{ODH} | Output data hold time after clock (7) | | | | | #### Notes to tables: - (1) Internal timing parameters cannot be measured explicitly. They are worst-case delays based on testable and external parameters specified by Altera. Internal timing parameters should be used for estimating device performance. Post-compilation timing simulation or timing analysis is required to determine actual worst-case performance. - (2) These values are specified in Table 10 on page 28 or Table 14 on page 29. - (3) For the t_{OD3} and t_{ZX3} parameters, $V_{CCIO} = 3.3 \text{ V or } 5.0 \text{ V}$. - (4) The t_{ROW} and t_{DIN_D} delays are worst-case values for typical applications. Post-compilation timing simulation or timing analysis is required to determine actual worst-case performance. - (5) External reference timing characteristics are factory-tested, worst-case values specified by Altera. A representative subset of signal paths is tested to approximate typical device applications. - (6) For more information on test conditions, see *Application Note 76* (*Understanding FLEX 8000 Timing*). - (7) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies to global and non-global clocking, and for LE and I/O element registers. The FLEX 8000 timing model shows the delays for various paths and functions in the circuit. See Figure 19. This model contains three distinct parts: the LE; the IOE; and the interconnect, including the row and column FastTrack Interconnect, LAB local interconnect, and carry and cascade interconnect paths. Each parameter shown in Figure 19 is expressed as a worst-case value in Tables 22 through 49. Hand-calculations that use the FLEX 8000 timing model and these timing parameters can be used to estimate FLEX 8000 device performance. Timing simulation or timing analysis after compilation is required to determine the final worst-case performance. Table 21 summarizes the interconnect paths shown in Figure 19. For more information on timing parameters, go to *Application Note 76* (*Understanding FLEX 8000 Timing*). Table 21. FLEX 8000 Timing Model Interconnect Paths Source Destination **Total Delay** LE-Out LE in same LAB t_{LOCAL} LE-Out LE in same row, different LAB $t_{ROW} + t_{LOCAL}$ $t_{COL} + t_{ROW} + t_{LOCAL}$ LE-Out LE in different row LE-Out IOE on column t_{COL} LE-Out IOE on row t_{ROW} IOE on row LE in same row $t_{ROW} + t_{LOCAL}$ IOE on column Any LE $t_{COL} + t_{ROW} + t_{LOCAL}$ Tables 22 through $49\ \mathrm{show}$ the FLEX 8000 internal and external timing parameters. | Symbol | Speed Grade | | | | | | | | | |---------------------|-------------|-----|-----|-----|-----|-----|----|--|--| | | A | -2 | А | -3 | A | | | | | | | Min | Max | Min | Max | Min | Max | | | | | t_{IOD} | | 0.7 | | 0.8 | | 0.9 | ns | | | | t _{IOC} | | 1.7 | | 1.8 | | 1.9 | ns | | | | t _{IOE} | | 1.7 | | 1.8 | | 1.9 | ns | | | | t _{IOCO} | | 1.0 | | 1.0 | | 1.0 | ns | | | | t _{IOCOMB} | | 0.3 | | 0.2 | | 0.1 | ns | | | | t _{IOSU} | 1.4 | | 1.6 | | 1.8 | | ns | | | | t _{IOH} | 0.0 | | 0.0 | | 0.0 | | ns | | | | t _{IOCLR} | | 1.2 | | 1.2 | | 1.2 | ns | | | | t _{IN} | | 1.5 | | 1.6 | | 1.7 | ns | | | | t _{OD1} | | 1.1 | | 1.4 | | 1.7 | ns | | | | t _{OD2} | | _ | | _ | | - | ns | | | | t _{OD3} | | 4.6 | | 4.9 | | 5.2 | ns | | | | t _{XZ} | | 1.4 | | 1.6 | | 1.8 | ns | | | | t_{ZX1} | | 1.4 | | 1.6 | | 1.8 | ns | | | | t_{ZX2} | | - | | - | | _ | ns | | | | t_{ZX3} | | 4.9 | | 5.1 | | 5.3 | ns | | | | Symbol | | | Speed | Grade | | | Unit | |-----------------------|-----|-----|-------|-------|-----|-----|------| | | А | -2 | А | -3 | А | 1 | | | | Min | Max | Min | Max | Min | Max | 1 | | t _{LABCASC} | | 0.3 | | 0.3 | | 0.4 | ns | | t _{LABCARRY} | | 0.3 | | 0.3 | | 0.4 | ns | | t _{LOCAL} | | 0.5 | | 0.6 | | 0.8 | ns | | t _{ROW} | | 4.2 | | 4.2 | | 4.2 | ns | | t_{COL} | | 2.5 | | 2.5 | | 2.5 | ns | | t _{DIN_C} | | 5.0 | | 5.0 | | 5.5 | ns | | t _{DIN_D} | | 7.2 | | 7.2 | | 7.2 | ns | | t _{DIN_IO} | | 5.0 | | 5.0 | | 5.5 | ns | | Symbol | Speed Grade | | | | | | | | | |--------------------|-------------|-----|-----|-----|-----|-----|----|--|--| | | A-2 | | A-3 | | A-4 | | | | | | | Min | Max | Min | Max | Min | Max | | | | | t_{IOD} | | 0.7 | | 0.8 | | 0.9 | ns | | | | t_{IOC} | | 1.7 | | 1.8 | | 1.9 | ns | | | | t_{IOE} | | 1.7 | | 1.8 | | 1.9 | ns | | | | t _{IOCO} | | 1.0 | | 1.0 | | 1.0 | ns | | | | t_{IOCOMB} | | 0.3 | | 0.2 | | 0.1 | ns | | | | t _{IOSU} | 1.4 | | 1.6 | | 1.8 | | ns | | | | t _{IOH} | 0.0 | | 0.0 | | 0.0 | | ns | | | | t _{IOCLR} | | 1.2 | | 1.2 | | 1.2 | ns | | | | t _{IN} | | 1.5 | | 1.6 | | 1.7 | ns | | | | t _{OD1} | | 1.1 | | 1.4 | | 1.7 | ns | | | | t _{OD2} | | 1.6 | | 1.9 | | 2.2 | ns | | | | t _{OD3} | | 4.6 | | 4.9 | | 5.2 | ns | | | | t_{XZ} | | 1.4 | | 1.6 | | 1.8 | ns | | | | t_{ZX1} | | 1.4 | | 1.6 | | 1.8 | ns | | | | t_{ZX2} | | 1.9 | | 2.1 | | 2.3 | ns | | | | t_{ZX3} | | 4.9 | | 5.1 | | 5.3 | ns | | | | Symbol | Speed Grade | | | | | | | | | |-----------------------|-------------|-----|-----|-----|-----|-----|----|--|--| | | A-2 | | A-3 | | A-4 | | | | | | | Min | Max | Min | Max | Min | Max | 1 | | | | t _{LABCASC} | | 0.3 | | 0.3 | | 0.4 | ns | | | | t _{LABCARRY} | | 0.3 | | 0.3 | | 0.4 | ns | | | | t _{LOCAL} | | 0.5 | | 0.6 | | 0.8 | ns | | | | t _{ROW} | | 5.0 | | 5.0 | | 5.0 | ns | | | | t_{COL} | | 3.0 | | 3.0 | | 3.0 | ns | | | | t _{DIN_C} | | 5.0 | | 5.0 | | 5.5 | ns | | | | t _{DIN_D} | | 7.0 | | 7.0 | | 7.5 | ns | | | | t _{DIN IO} | | 5.0 | | 5.0 | | 5.5 | ns | | | Figure 20. FLEX 8000 I_{CCACTIVE} vs. Operating Frequency 5.0-V FLEX 8000 Devices #### 3.3-V FLEX 8000 Devices # Configuration & Operation The FLEX 8000 architecture supports several configuration schemes to load a design into the device(s) on the circuit board. This section summarizes the device operating modes and available device configuration schemes. For more information, go to *Application Note 33 (Configuring FLEX 8000 Devices)* and *Application Note 38 (Configuring Multiple FLEX 8000 Devices)*. ## Device Pin-Outs Tables 52 through 54 show the pin names and numbers for the dedicated pins in each FLEX 8000 device package. | Pin Name | 84-Pin
PLCC
EPF8282A | 84-Pin
PLCC
EPF8452A
EPF8636A | 100-Pin
TQFP
EPF8282A
EPF8282AV | 100-Pin
TQFP
EPF8452A | 144-Pin
TQFP
EPF8820A | 160-Pin
PGA
EPF8452A | 160-Pin
PQFP
EPF8820A
(1) | |----------------|----------------------------|--|--|-----------------------------|-----------------------------|----------------------------|------------------------------------| | nSP <i>(2)</i> | 75 | 75 | 75 | 76 | 110 | R1 | 1 | | MSELO (2) | 74 | 74 | 74 | 75 | 109 | P2 | 2 | | MSEL1 (2) | 53 | 53 | 51 | 51 | 72 | A1 | 44 | | nSTATUS (2) | 32 | 32 | 24 | 25 | 37 | C13 | 82 | | nCONFIG (2) | 33 | 33 | 25 | 26 | 38 | A15 | 81 | | DCLK (2) | 10 | 10 | 100 | 100 | 143 | P14 | 125 | | CONF_DONE (2) | 11 | 11 | 1 | 1 | 144 | N13 | 124 | | nWS | 30 | 30 | 22 | 23 | 33 | F13 | 87 | | nRS | 48 | 48 | 42 | 45 | 31 | C6 | 89 | | RDCLK | 49 | 49 | 45 | 46 | 12 | B5 | 110 | | nCS | 29 | 29 | 21 | 22 | 4 | D15 | 118 | | CS | 28 | 28 | 19 | 21 | 3 | E15 | 121 | | RDYnBUSY | 77 | 77 | 77 | 78 | 20 | P3 | 100 | | CLKUSR | 50 | 50 | 47 | 47 | 13 | C5 | 107 | | ADD17 | 51 | 51 | 49 | 48 | 75 | B4 | 40 | | ADD16 | 36 | 55 | 28 | 54 | 76 | E2 | 39 | | ADD15 | 56 | 56 | 55 | 55 | 77 | D1 | 38 | | ADD14 | 57 | 57 | 57 | 57 | 78 | E1 | 37 | | ADD13 | 58 | 58 | 58 | 58 | 79 | F3 | 36 | | ADD12 | 60 | 60 | 59 | 60 | 83 | F2 | 32 | | ADD11 | 61 | 61 | 60 | 61 | 85 | F1 | 30 | | ADD10 | 62 | 62 | 61 | 62 | 87 | G2 | 28 | | ADD9 | 63 | 63 | 62 | 64 | 89 | G1 | 26 | | ADD8 | 64 | 64 | 64 | 65 | 92 | H1 | 22 | | ADD7 | 65 | 65 | 65 | 66 | 94 | H2 | 20 | | ADD6 | 66 | 66 | 66 | 67 | 95 | J1 | 18 | | ADD5 | 67 | 67 | 67 | 68 | 97 | J2 | 16 | | ADD4 | 69 | 69 | 68 | 70 | 102 | K2 | 11 | | ADD3 | 70 | 70 | 69 | 71 | 103 | K1 | 10 | | ADD2 | 71 | 71 | 71 | 72 | 104 | K3 | 8 | | ADD1 | 76 | 72 | 76 | 73 | 105 | M1 | 7 | | Table 52. FLE) | Table 52. FLEX 8000 84-, 100-, 144- & 160-Pin Package Pin-Outs (Part 3 of 3) | | | | | | | | | |----------------------------|--|--|--|--|--|---|--|--|--| | Pin Name | 84-Pin
PLCC
EPF8282A | 84-Pin
PLCC
EPF8452A
EPF8636A | 100-Pin
TQFP
EPF8282A
EPF8282AV | 100-Pin
TQFP
EPF8452A | 144-Pin
TQFP
EPF8820A | 160-Pin
PGA
EPF8452A | 160-Pin
PQFP
EPF8820A | | | | GND | 5, 26, 47, 68 | 5, 26, 47,
68 | 2, 13, 30, 44,
52, 63, 80,
94 | 19, 44, 69,
94 | 7, 17, 27,
39, 54,
80, 81,
100,101,
128, 142 | C12, D4,
D7, D9,
D13, G4,
G13, H3,
H12, J4,
J13, L1,
M3, M8,
M12, M15,
N4 | 12, 13, 34,
35, 51, 63,
75, 80, 83,
93, 103,
115, 126,
131, 143,
155 | | | | No Connect
(N.C.) | - | _ | _ | 2, 6, 13, 30,
37, 42, 43,
50, 52, 56,
63, 80, 87,
92, 93, 99 | _ | _ | _ | | | | Total User I/O
Pins (9) | 64 | 64 | 74 | 64 | 108 | 116 | 116 | | | | Pin Name | 225-Pin
BGA | 232-Pin
PGA | 240-Pin
PQFP | 240-Pin
PQFP | 280-Pin
PGA | 304-Pin
RQFP | | |----------------|----------------|----------------|-----------------|-----------------|----------------|-----------------|--| | | EPF8820A | EPF81188A | EPF81188A | EPF81500A | EPF81500A | EPF81500A | | | nSP <i>(2)</i> | A15 | C14 | 237 | 237 | W1 | 304 | | | MSELO (2) | B14 | G15 | 21 | 19 | N1 | 26 | | | MSEL1 (2) | R15 | L15 | 40 | 38 | H3 | 51 | | | nSTATUS (2) | P2 | L3 | 141 | 142 | G19 | 178 | | | nCONFIG (2) | R1 | R4 | 117 | 120 | B18 | 152 | | | DCLK (2) | B2 | C4 | 184 | 183 | U18 | 230 | | | CONF_DONE (2) | A1 | G3 | 160 | 161 | M16 | 204 | | | nWS | L4 | P1 | 133 | 134 | F18 | 167 | | | nRS | K5 | N1 | 137 | 138 | G18 | 171 | | | RDCLK | F1 | G2 | 158 | 159 | M17 | 202 | | | nCS | D1 | E2 | 166 | 167 | N16 | 212 | | | CS | C1 | E3 | 169 | 170 | N18 | 215 | | | RDYnBUSY | J3 | K2 | 146 | 147 | J17 | 183 | | | CLKUSR | G2 | H2 | 155 | 156 | K19 | 199 | | | ADD17 | M14 | R15 | 58 | 56 | E3 | 73 | | | ADD16 | L12 | T17 | 56 | 54 | E2 | 71 | | | ADD15 | M15 | P15 | 54 | 52 | F4 | 69 | | | ADD14 | L13 | M14 | 47 | 45 | G1 | 60 | | | ADD13 | L14 | M15 | 45 | 43 | H2 | 58 | | | ADD12 | K13 | M16 | 43 | 41 | H1 | 56 | | | ADD11 | K15 | K15 | 36 | 34 | J3 | 47 | | | ADD10 | J13 | K17 | 34 | 32 | K3 | 45 | | | ADD9 | J15 | J14 | 32 | 30 | K4 | 43 | | | ADD8 | G14 | J15 | 29 | 27 | L1 | 34 | | | ADD7 | G13 | H17 | 27 | 25 | L2 | 32 | | | ADD6 | G11 | H15 | 25 | 23 | M1 | 30 | | | ADD5 | F14 | F16 | 18 | 16 | N2 | 20 | | | ADD4 | E13 | F15 | 16 | 14 | N3 | 18 | | | ADD3 | D15 | F14 | 14 | 12 | N4 | 16 | | | ADD2 | D14 | D15 | 7 | 5 | U1 | 8 | | | ADD1 | E12 | B17 | 5 | 3 | U2 | 6 | | | ADD0 | C15 | C15 | 3 | 1 | V1 | 4 | | | DATA7 | A7 | A7 | 205 | 199 | W13 | 254 | | | DATA6 | D7 | D8 | 203 | 197 | W14 | 252 | | | DATA5 | A6 | B7 | 200 | 196 | W15 | 250 | | #### Notes to tables: - (1) Perform a complete thermal analysis before committing a design to this device package. See *Application Note 74* (Evaluating Power for Altera Devices) for more information. - (2) This pin is a dedicated pin and is not available as a user I/O pin. - (3) SDOUT will drive out during configuration. After configuration, it may be used as a user I/O pin. By default, the MAX+PLUS II software will not use SDOUT as a user I/O pin; the user can override the MAX+PLUS II software and use SDOUT as a user I/O pin. - (4) If the device is not configured to use the JTAG BST circuitry, this pin is available as a user I/O pin. - (5) JTAG pins are available for EPF8636A devices only. These pins are dedicated user I/O pins. - (6) If this pin is used as an input in user mode, ensure that it does not toggle before or during configuration. - (7) TRST is a dedicated input pin for JTAG use. This pin must be grounded if JTAG BST is not used. - (8) Pin 52 is a V_{CC} pin on EPF8452A devices only. - (9) The user I/O pin count includes dedicated input pins and all I/O pins. - (10) Unused dedicated inputs should be tied to ground on the board. - (11) SDOUT does not exist in the EPF8636GC192 device. - (12) These pins are no connect (N.C.) pins for EPF8636A devices only. They are user I/O pins in EPF8820A devices. - (13) EPF8636A devices have 132 user I/O pins; EPF8820A devices have 148 user I/O pins. - (14) For EPF81500A devices, these pins are dedicated JTAG pins and are not available as user I/O pins. If JTAG BST is not used, TDI, TCK, TMS, and TRST should be tied to GND. ## Revision History The information contained in the *FLEX 8000 Programmable Logic Device Family Data Sheet* version 11.1 supersedes information published in previous versions. The *FLEX 8000 Programmable Logic Device Family Data Sheet* version 11.1 contains the following change: minor textual updates.