E·XFL

Altera - EPF8636AQC208-3 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	63
Number of Logic Elements/Cells	504
Total RAM Bits	-
Number of I/O	136
Number of Gates	-
Voltage - Supply	4.75V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=epf8636aqc208-3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

JTAG BST circuitry	Yes	No	Yes	Yes	No	Yes

...and More Features

Peripheral register for fast setup and clock-to-output delay
 Fabricated on an educated CDAM succession

- Fabricated on an advanced SRAM process
 - Available in a variety of packages with 84 to 304 pins (see Table 2)
 Software design support and automatic place-and-route provided by the Altera[®] MAX+PLUS[®] II development system for Windows-based PCs, as well as Sun SPARCstation, HP 9000 Series 700/800, and IBM RISC System/6000 workstations
 - Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, and Veribest

Table 2. FLEX 8000 Package Options & I/O Pin Count Note (1)												
Device	84- Pin PLCC	100- Pin TQFP	144- Pin TQFP	160- Pin PQFP	160- Pin PGA	192- Pin PGA	208- Pin PQFP	225- Pin BGA	232- Pin PGA	240- Pin PQFP	280- Pin PGA	304- Pin RQFP
EPF8282A	68	78										
EPF8282AV		78										
EPF8452A	68	68		120	120							
EPF8636A	68			118		136	136					
EPF8820A			112	120		152	152	152				
EPF81188A							148		184	184		
EPF81500A										181	208	208

Note:

(1) FLEX 8000 device package types include plastic J-lead chip carrier (PLCC), thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat pack (RQFP), ball-grid array (BGA), and pin-grid array (PGA) packages.

General Description

Altera's Flexible Logic Element MatriX (FLEX[®]) family combines the benefits of both erasable programmable logic devices (EPLDs) and fieldprogrammable gate arrays (FPGAs). The FLEX 8000 device family is ideal for a variety of applications because it combines the fine-grained architecture and high register count characteristics of FPGAs with the high speed and predictable interconnect delays of EPLDs. Logic is implemented in LEs that include compact 4-input look-up tables (LUTs) and programmable registers. High performance is provided by a fast, continuous network of routing resources.

Logic Array Block

A logic array block (LAB) consists of eight LEs, their associated carry and cascade chains, LAB control signals, and the LAB local interconnect. The LAB provides the coarse-grained structure of the FLEX 8000 architecture. This structure enables FLEX 8000 devices to provide efficient routing, high device utilization, and high performance. Figure 2 shows a block diagram of the FLEX 8000 LAB.

Altera Corporation

The MAX+PLUS II Compiler can create cascade chains automatically during design processing; designers can also insert cascade chain logic manually during design entry. Cascade chains longer than eight LEs are automatically implemented by linking LABs together. The last LE of an LAB cascades to the first LE of the next LAB.

Figure 5 shows how the cascade function can connect adjacent LEs to form functions with a wide fan-in. These examples show functions of 4n variables implemented with n LEs. For a device with an A-2 speed grade, the LE delay is 2.4 ns; the cascade chain delay is 0.6 ns. With the cascade chain, 4.2 ns is needed to decode a 16-bit address.

Figure 5. FLEX 8000 Cascade Chain Operation

LE Operating Modes

The FLEX 8000 LE can operate in one of four modes, each of which uses LE resources differently. See Figure 6. In each mode, seven of the ten available inputs to the LE—the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE—are directed to different destinations to implement the desired logic function. The three remaining inputs to the LE provide clock, clear, and preset control for the register. The MAX+PLUS II software automatically chooses the appropriate mode for each application. Design performance can also be enhanced by designing for the operating mode that supports the desired application.

Figure 6. FLEX 8000 LE Operating Modes

Arithmetic Mode

Up/Down Counter Mode

Clearable Counter Mode

The instruction register length for FLEX 8000 devices is three bits. Table 7 shows the boundary-scan register length for FLEX 8000 devices.

Table 7. FLEX 8000 Boundary-Scan Register Length						
Device Boundary-Scan Register Length						
EPF8282A, EPF8282AV	273					
EPF8636A	417					
EPF8820A	465					
EPF81500A	645					

FLEX 8000 devices that support JTAG include weak pull-ups on the JTAG pins. Figure 14 shows the timing requirements for the JTAG signals.

Figure 14. EPF8282A, EPF8282AV, EPF8636A, EPF8820A & EPF81500A JTAG Waveforms

Table 8 shows the timing parameters and values for EPF8282A, EPF8282AV, EPF8636A, EPF8820A, and EPF81500A devices.

Figure 15. FLEX 8000 AC Test Conditions

Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-groundcurrent transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Numbers in parentheses are for 3.3-V devices or outputs. Numbers without parentheses are for 5.0-V devices or outputs.

Operating Conditions

Tables 9 through 12 provide information on absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for 5.0-V FLEX 8000 devices.

Table 9. FLEX 8000 5.0-V Device Absolute Maximum Ratings Note (1)								
Symbol	Parameter	Conditions	Min	Max	Unit			
V _{CC}	Supply voltage	With respect to ground (2)	-2.0	7.0	V			
VI	DC input voltage		-2.0	7.0	V			
IOUT	DC output current, per pin		-25	25	mA			
T _{STG}	Storage temperature	No bias	-65	150	°C			
T _{AMB}	Ambient temperature	Under bias	-65	135	°C			
Τ _J	Junction temperature	Ceramic packages, under bias		150	°C			
		PQFP and RQFP, under bias		135	°C			

Figure 18. Output Drive Characteristics of EPF8282AV Devices

Timing Model

The continuous, high-performance FastTrack Interconnect routing structure ensures predictable performance and accurate simulation and timing analysis. This predictable performance contrasts with that of FPGAs, which use a segmented connection scheme and hence have unpredictable performance. Timing simulation and delay prediction are available with the MAX+PLUS II Simulator and Timing Analyzer, or with industry-standard EDA tools. The Simulator offers both pre-synthesis functional simulation to evaluate logic design accuracy and post-synthesis timing simulation with 0.1-ns resolution. The Timing Analyzer provides point-to-point timing delay information, setup and hold time prediction, and device-wide performance analysis.

Tables 17 through 20 describe the FLEX 8000 timing parameters and their symbols.

Table 17. F	LEX 8000 Internal Timing Parameters Note (1)
Symbol	Parameter
t _{IOD}	IOE register data delay
t _{IOC}	IOE register control signal delay
t _{IOE}	Output enable delay
t _{IOCO}	IOE register clock-to-output delay
t _{IOCOMB}	IOE combinatorial delay
t _{IOSU}	IOE register setup time before clock; IOE register recovery time after asynchronous clear
t _{IOH}	IOE register hold time after clock
t _{IOCLR}	IOE register clear delay
t _{IN}	Input pad and buffer delay
t _{OD1}	Output buffer and pad delay, slow slew rate = off, $V_{CCIO} = 5.0 \text{ V C1} = 35 \text{ pF}$ (2)
t _{OD2}	Output buffer and pad delay, slow slew rate = off, V_{CCIO} = 3.3 V C1 = 35 pF (2)
t _{OD3}	Output buffer and pad delay, slow slew rate = on, $C1 = 35 \text{ pF}$ (3)
t _{XZ}	Output buffer disable delay, C1 = 5 pF
t _{ZX1}	Output buffer enable delay, slow slew rate = off, V_{CCIO} = 5.0 V, C1 = 35 pF (2)
t _{ZX2}	Output buffer enable delay, slow slew rate = off, V_{CCIO} = 3.3 V, C1 = 35 pF (2)
t _{ZX3}	Output buffer enable delay, slow slew rate = on, C1 = 35 pF (3)

Table 18. F	Table 18. FLEX 8000 LE Timing Parameters Note (1)					
Symbol	Parameter					
t _{LUT}	LUT delay for data-in					
t _{CLUT}	LUT delay for carry-in					
t _{RLUT}	LUT delay for LE register feedback					
t _{GATE}	Cascade gate delay					
t _{CASC}	Cascade chain routing delay					
t _{CICO}	Carry-in to carry-out delay					
t _{CGEN}	Data-in to carry-out delay					
t _{CGENR}	LE register feedback to carry-out delay					
t _C	LE register control signal delay					
t _{CH}	LE register clock high time					
t _{CL}	LE register clock low time					
t _{CO}	LE register clock-to-output delay					
t _{COMB}	Combinatorial delay					
t _{SU}	LE register setup time before clock; LE register recovery time after asynchronous preset, clear, or load					
t _H	LE register hold time after clock					
t _{PRE}	LE register preset delay					
t _{CLR}	LE register clear delay					

Altera Corporation

Table 19. FLEX 8000 Interconnect Timing Parameters Note (1)							
Symbol	Parameter						
t _{LABCASC}	Cascade delay between LEs in different LABs						
t _{LABCARRY}	Carry delay between LEs in different LABs						
t _{LOCAL}	LAB local interconnect delay						
t _{ROW}	Row interconnect routing delay (4)						
t _{COL}	Column interconnect routing delay						
t _{DIN_C}	Dedicated input to LE control delay						
t _{DIN_D}	redicated input to LE data delay (4)						
t _{DIN_IO}	Dedicated input to IOE control delay						

Table 20. FLEX 8000 External Reference Timing Characteristics Note (5)

Symbol	Parameter
t _{DRR}	Register-to-register delay via 4 LEs, 3 row interconnects, and 4 local interconnects (6)
t _{ODH}	Output data hold time after clock (7)

Notes to tables:

- Internal timing parameters cannot be measured explicitly. They are worst-case delays based on testable and external parameters specified by Altera. Internal timing parameters should be used for estimating device performance. Post-compilation timing simulation or timing analysis is required to determine actual worst-case performance.
- (2) These values are specified in Table 10 on page 28 or Table 14 on page 29.
- (3) For the t_{OD3} and t_{ZX3} parameters, $V_{CCIO} = 3.3$ V or 5.0 V.
- (4) The t_{ROW} and t_{DIN_D} delays are worst-case values for typical applications. Post-compilation timing simulation or timing analysis is required to determine actual worst-case performance.
- (5) External reference timing characteristics are factory-tested, worst-case values specified by Altera. A representative subset of signal paths is tested to approximate typical device applications.
- (6) For more information on test conditions, see Application Note 76 (Understanding FLEX 8000 Timing).
- (7) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies to global and non-global clocking, and for LE and I/O element registers.

The FLEX 8000 timing model shows the delays for various paths and functions in the circuit. See Figure 19. This model contains three distinct parts: the LE; the IOE; and the interconnect, including the row and column FastTrack Interconnect, LAB local interconnect, and carry and cascade interconnect paths. Each parameter shown in Figure 19 is expressed as a worst-case value in Tables 22 through 49. Hand-calculations that use the FLEX 8000 timing model and these timing parameters can be used to estimate FLEX 8000 device performance. Timing simulation or timing analysis after compilation is required to determine the final worst-case performance. Table 21 summarizes the interconnect paths shown in Figure 19.

For more information on timing parameters, go to *Application Note 76* (*Understanding FLEX 8000 Timing*).

Altera Corporation

Figure 19. FLEX 8000 Timing Model

Table 24. EPF8282A LE Timing Parameters								
Symbol	Speed Grade							
	A	-2	A	-3	A	-4		
	Min	Max	Min	Max	Min	Max		
t _{LUT}		2.0		2.5		3.2	ns	
t _{CLUT}		0.0		0.0		0.0	ns	
t _{RLUT}		0.9		1.1		1.5	ns	
t _{GATE}		0.0		0.0		0.0	ns	
t _{CASC}		0.6		0.7		0.9	ns	
t _{CICO}		0.4		0.5		0.6	ns	
t _{CGEN}		0.4		0.5		0.7	ns	
t _{CGENR}		0.9		1.1		1.5	ns	
t _C		1.6		2.0		2.5	ns	
t _{CH}	4.0		4.0		4.0		ns	
t _{CL}	4.0		4.0		4.0		ns	
t _{CO}		0.4		0.5		0.6	ns	
t _{COMB}		0.4		0.5		0.6	ns	
t _{SU}	0.8		1.1		1.2		ns	
t _H	0.9		1.1		1.5		ns	
t _{PRE}		0.6		0.7		0.8	ns	
t _{CLR}		0.6		0.7		0.8	ns	

Table 25. EPF8282A External Timing Parameters

Symbol	Speed Grade						Unit
	A	-2	A-3		A-4		
	Min	Max	Min	Max	Min	Max	
t _{DRR}		15.8		19.8		24.8	ns
t _{ODH}	1.0		1.0		1.0		ns

FLEX 8000 Programmable Logic Device Family Data She	eet
---	-----

Table 26. EPF8282AV I/O Element Timing Parameters							
Symbol		Speed	Grade		Unit		
	P	-3	A	-4			
	Min	Max	Min	Max			
t _{IOD}		0.9		2.2	ns		
t _{IOC}		1.9		2.0	ns		
t _{IOE}		1.9		2.0	ns		
t _{IOCO}		1.0		2.0	ns		
t _{IOCOMB}		0.1		0.0	ns		
t _{IOSU}	1.8		2.8		ns		
t _{IOH}	0.0		0.2		ns		
t _{IOCLR}		1.2		2.3	ns		
t _{IN}		1.7		3.4	ns		
t _{OD1}		1.7		4.1	ns		
t _{OD2}		-		-	ns		
t _{OD3}		5.2		7.1	ns		
t _{XZ}		1.8		4.3	ns		
t _{ZX1}		1.8		4.3	ns		
t _{ZX2}		-		-	ns		
t _{ZX3}		5.3		8.3	ns		

Symbol		Speed	Grade		Unit
	A	-3	A		
F	Min	Max	Min	Max	
t _{LABCASC}		0.4		1.3	ns
t _{LABCARRY}		0.4		0.8	ns
t _{LOCAL}		0.8		1.5	ns
t _{ROW}		4.2		6.3	ns
t _{COL}		2.5		3.8	ns
t _{DIN_C}		5.5		8.0	ns
t _{DIN_D}		7.2		10.8	ns
t _{DIN IO}		5.5		9.0	ns

T

Symbol		Unit				
İ	A-3		A	A-4		
İ	Min	Мах	Min	Мах		
t _{LUT}		3.2		7.3	ns	
t _{CLUT}		0.0		1.4	ns	
t _{RLUT}		1.5		5.1	ns	
t _{GATE}		0.0		0.0	ns	
t _{CASC}		0.9		2.8	ns	
t _{CICO}		0.6		1.5	ns	
t _{CGEN}		0.7		2.2	ns	
t _{CGENR}		1.5		3.7	ns	
t _C		2.5		4.7	ns	
t _{CH}	4.0		6.0		ns	
t _{CL}	4.0		6.0		ns	
t _{CO}		0.6		0.9	ns	
t _{COMB}		0.6		0.9	ns	
t _{SU}	1.2		2.4		ns	
t _H	1.5		4.6		ns	
t _{PRE}		0.8		1.3	ns	
t _{CLR}		0.8		1.3	ns	

Table 29. EPF8282AV External Timing Parameters								
Symbol	Speed Grade Unit							
	A-3		A					
	Min	Max	Min	Max]			
t _{DRR}		24.8		50.1	ns			
t _{ODH}	1.0	1.0 1.0						

Table 36. EPF8636A LE Timing Parameters									
Symbol	Speed Grade								
	A-2		A	A-3		A-4			
	Min	Max	Min	Max	Min	Max			
t _{LUT}		2.0		2.3		3.0	ns		
t _{CLUT}		0.0		0.2		0.1	ns		
t _{RLUT}		0.9		1.6		1.6	ns		
t _{GATE}		0.0		0.0		0.0	ns		
t _{CASC}		0.6		0.7		0.9	ns		
t _{CICO}		0.4		0.5		0.6	ns		
t _{CGEN}		0.4		0.9		0.8	ns		
t _{CGENR}		0.9		1.4		1.5	ns		
t _C		1.6		1.8		2.4	ns		
t _{CH}	4.0		4.0		4.0		ns		
t _{CL}	4.0		4.0		4.0		ns		
t _{CO}		0.4		0.5		0.6	ns		
t _{COMB}		0.4		0.5		0.6	ns		
t _{SU}	0.8		1.0		1.1		ns		
t _H	0.9		1.1		1.4		ns		
t _{PRE}		0.6		0.7		0.8	ns		
t _{CLR}		0.6		0.7		0.8	ns		

Table 37. EPF8636A External Timing Parameters

Symbol	Speed Grade							
	A	-2	A-3		A-4			
	Min	Max	Min	Max	Min	Max		
t _{DRR}		16.0		20.0		25.0	ns	
t _{ODH}	1.0		1.0		1.0		ns	

Table 40. EPF8820A LE Timing Parameters									
Symbol	Speed Grade								
	A	-2	A	-3	A	-4			
	Min	Max	Min	Max	Min	Max			
t _{LUT}		2.0		2.5		3.2	ns		
t _{CLUT}		0.0		0.0		0.0	ns		
t _{RLUT}		0.9		1.1		1.5	ns		
t _{GATE}		0.0		0.0		0.0	ns		
t _{CASC}		0.6		0.7		0.9	ns		
t _{CICO}		0.4		0.5		0.6	ns		
t _{CGEN}		0.4		0.5		0.7	ns		
t _{CGENR}		0.9		1.1		1.5	ns		
t _C		1.6		2.0		2.5	ns		
t _{CH}	4.0		4.0		4.0		ns		
t _{CL}	4.0		4.0		4.0		ns		
t _{CO}		0.4		0.5		0.6	ns		
t _{COMB}		0.4		0.5		0.6	ns		
t _{SU}	0.8		1.1		1.2		ns		
t _H	0.9		1.1		1.5		ns		
t _{PRE}		0.6		0.7		0.8	ns		
t _{CLR}		0.6		0.7		0.8	ns		

Table 41. EPF8820A External Timing Parameters							
Symbol	Speed Grade Unit						Unit
	A-2		A-3		A-4		
	Min	Max	Min	Max	Min	Max	
t _{DRR}		16.0		20.0		25.0	ns
t _{ODH}	1.0		1.0		1.0		ns

Table 46. EPF81500A I/O Element Timing Parameters								
Symbol	Speed Grade							
	A	-2	A	A-3		-4		
	Min	Max	Min	Max	Min	Max		
t _{IOD}		0.7		0.8		0.9	ns	
t _{IOC}		1.7		1.8		1.9	ns	
t _{IOE}		1.7		1.8		1.9	ns	
t _{IOCO}		1.0		1.0		1.0	ns	
t _{IOCOMB}		0.3		0.2		0.1	ns	
t _{IOSU}	1.4		1.6		1.8		ns	
t _{IOH}	0.0		0.0		0.0		ns	
t _{IOCLR}		1.2		1.2		1.2	ns	
t _{IN}		1.5		1.6		1.7	ns	
t _{OD1}		1.1		1.4		1.7	ns	
t _{OD2}		1.6		1.9		2.2	ns	
t _{OD3}		4.6		4.9		5.2	ns	
t _{XZ}		1.4		1.6		1.8	ns	
t _{ZX1}		1.4		1.6		1.8	ns	
t _{ZX2}		1.9		2.1		2.3	ns	
t _{ZX3}		4.9		5.1		5.3	ns	

Symbol			Speed	Grade			Unit
	A	-2	A-3		A-4		
	Min	Max	Min	Max	Min	Max	
t _{LABCASC}		0.3		0.3		0.4	ns
t _{LABCARRY}		0.3		0.3		0.4	ns
t _{LOCAL}		0.5		0.6		0.8	ns
t _{ROW}		6.2		6.2		6.2	ns
t _{COL}		3.0		3.0		3.0	ns
t _{DIN_C}		5.0		5.0		5.5	ns
t _{DIN_D}		8.2		8.2		8.7	ns
t _{DIN_IO}		5.0		5.0		5.5	ns

ſ

1

Power Consumption

The supply power (P) for FLEX 8000 devices can be calculated with the following equation:

 $P = P_{INT} + P_{IO} = [(I_{CCSTANDBY} + I_{CCACTIVE}) \times V_{CC}] + P_{IO}$

Typical I_{CCSTANDBY} values are shown as I_{CC0} in Table 11 on page 28 and Table 15 on page 30. The P_{IO} value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note* 74 (*Evaluating Power for Altera Devices*). The I_{CCACTIVE} value depends on the switching frequency and the application logic. This value can be calculated based on the amount of current that each LE typically consumes.

The following equation shows the general formula for calculating $I_{\mbox{\scriptsize CCACTIVE}}$:

$$I_{CCACTIVE} = K \times f_{MAX} \times N \times tog_{LC} \times \frac{\mu A}{MHz \times LE}$$

The parameters in this equation are shown below:

f _{MAX}	=	Maximum operating frequency in MHz
Ν	=	Total number of logic cells used in the device
tog _{LC}	=	Average percentage of logic cells toggling at each clock
Κ	=	Constant, shown in Table 50

Table 50. Values for Constant K			
Device	К		
5.0-V FLEX 8000 devices	75		
3.3-V FLEX 8000 devices 60			

This calculation provides an I_{CC} estimate based on typical conditions with no output load. The actual I_{CC} value should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions.

Figure 20 shows the relationship between $\rm I_{\rm CC}$ and operating frequency for several LE utilization values.

TAUIE 52. FLEX 8000 64-, 100-, 144- & 100-Pin Packaye Pin-Ouis (Pari 2 01 3)								
Pin Name	84-Pin PLCC EPF8282A	84-Pin PLCC EPF8452A EPF8636A	100-Pin TQFP EPF8282A EPF8282AV	100-Pin TQFP EPF8452A	144-Pin TQFP EPF8820A	160-Pin PGA EPF8452A	160-Pin PQFP EPF8820A (1)	
ADD0	78	76	78	77	106	N3	6	
DATA7	3	2	90	89	131	P8	140	
DATA6	4	4	91	91	132	P10	139	
DATA5	6	6	92	95	133	R12	138	
DATA4	7	7	95	96	134	R13	136	
DATA3	8	8	97	97	135	P13	135	
DATA2	9	9	99	98	137	R14	133	
DATA1	13	13	4	4	138	N15	132	
DATA0	14	14	5	5	140	K13	129	
SDOUT (3)	79	78	79	79	23	P4	97	
TDI <i>(4)</i>	55	45 (5)	54	-	96	-	17	
TDO (4)	27	27 (5)	18	-	18	-	102	
TCK (4), (6)	72	44 (5)	72	-	88	-	27	
TMS (4)	20	43 (5)	11	-	86	-	29	
TRST (7)	52	52 (8)	50	-	71	-	45	
Dedicated	12, 31, 54,	12, 31, 54,	3, 23, 53, 73	3, 24, 53,	9, 26, 82,	C3, D14,	14, 33, 94,	
Inputs (10)	73	73		74	99	N2, R15	113	
VCCINT	17, 38, 59, 80	17, 38, 59, 80	6, 20, 37, 56, 70, 87	9, 32, 49, 59, 82	8, 28, 70, 90, 111	B2, C4, D3, D8, D12, G3, G12, H4, H13, J3, J12, M4, M7, M9, M13, N12	3, 24, 46, 92, 114, 160	
VCCIO	-	_	-	-	16, 40, 60, 69, 91, 112, 122, 141	_	23, 47, 57, 69, 79, 104, 127, 137, 149, 159	

Г

FLEX 8000 Programmable Logic Device Family Data Sheet

Table 52. FLEX 8000 84-, 100-, 144- & 160-Pin Package Pin-Outs (Part 3 of 3)								
Pin Name	84-Pin PLCC EPF8282A	84-Pin PLCC EPF8452A EPF8636A	100-Pin TQFP EPF8282A EPF8282AV	100-Pin TQFP EPF8452A	144-Pin TQFP EPF8820A	160-Pin PGA EPF8452A	160-Pin PQFP EPF8820A (1)	
GND	5, 26, 47, 68	5, 26, 47, 68	2, 13, 30, 44, 52, 63, 80, 94	19, 44, 69, 94	7, 17, 27, 39, 54, 80, 81, 100,101, 128, 142	C12, D4, D7, D9, D13, G4, G13, H3, H12, J4, J13, L1, M3, M8, M12, M15, N4	12, 13, 34, 35, 51, 63, 75, 80, 83, 93, 103, 115, 126, 131, 143, 155	
No Connect (N.C.)	-	-	-	2, 6, 13, 30, 37, 42, 43, 50, 52, 56, 63, 80, 87, 92, 93, 99	-	-	-	
Total User I/O Pins <i>(9)</i>	64	64	74	64	108	116	116	

Table 54. FLEX 8000 225-, 232-, 240-, 280- & 304-Pin Package Pin-Outs (Part 2 of 3)							
Pin Name	225-Pin BGA EPF8820A	232-Pin PGA EPF81188A	240-Pin PQFP EPF81188A	240-Pin PQFP EPF81500A	280-Pin PGA EPF81500A	304-Pin RQFP EPF81500A	
DATA4	A5	C7	198	194	W16	248	
data3	B5	D7	196	193	W17	246	
DATA2	E6	B5	194	190	V16	243	
DATA1	D5	A3	191	189	U16	241	
DATA0	C4	A2	189	187	V17	239	
SDOUT (3)	K1	N2	135	136	F19	169	
TDI	F15 <i>(4)</i>	-	-	63 (14)	B1 (14)	80 (14)	
TDO	J2 (4)	-	-	117	C17	149	
TCK (6)	J14 <i>(4)</i>	-	-	116 (14)	A19 (14)	148 (14)	
TMS	J12 <i>(4)</i>	-	-	64 (14)	C2 (14)	81 (14)	
TRST (7)	P14	-	-	115 (14)	A18 (14)	145 (14)	
Dedicated Inputs (10)	F4, L1, K12, E15	C1, C17, R1, R17	10, 51, 130, 171	8, 49, 131, 172	F1, F16, P3, P19	12, 64, 164, 217	
VCCINT (5.0 V)	F5, F10, E1, L2, K4, M12, P15, H13, H14, B15, C13	E4, H4, L4, P12, L14, H14, E14, R14, U1	20, 42, 64, 66, 114, 128, 150, 172, 236	18, 40, 60, 62, 91, 114, 129, 151, 173, 209, 236	B17, D3, D15, E8, E10, E12, E14, R7, R9, R11, R13, R14, T14	24, 54, 77, 144, 79, 115, 162, 191, 218, 266, 301	
VCCIO (5.0 V or 3.3 V)	H3, H2, P6, R6, P10, N10, R14, N13, H15, H12, D12, A14, B10, A10, B6, C6, A2, C3, M4, R2	N10, M13, M5, K13, K5, H13, H5, F5, E10, E8, N8, F13	19, 41, 65, 81, 99, 116, 140, 162, 186, 202, 220, 235	17, 39, 61, 78, 94, 108, 130, 152, 174, 191, 205, 221, 235	D14, E7, E9, E11, E13, R6, R8, R10, R12, T13, T15	22, 53, 78, 99, 119, 137, 163, 193, 220, 244, 262, 282, 300	

-