E·XFL

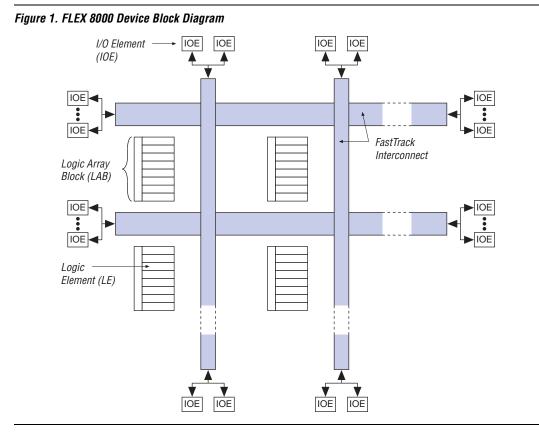
Intel - EPF8820AQC160-2 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

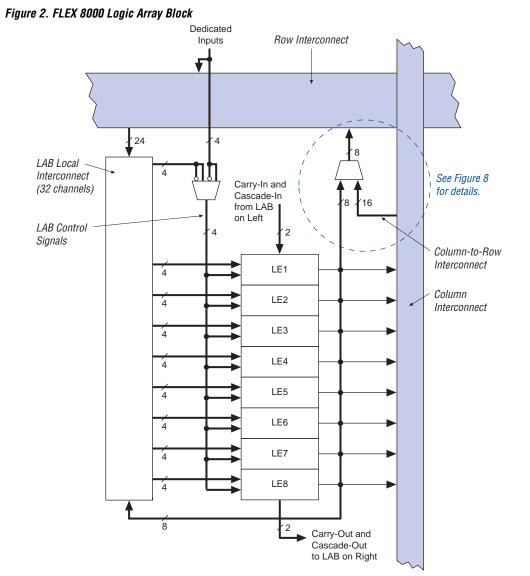

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Product Status	Obsolete	
Number of LABs/CLBs	84	
Number of Logic Elements/Cells	672	
Total RAM Bits	-	
Number of I/O	120	
Number of Gates	8000	
Voltage - Supply	4.75V ~ 5.25V	
Mounting Type	Surface Mount	
Operating Temperature	0°C ~ 70°C (TA)	
Package / Case	160-BQFP	
Supplier Device Package	160-PQFP (28x28)	
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf8820agc160-2	

Email: info@E-XFL.COM

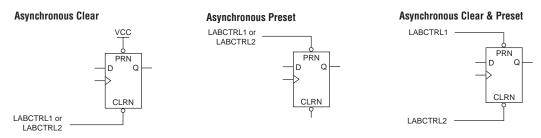
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1 shows a block diagram of the FLEX 8000 architecture. Each group of eight LEs is combined into an LAB; LABs are arranged into rows and columns. The I/O pins are supported by I/O elements (IOEs) located at the ends of rows and columns. Each IOE contains a bidirectional I/O buffer and a flipflop that can be used as either an input or output register.

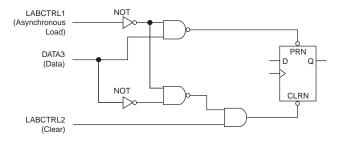


Signal interconnections within FLEX 8000 devices and between device pins are provided by the FastTrack Interconnect, a series of fast, continuous channels that run the entire length and width of the device. IOEs are located at the end of each row (horizontal) and column (vertical) FastTrack Interconnect path.

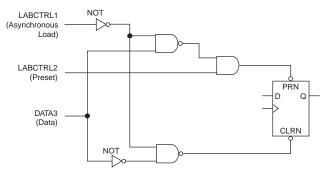
Altera Corporation

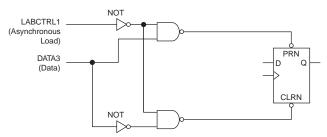

Logic Array Block

A logic array block (LAB) consists of eight LEs, their associated carry and cascade chains, LAB control signals, and the LAB local interconnect. The LAB provides the coarse-grained structure of the FLEX 8000 architecture. This structure enables FLEX 8000 devices to provide efficient routing, high device utilization, and high performance. Figure 2 shows a block diagram of the FLEX 8000 LAB.



Altera Corporation


Figure 7. FLEX 8000 LE Asynchronous Clear & Preset Modes


Asynchronous Load with Clear

Asynchronous Load with Preset

Asynchronous Load without Clear or Preset

Each LE in an LAB can drive up to two separate column interconnect channels. Therefore, all 16 available column channels can be driven by the LAB. The column channels run vertically across the entire device, and share access to LABs in the same column but in different rows. The MAX+PLUS II Compiler chooses which LEs must be connected to a column channel. A row interconnect channel can be fed by the output of the LE or by two column channels. These three signals feed a multiplexer that connects to a specific row channel. Each LE is connected to one 3-to-1 multiplexer. In an LAB, the multiplexers provide all 16 column channels with access to 8 row channels.

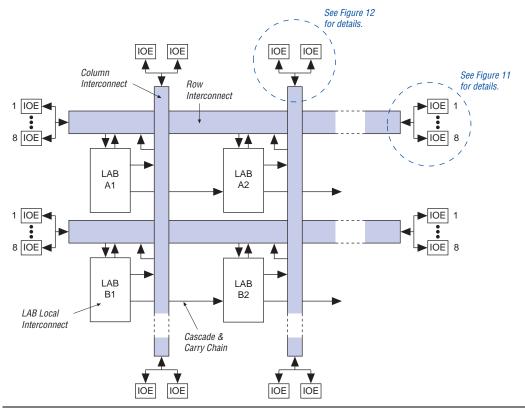
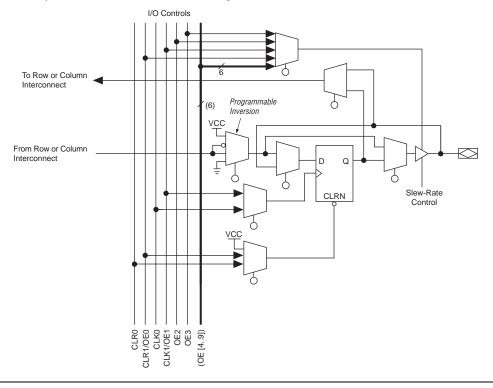

Each column of LABs has a dedicated column interconnect that routes signals out of the LABs into the column. The column interconnect can then drive I/O pins or feed into the row interconnect to route the signals to other LABs in the device. A signal from the column interconnect, which can be either the output of an LE or an input from an I/O pin, must transfer to the row interconnect before it can enter an LAB. Table 4 summarizes the FastTrack Interconnect resources available in each FLEX 8000 device.

Table 4. FLE	EX 8000 Fa	astTrack Interconnec	t Resources	
Device	Rows	Channels per Row	Columns	Channels per Column
EPF8282A EPF8282AV	2	168	13	16
EPF8452A	2	168	21	16
EPF8636A	3	168	21	16
EPF8820A	4	168	21	16
EPF81188A	6	168	21	16
EPF81500A	6	216	27	16

Figure 9 shows the interconnection of four adjacent LABs, with row, column, and local interconnects, as well as the associated cascade and carry chains.

Figure 9. FLEX 8000 Device Interconnect Resources

Each LAB is named according to its physical row (A, B, C, etc.) and column (1, 2, 3, etc.) position within the device.

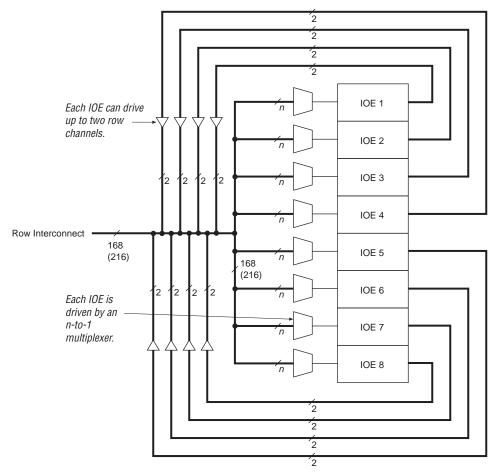


I/O Element

An IOE contains a bidirectional I/O buffer and a register that can be used either as an input register for external data that requires a fast setup time, or as an output register for data that requires fast clock-to-output performance. IOEs can be used as input, output, or bidirectional pins. The MAX+PLUS II Compiler uses the programmable inversion option to automatically invert signals from the row and column interconnect where appropriate. Figure 10 shows the IOE block diagram.

Figure 10. FLEX 8000 IOE

Numbers in parentheses are for EPF81500A devices only.



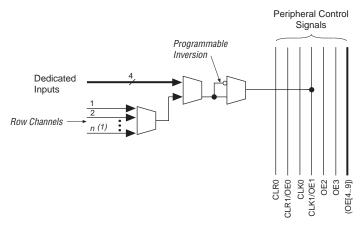
Row-to-IOE Connections

Figure 11 illustrates the connection between row interconnect channels and IOEs. An input signal from an IOE can drive two separate row channels. When an IOE is used as an output, the signal is driven by an *n*-to-1 multiplexer that selects the row channels. The size of the multiplexer varies with the number of columns in a device. EPF81500A devices use a 27-to-1 multiplexer; EPF81188A, EPF8820A, EPF8636A, and EPF8452A devices use a 21-to-1 multiplexer; and EPF8282A and EPF8282AV devices use a 13-to-1 multiplexer. Eight IOEs are connected to each side of the row channels.

Figure 11. FLEX 8000 Row-to-IOE Connections

Numbers in parentheses are for EPF81500A devices. See Note (1).

Note:


- (1) n = 13 for EPF8282A and EPF8282AV devices.
 - *n* = 21 for EPF8452A, EPF8636A, EPF8820A, and EPF81188A devices.
 - n = 27 for EPF81500A devices.

Column-to-IOE Connections

Two IOEs are located at the top and bottom of the column channels (see Figure 12). When an IOE is used as an input, it can drive up to two separate column channels. The output signal to an IOE can choose from 8 of the 16 column channels through an 8-to-1 multiplexer.

The signals for the peripheral bus can be generated by any of the four dedicated inputs or signals on the row interconnect channels, as shown in Figure 13. The number of row channels in a row that can drive the peripheral bus correlates to the number of columns in the FLEX 8000 device. EPF8282A and EPF8282AV devices use 13 channels; EPF8452A, EPF8636A, EPF8820A, and EPF81188A devices use 21 channels; and EPF81500A devices use 27 channels. The first LE in each LAB is the source of the row channel signal. The six peripheral control signals (12 in EPF81500A devices) can be accessed by each IOE.

Figure 13. FLEX 8000 Peripheral Bus

Numbers in parentheses are for EPF81500A devices.

Note:

- (1) n = 13 for EPF8282A and EPF8282AV devices.
 - *n* = 21 for EPF8452A, EPF8636A, EPF8820A, and EPF81188A devices.
 - n = 27 for EPF81500A devices.

The instruction register length for FLEX 8000 devices is three bits. Table 7 shows the boundary-scan register length for FLEX 8000 devices.

Table 7. FLEX 8000 Boundary-Scan	Table 7. FLEX 8000 Boundary-Scan Register Length					
Device	Boundary-Scan Register Length					
EPF8282A, EPF8282AV	273					
EPF8636A	417					
EPF8820A	465					
EPF81500A	645					

FLEX 8000 devices that support JTAG include weak pull-ups on the JTAG pins. Figure 14 shows the timing requirements for the JTAG signals.

Figure 14. EPF8282A, EPF8282AV, EPF8636A, EPF8820A & EPF81500A JTAG Waveforms

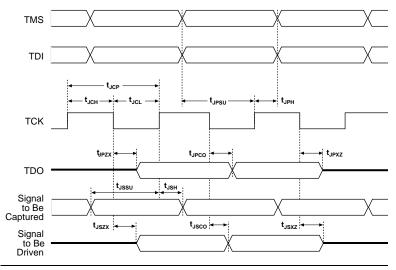
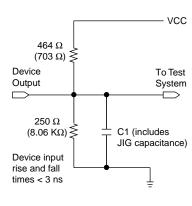



Table 8 shows the timing parameters and values for EPF8282A, EPF8282AV, EPF8636A, EPF8820A, and EPF81500A devices.

Figure 15. FLEX 8000 AC Test Conditions

Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-groundcurrent transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Numbers in parentheses are for 3.3-V devices or outputs. Numbers without parentheses are for 5.0-V devices or outputs.

Operating Conditions

Tables 9 through 12 provide information on absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for 5.0-V FLEX 8000 devices.

Table 9	Table 9. FLEX 8000 5.0-V Device Absolute Maximum Ratings Note (1)							
Symbol	Parameter	Conditions	Min	Max	Unit			
V _{CC}	Supply voltage	With respect to ground (2)	-2.0	7.0	V			
VI	DC input voltage		-2.0	7.0	V			
IOUT	DC output current, per pin		-25	25	mA			
T _{STG}	Storage temperature	No bias	-65	150	°C			
T _{AMB}	Ambient temperature	Under bias	-65	135	°C			
Τ _J	Junction temperature	Ceramic packages, under bias		150	°C			
		PQFP and RQFP, under bias		135	°C			

Symbol	Speed Grade								
	A	-2	A	-3	A	-4			
	Min	Max	Min	Мах	Min	Max			
t _{IOD}		0.7		0.8		0.9	ns		
t _{IOC}		1.7		1.8		1.9	ns		
t _{IOE}		1.7		1.8		1.9	ns		
t _{IOCO}		1.0		1.0		1.0	ns		
t _{IOCOMB}		0.3		0.2		0.1	ns		
t _{IOSU}	1.4		1.6		1.8		ns		
t _{IOH}	0.0		0.0		0.0		ns		
t _{IOCLR}		1.2		1.2		1.2	ns		
t _{IN}		1.5		1.6		1.7	ns		
t _{OD1}		1.1		1.4		1.7	ns		
t _{OD2}		-		-		-	ns		
t _{OD3}		4.6		4.9		5.2	ns		
t _{XZ}		1.4		1.6		1.8	ns		
t _{ZX1}		1.4		1.6		1.8	ns		
t _{ZX2}		-		-		-	ns		
t _{ZX3}		4.9		5.1		5.3	ns		

Table 31. EPF8452A Interconnect Timing Parameters

Symbol		Speed Grade							
	A	A-2		A-3		-4			
	Min	Max	Min	Max	Min	Max			
t _{LABCASC}		0.3		0.4		0.4	ns		
t _{LABCARRY}		0.3		0.4		0.4	ns		
t _{LOCAL}		0.5		0.5		0.7	ns		
t _{ROW}		5.0		5.0		5.0	ns		
t _{COL}		3.0		3.0		3.0	ns		
t _{DIN_C}		5.0		5.0		5.5	ns		
t _{DIN_D}		7.0		7.0		7.5	ns		
t _{DIN_IO}		5.0		5.0		5.5	ns		

Symbol		Speed Grade							
	A-2		A	A-3		-4			
	Min	Max	Min	Max	Min	Max			
t _{IOD}		0.7		0.8		0.9	ns		
t _{IOC}		1.7		1.8		1.9	ns		
t _{IOE}		1.7		1.8		1.9	ns		
t _{IOCO}		1.0		1.0		1.0	ns		
t _{IOCOMB}		0.3		0.2		0.1	ns		
t _{IOSU}	1.4		1.6		1.8		ns		
t _{IOH}	0.0		0.0		0.0		ns		
t _{IOCLR}		1.2		1.2		1.2	ns		
t _{IN}		1.5		1.6		1.7	ns		
t _{OD1}		1.1		1.4		1.7	ns		
t _{OD2}		1.6		1.9		2.2	ns		
t _{OD3}		4.6		4.9		5.2	ns		
t _{XZ}		1.4		1.6		1.8	ns		
t _{ZX1}		1.4		1.6		1.8	ns		
t _{ZX2}		1.9		2.1		2.3	ns		
t _{ZX3}		4.9		5.1		5.3	ns		

Symbol		Speed Grade							
	A	A-2		-3	A-4				
	Min	Max	Min	Max	Min	Max	1		
t _{LABCASC}		0.3		0.4		0.4	ns		
t _{LABCARRY}		0.3		0.4		0.4	ns		
t _{LOCAL}		0.5		0.5		0.7	ns		
t _{ROW}		5.0		5.0		5.0	ns		
t _{COL}		3.0		3.0		3.0	ns		
t _{DIN_C}		5.0		5.0		5.5	ns		
t _{DIN_D}		7.0		7.0		7.5	ns		
t _{DIN_IO}		5.0		5.0		5.5	ns		

Г

Symbol			Speed	Grade			Unit
	A	-2	A-3		A-4		
	Min	Max	Min	Max	Min	Max	1
t _{IOD}		0.7		0.8		0.9	ns
t _{IOC}		1.7		1.8		1.9	ns
t _{IOE}		1.7		1.8		1.9	ns
t _{IOCO}		1.0		1.0		1.0	ns
t _{IOCOMB}		0.3		0.2		0.1	ns
t _{IOSU}	1.4		1.6		1.8		ns
t _{IOH}	0.0		0.0		0.0		ns
t _{IOCLR}		1.2		1.2		1.2	ns
t _{IN}		1.5		1.6		1.7	ns
t _{OD1}		1.1		1.4		1.7	ns
t _{OD2}		1.6		1.9		2.2	ns
t _{OD3}		4.6		4.9		5.2	ns
t _{XZ}		1.4		1.6		1.8	ns
t _{ZX1}		1.4		1.6		1.8	ns
t _{ZX2}		1.9		2.1		2.3	ns
t _{ZX3}		4.9		5.1		5.3	ns

Symbol		Speed Grade							
	A	A-2		A-3		-4	1		
	Min	Max	Min	Max	Min	Max			
t _{LABCASC}		0.3		0.3		0.4	ns		
t _{LABCARRY}		0.3		0.3		0.4	ns		
t _{LOCAL}		0.5		0.6		0.8	ns		
t _{ROW}		5.0		5.0		5.0	ns		
t _{COL}		3.0		3.0		3.0	ns		
t _{DIN_C}		5.0		5.0		5.5	ns		
t _{DIN_D}		7.0		7.0		7.5	ns		
t _{DIN IO}		5.0		5.0		5.5	ns		

Γ

Symbol			Speed	Grade			Unit
	A	-2	A	A-3		-4	
	Min	Max	Min	Max	Min	Max	1
t _{IOD}		0.7		0.8		0.9	ns
t _{IOC}		1.7		1.8		1.9	ns
t _{IOE}		1.7		1.8		1.9	ns
t _{IOCO}		1.0		1.0		1.0	ns
t _{IOCOMB}		0.3		0.2		0.1	ns
t _{IOSU}	1.4		1.6		1.8		ns
t _{IOH}	0.0		0.0		0.0		ns
t _{IOCLR}		1.2		1.2		1.2	ns
t _{IN}		1.5		1.6		1.7	ns
t _{OD1}		1.1		1.4		1.7	ns
t _{OD2}		1.6		1.9		2.2	ns
t _{OD3}		4.6		4.9		5.2	ns
t _{XZ}		1.4		1.6		1.8	ns
t _{ZX1}		1.4		1.6		1.8	ns
t _{ZX2}		1.9		2.1		2.3	ns
t _{ZX3}		4.9		5.1		5.3	ns

Symbol			Speed	Grade			Unit
	A-2		A-3		A-4		
	Min	Max	Min	Max	Min	Max	
t _{LABCASC}		0.3		0.3		0.4	ns
t _{LABCARRY}		0.3		0.3		0.4	ns
t _{LOCAL}		0.5		0.6		0.8	ns
t _{ROW}		5.0		5.0		5.0	ns
t _{COL}		3.0		3.0		3.0	ns
t _{DIN_C}		5.0		5.0		5.5	ns
t _{DIN_D}		7.0		7.0		7.5	ns
t _{DIN IO}		5.0		5.0		5.5	ns

Symbol	Speed Grade							
	A-2		A-3		A-4			
	Min	Max	Min	Max	Min	Max	_	
t _{IOD}		0.7		0.8		0.9	ns	
t _{IOC}		1.7		1.8		1.9	ns	
t _{IOE}		1.7		1.8		1.9	ns	
t _{IOCO}		1.0		1.0		1.0	ns	
t _{IOCOMB}		0.3		0.2		0.1	ns	
t _{IOSU}	1.4		1.6		1.8		ns	
t _{IOH}	0.0		0.0		0.0		ns	
t _{IOCLR}		1.2		1.2		1.2	ns	
t _{IN}		1.5		1.6		1.7	ns	
t _{OD1}		1.1		1.4		1.7	ns	
t _{OD2}		1.6		1.9		2.2	ns	
t _{OD3}		4.6		4.9		5.2	ns	
t _{XZ}		1.4		1.6		1.8	ns	
t _{ZX1}		1.4		1.6		1.8	ns	
t _{ZX2}		1.9		2.1		2.3	ns	
t _{ZX3}		4.9		5.1		5.3	ns	

Symbol	Speed Grade							
	A-2		A-3		A-4			
	Min	Max	Min	Max	Min	Max		
t _{LABCASC}		0.3		0.3		0.4	ns	
t _{LABCARRY}		0.3		0.3		0.4	ns	
t _{LOCAL}		0.5		0.6		0.8	ns	
t _{ROW}		6.2		6.2		6.2	ns	
t _{COL}		3.0		3.0		3.0	ns	
t _{DIN_C}		5.0		5.0		5.5	ns	
t _{DIN_D}		8.2		8.2		8.7	ns	
t _{DIN_IO}		5.0		5.0		5.5	ns	

ſ

Operating Modes

The FLEX 8000 architecture uses SRAM elements that require configuration data to be loaded whenever the device powers up and begins operation. The process of physically loading the SRAM programming data into the device is called *configuration*. During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. The I/O pins are tri-stated during power-up, and before and during configuration. The configuration and initialization processes together are called *command mode*; normal device operation is called *user mode*.

SRAM elements allow FLEX 8000 devices to be reconfigured in-circuit with new programming data that is loaded into the device. Real-time reconfiguration is performed by forcing the device into command mode with a device pin, loading different programming data, reinitializing the device, and resuming user-mode operation. The entire reconfiguration process requires less than 100 ms and can be used to dynamically reconfigure an entire system. In-field upgrades can be performed by distributing new configuration files.

Configuration Schemes

The configuration data for a FLEX 8000 device can be loaded with one of six configuration schemes, chosen on the basis of the target application. Both active and passive schemes are available. In the active configuration schemes, the FLEX 8000 device functions as the controller, directing the loading operation, controlling external configuration devices, and completing the loading process. The clock source for all active configuration schemes is an oscillator on the FLEX 8000 device that operates between 2 MHz and 6 MHz. In the passive configuration schemes, an external controller guides the FLEX 8000 device. Table 51 shows the data source for each of the six configuration schemes.

Table 51. Data Source for Configuration						
Configuration Scheme	Acronym	Data Source				
Active serial	AS	Altera configuration device				
Active parallel up	APU	Parallel configuration device				
Active parallel down	APD	Parallel configuration device				
Passive serial	PS	Serial data path				
Passive parallel synchronous	PPS	Intelligent host				
Passive parallel asynchronous	PPA	Intelligent host				

Pin Name	160-Pin PQFP EPF8452A	160-Pin PQFP EPF8636A	192-Pin PGA EPF8636A EPF8820A	208-Pin PQFP EPF8636A (1)	208-Pin PQFP EPF8820A (1)	208-Pin PQFP EPF81188A <i>(1)</i>
nSP (2)	120	1	R15	207	207	5
MSEL0 (2)	117	3	T15	4	4	3 21
MSELU (2) MSEL1 (2)	84	38	T3	49	49	33
nSTATUS (2)	37	83	B3	108	108	124
	40	81	C3	103	103	107
nCONFIG (2) DCLK (2)	1	120	C15	158	158	154
	4					134
CONF_DONE (2)	4	118	B15	153	153	138
nWS	30	89	C5	114	114	118
nRS	71	50	B5	66	116	121
RDCLK	73	48	C11	64	137	137
nCS	29	91	B13	116	145	142
CS	27	93	A16	118	148	144
RDYnBUSY	125	155	A8	201	127	128
CLKUSR	76	44	A10	59	134	134
ADD17	78	43	R5	57	43	46
ADD16	91	33	U3	43	42	45
ADD15	92	31	T5	41	41	44
ADD14	94	29	U4	39	40	39
ADD13	95	27	R6	37	39	37
ADD12	96	24	Т6	31	35	36
ADD11	97	23	R7	30	33	31
ADD10	98	22	T7	29	31	30
ADD9	99	21	Т8	28	29	29
ADD8	101	20	U9	24	25	26
ADD7	102	19	U10	23	23	25
ADD6	103	18	U11	22	21	24
ADD5	104	17	U12	21	19	18
ADD4	105	13	R12	14	14	17
ADD3	106	11	U14	12	13	16
ADD2	109	9	U15	10	11	10
ADD1	110	7	R13	8	10	9
ADD0	123	157	U16	203	9	8
DATA7	144	137	H17	178	178	177
DATA6	150	132	G17	172	176	175
DATA5	152	129	F17	169	174	172

Altera Corporation

Pin Name	160-Pin PQFP EPF8452A	160-Pin PQFP EPF8636A	192-Pin PGA EPF8636A EPF8820A	208-Pin PQFP EPF8636A (1)	208-Pin PQFP EPF8820A (1)	208-Pin PQFP EPF81188A (1)
DATA4	154	127	E17	165	172	170
DATA3	157	124	G15	162	171	168
DATA2	159	122	F15	160	167	166
DATA1	11	115	E16	149	165	163
DATA0	12	113	C16	147	162	161
SDOUT (3)	128	152	C7 (11)	198	124	119
TDI <i>(4)</i>	_	55	R11	72	20	-
TDO <i>(4)</i>	_	95	B9	120	129	-
TCK (4), (6)	_	57	U8	74	30	-
TMS (4)	_	59	U7	76	32	-
trst (7)	_	40	R3	54	54	-
Dedicated Inputs (10)	5, 36, 85, 116	6, 35, 87, 116	A5, U5, U13, A13	7, 45, 112, 150	17, 36, 121, 140	13, 41, 116, 146
VCCINT (5.0 V)	21, 41, 53, 67, 80, 81, 100, 121, 133, 147, 160	4, 5, 26, 85, 106	C8, C9, C10, R8, R9, R10, R14	5, 6, 33, 110, 137	5, 6, 27, 48, 119, 141	4, 20, 35, 48, 50, 102, 114, 131, 147
VCCIO (5.0 V or 3.3 V)	_	25, 41, 60, 70, 80, 107, 121, 140, 149, 160	D3, D4, D9, D14, D15, G4, G14, L4, L14, P4, P9, P14	32, 55, 78, 91, 102, 138, 159, 182, 193, 206	26, 55, 69, 87, 102, 131, 159, 173, 191, 206	3, 19, 34, 49, 69, 87, 106, 123, 140, 156, 174, 192
GND	13, 14, 28, 46, 60, 75, 93, 107, 108, 126, 140, 155	15, 16, 36, 37, 45, 51, 75, 84, 86, 96, 97, 117, 126, 131, 154	C4, D7, D8, D10, D11, H4, H14, K4, K14, P7, P8, P10, P11	19, 20, 46, 47, 60, 67, 96, 109, 111, 124, 125, 151, 164, 171, 200		42, 43, 60, 78, 96, 105, 115, 122, 132, 139,
No Connect (N.C.)	2, 3, 38, 39, 70, 82, 83, 118, 119, 148	2, 39, 82, 119	C6, C12, C13, C14, E3, E15, F3, J3, J4, J14, J15, N3, N15, P3, P15, R4 <i>(12)</i>	$\begin{array}{c} 1, 2, 3, 16, 17, \\ 18, 25, 26, 27, \\ 34, 35, 36, 50, \\ 51, 52, 53, \\ 104, 105, 106, \\ 107, 121, 122, \\ 123, 130, 131, \\ 132, 139, 140, \\ 141, 154, 155, \\ 156, 157, 208 \end{array}$	154, 155, 156,	1, 2, 51, 52, 53, 54, 103, 104, 157, 158, 207, 208
Total User I/O Pins (9)	116	114	132, 148 (13)	132	148	144

Pin Name	225-Pin BGA EPF8820A	232-Pin PGA EPF81188A	240-Pin PQFP EPF81188A	240-Pin PQFP EPF81500A	280-Pin PGA EPF81500A	304-Pin RQFP EPF81500A
DATA4	A5	C7	198	194	W16	248
data3	B5	D7	196	193	W17	246
DATA2	E6	B5	194	190	V16	243
DATA1	D5	A3	191	189	U16	241
DATA0	C4	A2	189	187	V17	239
SDOUT (3)	K1	N2	135	136	F19	169
TDI	F15 (4)	-	-	63 (14)	B1 (14)	80 (14)
TDO	J2 (4)	-	-	117	C17	149
тск <i>(6)</i>	J14 <i>(4)</i>	-	-	116 (14)	A19 (14)	148 (14)
TMS	J12 <i>(4)</i>	-	-	64 (14)	C2 (14)	81 (14)
TRST (7)	P14	-	-	115 (14)	A18 (14)	145 (14)
Dedicated Inputs (10)	F4, L1, K12, E15	C1, C17, R1, R17	10, 51, 130, 171	8, 49, 131, 172	F1, F16, P3, P19	12, 64, 164, 217
VCCINT (5.0 V)	F5, F10, E1, L2, K4, M12, P15, H13, H14, B15, C13	E4, H4, L4, P12, L14, H14, E14, R14, U1	20, 42, 64, 66, 114, 128, 150, 172, 236	18, 40, 60, 62, 91, 114, 129, 151, 173, 209, 236	E8, E10, E12,	24, 54, 77, 144, 79, 115, 162, 191, 218 266, 301
VCCIO (5.0 V or 3.3 V)	H3, H2, P6, R6, P10, N10, R14, N13, H15, H12, D12, A14, B10, A10, B6, C6, A2, C3, M4, R2	N10, M13, M5, K13, K5, H13, H5, F5, E10, E8, N8, F13	19, 41, 65, 81, 99, 116, 140, 162, 186, 202, 220, 235	17, 39, 61, 78, 94, 108, 130, 152, 174, 191, 205, 221, 235	D14, E7, E9, E11, E13, R6, R8, R10, R12, T13, T15	

FLEX 8000 Programmable Logic Device Family Data Sheet

Notes to tables:

- Perform a complete thermal analysis before committing a design to this device package. See Application Note 74 (Evaluating Power for Altera Devices) for more information.
- (2) This pin is a dedicated pin and is not available as a user I/O pin.
- (3) SDOUT will drive out during configuration. After configuration, it may be used as a user I/O pin. By default, the MAX+PLUS II software will not use SDOUT as a user I/O pin; the user can override the MAX+PLUS II software and use SDOUT as a user I/O pin.
- (4) If the device is not configured to use the JTAG BST circuitry, this pin is available as a user I/O pin.
- (5) JTAG pins are available for EPF8636A devices only. These pins are dedicated user I/O pins.
- (6) If this pin is used as an input in user mode, ensure that it does not toggle before or during configuration.
- (7) TRST is a dedicated input pin for JTAG use. This pin must be grounded if JTAG BST is not used.
- (8) Pin 52 is a V_{CC} pin on EPF8452A devices only.
- (9) The user I/O pin count includes dedicated input pins and all I/O pins.
- (10) Unused dedicated inputs should be tied to ground on the board.
- (11) SDOUT does not exist in the EPF8636GC192 device.
- (12) These pins are no connect (N.C.) pins for EPF8636A devices only. They are user I/O pins in EPF8820A devices.
- (13) EPF8636A devices have 132 user I/O pins; EPF8820A devices have 148 user I/O pins.
- (14) For EPF81500A devices, these pins are dedicated JTAG pins and are not available as user I/O pins. If JTAG BST is not used, TDI, TCK, TMS, and TRST should be tied to GND.

Revision History The information contained in the *FLEX 8000 Programmable Logic Device Family Data Sheet* version 11.1 supersedes information published in previous versions. The *FLEX 8000 Programmable Logic Device Family Data Sheet* version 11.1 contains the following change: minor textual updates.