E·XFL

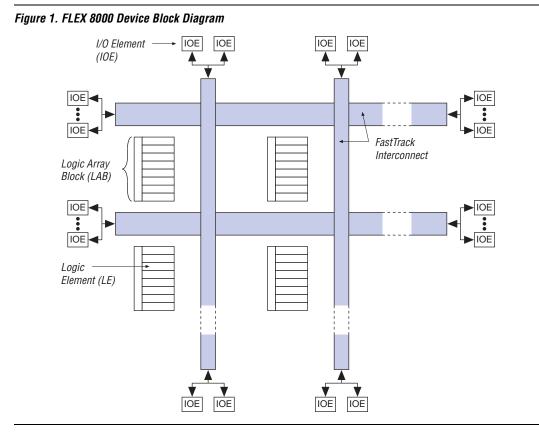
Intel - EPF8820AQC208-2 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs


The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	84
Number of Logic Elements/Cells	672
Total RAM Bits	-
Number of I/O	152
Number of Gates	8000
Voltage - Supply	4.75V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf8820aqc208-2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1 shows a block diagram of the FLEX 8000 architecture. Each group of eight LEs is combined into an LAB; LABs are arranged into rows and columns. The I/O pins are supported by I/O elements (IOEs) located at the ends of rows and columns. Each IOE contains a bidirectional I/O buffer and a flipflop that can be used as either an input or output register.

Signal interconnections within FLEX 8000 devices and between device pins are provided by the FastTrack Interconnect, a series of fast, continuous channels that run the entire length and width of the device. IOEs are located at the end of each row (horizontal) and column (vertical) FastTrack Interconnect path.

Altera Corporation

The FLEX 8000 architecture provides two dedicated high-speed data paths—carry chains and cascade chains—that connect adjacent LEs without using local interconnect paths. The carry chain supports highspeed counters and adders; the cascade chain implements wide-input functions with minimum delay. Carry and cascade chains connect all LEs in an LAB and all LABs in the same row. Heavy use of carry and cascade chains can reduce routing flexibility. Therefore, the use of carry and cascade chains should be limited to speed-critical portions of a design.

Carry Chain

The carry chain provides a very fast (less than 1 ns) carry-forward function between LEs. The carry-in signal from a lower-order bit moves forward into the higher-order bit via the carry chain, and feeds into both the LUT and the next portion of the carry chain. This feature allows the FLEX 8000 architecture to implement high-speed counters and adders of arbitrary width. The MAX+PLUS II Compiler can create carry chains automatically during design processing; designers can also insert carry chain logic manually during design entry.

Figure 4 shows how an *n*-bit full adder can be implemented in n + 1 LEs with the carry chain. One portion of the LUT generates the sum of two bits using the input signals and the carry-in signal; the sum is routed to the output of the LE. The register is typically bypassed for simple adders, but can be used for an accumulator function. Another portion of the LUT and the carry chain logic generate the carry-out signal, which is routed directly to the carry-in signal of the next-higher-order bit. The final carry-out signal is routed to another LE, where it can be used as a general-purpose signal. In addition to mathematical functions, carry chain logic supports very fast counters and comparators.

The MAX+PLUS II Compiler can create cascade chains automatically during design processing; designers can also insert cascade chain logic manually during design entry. Cascade chains longer than eight LEs are automatically implemented by linking LABs together. The last LE of an LAB cascades to the first LE of the next LAB.

Figure 5 shows how the cascade function can connect adjacent LEs to form functions with a wide fan-in. These examples show functions of 4n variables implemented with n LEs. For a device with an A-2 speed grade, the LE delay is 2.4 ns; the cascade chain delay is 0.6 ns. With the cascade chain, 4.2 ns is needed to decode a 16-bit address.

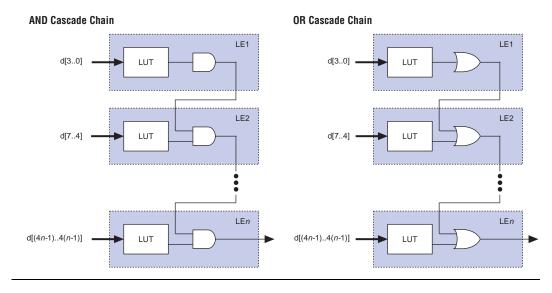
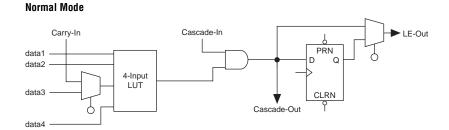
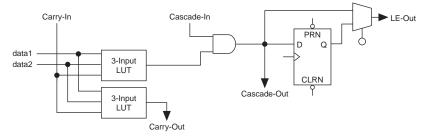
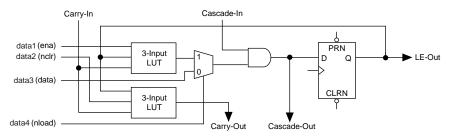
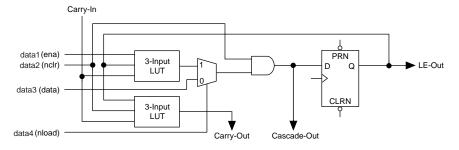



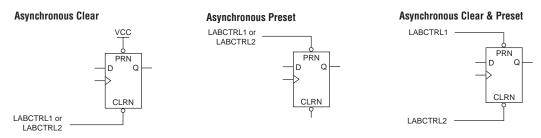
Figure 5. FLEX 8000 Cascade Chain Operation

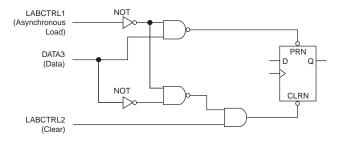

LE Operating Modes

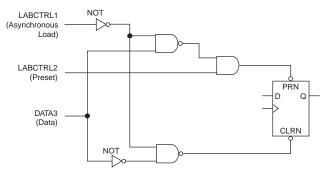
The FLEX 8000 LE can operate in one of four modes, each of which uses LE resources differently. See Figure 6. In each mode, seven of the ten available inputs to the LE—the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE—are directed to different destinations to implement the desired logic function. The three remaining inputs to the LE provide clock, clear, and preset control for the register. The MAX+PLUS II software automatically chooses the appropriate mode for each application. Design performance can also be enhanced by designing for the operating mode that supports the desired application.

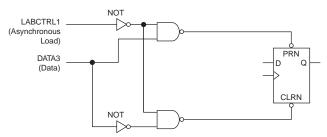

Figure 6. FLEX 8000 LE Operating Modes


Arithmetic Mode


Up/Down Counter Mode

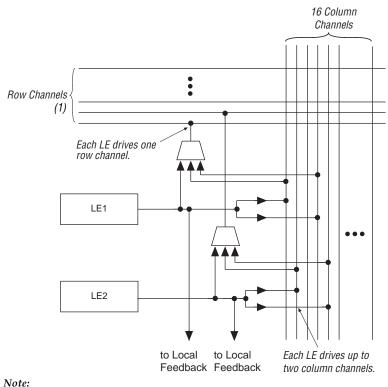

Clearable Counter Mode


Figure 7. FLEX 8000 LE Asynchronous Clear & Preset Modes


Asynchronous Load with Clear

Asynchronous Load with Preset

Asynchronous Load without Clear or Preset



FastTrack Interconnect

In the FLEX 8000 architecture, connections between LEs and device I/O pins are provided by the FastTrack Interconnect, a series of continuous horizontal (row) and vertical (column) routing channels that traverse the entire FLEX 8000 device. This device-wide routing structure provides predictable performance even in complex designs. In contrast, the segmented routing structure in FPGAs requires switch matrices to connect a variable number of routing paths, which increases the delays between logic resources and reduces performance.

The LABs within FLEX 8000 devices are arranged into a matrix of columns and rows. Each row of LABs has a dedicated row interconnect that routes signals both into and out of the LABs in the row. The row interconnect can then drive I/O pins or feed other LABs in the device. Figure 8 shows how an LE drives the row and column interconnect.

Figure 8. FLEX 8000 LAB Connections to Row & Column Interconnect

Each LE in an LAB can drive up to two separate column interconnect channels. Therefore, all 16 available column channels can be driven by the LAB. The column channels run vertically across the entire device, and share access to LABs in the same column but in different rows. The MAX+PLUS II Compiler chooses which LEs must be connected to a column channel. A row interconnect channel can be fed by the output of the LE or by two column channels. These three signals feed a multiplexer that connects to a specific row channel. Each LE is connected to one 3-to-1 multiplexer. In an LAB, the multiplexers provide all 16 column channels with access to 8 row channels.

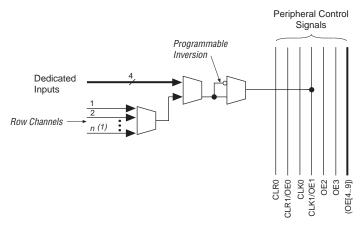

Each column of LABs has a dedicated column interconnect that routes signals out of the LABs into the column. The column interconnect can then drive I/O pins or feed into the row interconnect to route the signals to other LABs in the device. A signal from the column interconnect, which can be either the output of an LE or an input from an I/O pin, must transfer to the row interconnect before it can enter an LAB. Table 4 summarizes the FastTrack Interconnect resources available in each FLEX 8000 device.

Table 4. FLE	Table 4. FLEX 8000 FastTrack Interconnect Resources									
Device	Rows	Channels per Row	Columns	Channels per Column						
EPF8282A EPF8282AV	2	168	13	16						
EPF8452A	2	168	21	16						
EPF8636A	3	168	21	16						
EPF8820A	4	168	21	16						
EPF81188A	6	168	21	16						
EPF81500A	6	216	27	16						

Figure 9 shows the interconnection of four adjacent LABs, with row, column, and local interconnects, as well as the associated cascade and carry chains.

The signals for the peripheral bus can be generated by any of the four dedicated inputs or signals on the row interconnect channels, as shown in Figure 13. The number of row channels in a row that can drive the peripheral bus correlates to the number of columns in the FLEX 8000 device. EPF8282A and EPF8282AV devices use 13 channels; EPF8452A, EPF8636A, EPF8820A, and EPF81188A devices use 21 channels; and EPF81500A devices use 27 channels. The first LE in each LAB is the source of the row channel signal. The six peripheral control signals (12 in EPF81500A devices) can be accessed by each IOE.

Figure 13. FLEX 8000 Peripheral Bus

Numbers in parentheses are for EPF81500A devices.

Note:

- (1) n = 13 for EPF8282A and EPF8282AV devices.
 - *n* = 21 for EPF8452A, EPF8636A, EPF8820A, and EPF81188A devices.
 - n = 27 for EPF81500A devices.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4)	4.75 (4.50)	5.25 (5.50)	V
V _{CCIO}	Supply voltage for output buffers, 5.0-V operation	(3), (4)	4.75 (4.50)	5.25 (5.50)	V
	Supply voltage for output buffers, 3.3-V operation	(3), (4)	3.00 (3.00)	3.60 (3.60)	V
VI	Input voltage		-0.5	V _{CCINT} + 0.5	V
Vo	Output voltage		0	V _{CCIO}	V
Τ _A	Operating temperature	For commercial use	0	70	°C
		For industrial use	-40	85	°C
t _R	Input rise time			40	ns
t _F	Input fall time			40	ns

Table 1	1. FLEX 8000 5.0-V Device DC	C Operating Conditions	Notes (5), (6)			
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{IH}	High-level input voltage		2.0		V _{CCINT} + 0.5	V
V _{IL}	Low-level input voltage		-0.5		0.8	V
V _{OH}	5.0-V high-level TTL output voltage	I _{OH} = -4 mA DC (7) V _{CCIO} = 4.75 V	2.4			V
	3.3-V high-level TTL output voltage	I _{OH} = -4 mA DC (7) V _{CCIO} = 3.00 V	2.4			V
	3.3-V high-level CMOS output voltage	I _{OH} = -0.1 mA DC (7) V _{CCIO} = 3.00 V	V _{CCIO} – 0.2			V
V _{OL}	5.0-V low-level TTL output voltage	I _{OL} = 12 mA DC (7) V _{CCIO} = 4.75 V			0.45	V
	3.3-V low-level TTL output voltage	I _{OL} = 12 mA DC (7) V _{CCIO} = 3.00 V			0.45	V
	3.3-V low-level CMOS output voltage	I _{OL} = 0.1 mA DC (7) V _{CCIO} = 3.00 V			0.2	V
I _I	Input leakage current	$V_{I} = V_{CC}$ or ground	-10		10	μA
I _{OZ}	Tri-state output off-state current	$V_{O} = V_{CC}$ or ground	-40		40	μA
I _{CC0}	V _{CC} supply current (standby)	V _I = ground, no load		0.5	10	mA

1

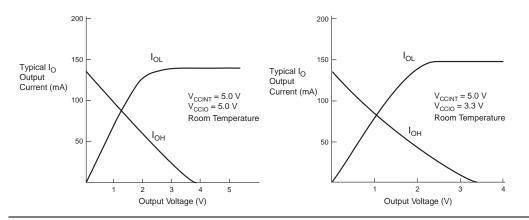
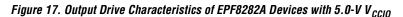



Figure 16. Output Drive Characteristics of 5.0-V FLEX 8000 Devices (Except EPF8282A)

Figure 17 shows the typical output drive characteristics of 5.0-V EPF8282A devices. The output driver is compliant with *PCI Local Bus Specification, Revision 2.2.*

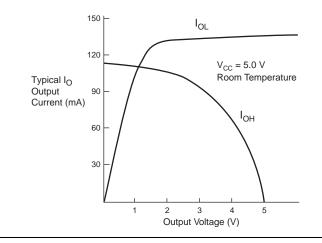
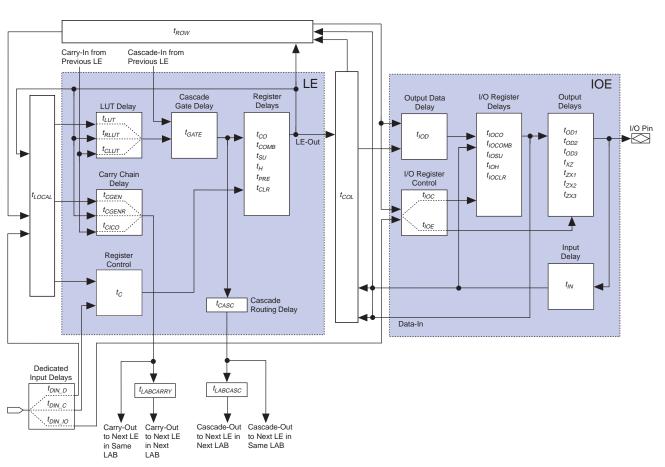



Figure 18 shows the typical output drive characteristics of EPF8282AV devices.

Altera Corporation

Figure 19. FLEX 8000 Timing Model

FLEX 8000 Programmable Logic Device Family Data Sheet	t
---	---

Symbol		Speed	Grade		Unit
-	A	-3	A	-4	
	Min	Max	Min	Мах	
t _{IOD}		0.9		2.2	ns
tioc		1.9		2.0	ns
t _{IOE}		1.9		2.0	ns
tioco		1.0		2.0	ns
tiocoмв		0.1		0.0	ns
tiosu	1.8		2.8		ns
^t іон	0.0		0.2		ns
tioclr		1.2		2.3	ns
t _{IN}		1.7		3.4	ns
t _{OD1}		1.7		4.1	ns
t _{OD2}		-		-	ns
tod3		5.2		7.1	ns
t _{XZ}		1.8		4.3	ns
ZX1		1.8		4.3	ns
ZX2		_		-	ns
t _{ZX3}		5.3		8.3	ns

Symbol		Speed	Grade		Unit
	A	-3	A	-4	
	Min	Мах	Min	Max	
t _{LABCASC}		0.4		1.3	ns
t _{LABCARRY}		0.4		0.8	ns
t _{LOCAL}		0.8		1.5	ns
t _{ROW}		4.2		6.3	ns
t _{COL}		2.5		3.8	ns
t _{DIN_C}		5.5		8.0	ns
t _{DIN_D}		7.2		10.8	ns
t _{DIN IO}		5.5		9.0	ns

Π

Symbol	Speed Grade						
	A-3		A	A-4			
	Min	Max	Min	Max			
t _{LUT}		3.2		7.3	ns		
t _{CLUT}		0.0		1.4	ns		
t _{RLUT}		1.5		5.1	ns		
t _{GATE}		0.0		0.0	ns		
t _{CASC}		0.9		2.8	ns		
t _{CICO}		0.6		1.5	ns		
t _{CGEN}		0.7		2.2	ns		
t _{CGENR}		1.5		3.7	ns		
t _C		2.5		4.7	ns		
t _{CH}	4.0		6.0		ns		
t _{CL}	4.0		6.0		ns		
t _{CO}		0.6		0.9	ns		
t _{COMB}		0.6		0.9	ns		
t _{SU}	1.2		2.4		ns		
t _H	1.5		4.6		ns		
t _{PRE}		0.8		1.3	ns		
t _{CLR}		0.8		1.3	ns		

Table 29. EPF8282AV External Timing Parameters								
Symbol		Speed Grade						
-	A	A-3		A-4				
	Min	Max	Min	Max				
t _{DRR}		24.8		50.1	ns			
t _{ODH}	1.0		1.0		ns			

Symbol	Speed Grade							
	A	-2	A-3		A-4			
	Min	Max	Min	Max	Min	Max		
t _{LUT}		2.0		2.3		3.0	ns	
t _{CLUT}		0.0		0.2		0.1	ns	
t _{RLUT}		0.9		1.6		1.6	ns	
t _{GATE}		0.0		0.0		0.0	ns	
t _{CASC}		0.6		0.7		0.9	ns	
t _{CICO}		0.4		0.5		0.6	ns	
t _{CGEN}		0.4		0.9		0.8	ns	
t _{CGENR}		0.9		1.4		1.5	ns	
t _C		1.6		1.8		2.4	ns	
t _{CH}	4.0		4.0		4.0		ns	
t _{CL}	4.0		4.0		4.0		ns	
t _{CO}		0.4		0.5		0.6	ns	
t _{COMB}		0.4		0.5		0.6	ns	
t _{SU}	0.8		1.0		1.1		ns	
t _H	0.9		1.1		1.4		ns	
t _{PRE}		0.6		0.7		0.8	ns	
t _{CLR}		0.6		0.7		0.8	ns	

Table 33. EPF8452A External Timing Parameters

Symbol	Speed Grade							
	A	-2	A	-3	A	-4		
	Min	Max	Min	Max	Min	Мах		
t _{DRR}		16.0		20.0		25.0	ns	
t _{oDH}	1.0		1.0		1.0		ns	

Symbol	Speed Grade							
	A-2		A	-3	A-4			
	Min	Max	Min	Max	Min	Max		
t _{IOD}		0.7		0.8		0.9	ns	
t _{IOC}		1.7		1.8		1.9	ns	
t _{IOE}		1.7		1.8		1.9	ns	
t _{IOCO}		1.0		1.0		1.0	ns	
t _{IOCOMB}		0.3		0.2		0.1	ns	
t _{IOSU}	1.4		1.6		1.8		ns	
t _{IOH}	0.0		0.0		0.0		ns	
t _{IOCLR}		1.2		1.2		1.2	ns	
t _{IN}		1.5		1.6		1.7	ns	
t _{OD1}		1.1		1.4		1.7	ns	
t _{OD2}		1.6		1.9		2.2	ns	
t _{OD3}		4.6		4.9		5.2	ns	
t _{XZ}		1.4		1.6		1.8	ns	
t _{ZX1}		1.4		1.6		1.8	ns	
t _{ZX2}		1.9		2.1		2.3	ns	
t _{ZX3}		4.9		5.1		5.3	ns	

Symbol			Speed	Grade			Unit
	A-2		A-3		A-4		1
	Min	Max	Min	Max	Min	Max	1
t _{LABCASC}		0.3		0.3		0.4	ns
t _{LABCARRY}		0.3		0.3		0.4	ns
t _{LOCAL}		0.5		0.6		0.8	ns
t _{ROW}		5.0		5.0		5.0	ns
t _{COL}		3.0		3.0		3.0	ns
t _{DIN_C}		5.0		5.0		5.5	ns
t _{DIN_D}		7.0		7.0		7.5	ns
t _{DIN IO}		5.0		5.0		5.5	ns

٦

Symbol	Speed Grade							
	A-2		A-3		A-4		1	
	Min	Мах	Min	Мах	Min	Max	1	
t _{LUT}		2.0		2.5		3.2	ns	
t _{CLUT}		0.0		0.0		0.0	ns	
t _{RLUT}		0.9		1.1		1.5	ns	
t _{GATE}		0.0		0.0		0.0	ns	
t _{CASC}		0.6		0.7		0.9	ns	
t _{CICO}		0.4		0.5		0.6	ns	
t _{CGEN}		0.4		0.5		0.7	ns	
t _{CGENR}		0.9		1.1		1.5	ns	
t _C		1.6		2.0		2.5	ns	
t _{CH}	4.0		4.0		4.0		ns	
t _{CL}	4.0		4.0		4.0		ns	
t _{CO}		0.4		0.5		0.6	ns	
t _{COMB}		0.4		0.5		0.6	ns	
t _{SU}	0.8		1.1		1.2		ns	
t _H	0.9		1.1		1.5		ns	
t _{PRE}		0.6		0.7		0.8	ns	
t _{CLR}		0.6		0.7		0.8	ns	

Symbol		Speed Grade							
	A	A-2		A-3		A-4			
	Min	Max	Min	Max	Min	Max			
t _{DRR}		16.0		20.0		25.0	ns		
t _{ODH}	1.0		1.0		1.0		ns		

Symbol	Speed Grade							
	A-2		A-3		A-4			
	Min	Max	Min	Max	Min	Max	1	
t _{LUT}		2.0		2.5		3.2	ns	
t _{CLUT}		0.0		0.0		0.0	ns	
t _{RLUT}		0.9		1.1		1.5	ns	
t _{GATE}		0.0		0.0		0.0	ns	
t _{CASC}		0.6		0.7		0.9	ns	
t _{CICO}		0.4		0.5		0.6	ns	
t _{CGEN}		0.4		0.5		0.7	ns	
t _{CGENR}		0.9		1.1		1.5	ns	
t _C		1.6		2.0		2.5	ns	
t _{CH}	4.0		4.0		4.0		ns	
t _{CL}	4.0		4.0		4.0		ns	
t _{CO}		0.4		0.5		0.6	ns	
t _{COMB}		0.4		0.5		0.6	ns	
t _{SU}	0.8		1.1		1.2		ns	
t _H	0.9		1.1		1.5		ns	
t _{PRE}		0.6		0.7		0.8	ns	
t _{CLR}		0.6		0.7		0.8	ns	

Symbol	Speed Grade							
	A	A-2		A-3		-4		
	Min	Max	Min	Max	Min	Мах	1	
t _{DRR}		16.1		20.1		25.1	ns	
t _{oDH}	1.0		1.0		1.0		ns	

Operating Modes

The FLEX 8000 architecture uses SRAM elements that require configuration data to be loaded whenever the device powers up and begins operation. The process of physically loading the SRAM programming data into the device is called *configuration*. During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. The I/O pins are tri-stated during power-up, and before and during configuration. The configuration and initialization processes together are called *command mode*; normal device operation is called *user mode*.

SRAM elements allow FLEX 8000 devices to be reconfigured in-circuit with new programming data that is loaded into the device. Real-time reconfiguration is performed by forcing the device into command mode with a device pin, loading different programming data, reinitializing the device, and resuming user-mode operation. The entire reconfiguration process requires less than 100 ms and can be used to dynamically reconfigure an entire system. In-field upgrades can be performed by distributing new configuration files.

Configuration Schemes

The configuration data for a FLEX 8000 device can be loaded with one of six configuration schemes, chosen on the basis of the target application. Both active and passive schemes are available. In the active configuration schemes, the FLEX 8000 device functions as the controller, directing the loading operation, controlling external configuration devices, and completing the loading process. The clock source for all active configuration schemes is an oscillator on the FLEX 8000 device that operates between 2 MHz and 6 MHz. In the passive configuration schemes, an external controller guides the FLEX 8000 device. Table 51 shows the data source for each of the six configuration schemes.

Table 51. Data Source for Configuration							
Configuration Scheme	Acronym	Data Source					
Active serial	AS	Altera configuration device					
Active parallel up	APU	Parallel configuration device					
Active parallel down	APD	Parallel configuration device					
Passive serial	PS	Serial data path					
Passive parallel synchronous	PPS	Intelligent host					
Passive parallel asynchronous	PPA	Intelligent host					

Table 52. FLE	Table 52. FLEX 8000 84-, 100-, 144- & 160-Pin Package Pin-Outs (Part 2 of 3)								
Pin Name	84-Pin PLCC EPF8282A	84-Pin PLCC EPF8452A EPF8636A	100-Pin TQFP EPF8282A EPF8282AV	100-Pin TQFP EPF8452A	144-Pin TQFP EPF8820A	160-Pin PGA EPF8452A	160-Pin PQFP EPF8820A (1)		
ADD0	78	76	78	77	106	N3	6		
data7	3	2	90	89	131	P8	140		
DATA6	4	4	91	91	132	P10	139		
DATA5	6	6	92	95	133	R12	138		
DATA4	7	7	95	96	134	R13	136		
DATA3	8	8	97	97	135	P13	135		
DATA2	9	9	99	98	137	R14	133		
DATA1	13	13	4	4	138	N15	132		
DATA0	14	14	5	5	140	K13	129		
SDOUT (3)	79	78	79	79	23	P4	97		
TDI (4)	55	45 (5)	54	-	96	-	17		
TDO (4)	27	27 (5)	18	-	18	-	102		
TCK (4), (6)	72	44 (5)	72	-	88	_	27		
TMS (4)	20	43 (5)	11	-	86	-	29		
TRST (7)	52	52 (8)	50	-	71	-	45		
Dedicated Inputs (10)	12, 31, 54, 73	12, 31, 54, 73	3, 23, 53, 73	3, 24, 53, 74	9, 26, 82, 99	C3, D14, N2, R15	14, 33, 94, 113		
VCCINT	17, 38, 59, 80	17, 38, 59, 80	6, 20, 37, 56, 70, 87	9, 32, 49, 59, 82	8, 28, 70, 90, 111	B2, C4, D3, D8, D12, G3, G12, H4, H13, J3, J12, M4, M7, M9, M13, N12	3, 24, 46, 92, 114, 160		
VCCIO	-	-	-	-	16, 40, 60, 69, 91, 112, 122, 141	-	23, 47, 57, 69, 79, 104, 127, 137, 149, 159		

Г

FLEX 8000 Programmable Logic Device Family Data Sheet

Notes to tables:

- Perform a complete thermal analysis before committing a design to this device package. See Application Note 74 (Evaluating Power for Altera Devices) for more information.
- (2) This pin is a dedicated pin and is not available as a user I/O pin.
- (3) SDOUT will drive out during configuration. After configuration, it may be used as a user I/O pin. By default, the MAX+PLUS II software will not use SDOUT as a user I/O pin; the user can override the MAX+PLUS II software and use SDOUT as a user I/O pin.
- (4) If the device is not configured to use the JTAG BST circuitry, this pin is available as a user I/O pin.
- (5) JTAG pins are available for EPF8636A devices only. These pins are dedicated user I/O pins.
- (6) If this pin is used as an input in user mode, ensure that it does not toggle before or during configuration.
- (7) TRST is a dedicated input pin for JTAG use. This pin must be grounded if JTAG BST is not used.
- (8) Pin 52 is a V_{CC} pin on EPF8452A devices only.
- (9) The user I/O pin count includes dedicated input pins and all I/O pins.
- (10) Unused dedicated inputs should be tied to ground on the board.
- (11) SDOUT does not exist in the EPF8636GC192 device.
- (12) These pins are no connect (N.C.) pins for EPF8636A devices only. They are user I/O pins in EPF8820A devices.
- (13) EPF8636A devices have 132 user I/O pins; EPF8820A devices have 148 user I/O pins.
- (14) For EPF81500A devices, these pins are dedicated JTAG pins and are not available as user I/O pins. If JTAG BST is not used, TDI, TCK, TMS, and TRST should be tied to GND.

Revision History The information contained in the *FLEX 8000 Programmable Logic Device Family Data Sheet* version 11.1 supersedes information published in previous versions. The *FLEX 8000 Programmable Logic Device Family Data Sheet* version 11.1 contains the following change: minor textual updates.