E·XFL

Altera - EPF8820ARC208-3 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	84
Number of Logic Elements/Cells	672
Total RAM Bits	-
Number of I/O	152
Number of Gates	8000
Voltage - Supply	4.75V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	208-BFQFP Exposed Pad
Supplier Device Package	208-RQFP (28x28)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=epf8820arc208-3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FLEX 8000 devices contain an optimized microprocessor interface that permits the microprocessor to configure FLEX 8000 devices serially, in parallel, synchronously, or asynchronously. The interface also enables the microprocessor to treat a FLEX 8000 device as memory and configure the device by writing to a virtual memory location, making it very easy for the designer to create configuration software.

The FLEX 8000 family is supported by Altera's MAX+PLUS II development system, a single, integrated package that offers schematic, text—including the Altera Hardware Description Language (AHDL), VHDL, and Verilog HDL—and waveform design entry, compilation and logic synthesis, simulation and timing analysis, and device programming. The MAX+PLUS II software provides EDIF 2 0 0 and 3 0 0, library of parameterized modules (LPM), VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industrystandard PC- and UNIX workstation-based EDA tools. The MAX+PLUS II software runs on Windows-based PCs and Sun SPARCstation, HP 9000 Series 700/800, and IBM RISC System/6000 workstations.

The MAX+PLUS II software interfaces easily with common gate array EDA tools for synthesis and simulation. For example, the MAX+PLUS II software can generate Verilog HDL files for simulation with tools such as Cadence Verilog-XL. Additionally, the MAX+PLUS II software contains EDA libraries that use device-specific features such as carry chains, which are used for fast counter and arithmetic functions. For instance, the Synopsys Design Compiler library supplied with the MAX+PLUS II development system includes DesignWare functions that are optimized for the FLEX 8000 architecture.

Functional Description For more information on the MAX+PLUS II software, go to the *MAX+PLUS II Programmable Logic Development System & Software Data Sheet*.

The FLEX 8000 architecture incorporates a large matrix of compact building blocks called logic elements (LEs). Each LE contains a 4-input LUT that provides combinatorial logic capability and a programmable register that offers sequential logic capability. The fine-grained structure of the LE provides highly efficient logic implementation.

Eight LEs are grouped together to form a logic array block (LAB). Each FLEX 8000 LAB is an independent structure with common inputs, interconnections, and control signals. The LAB architecture provides a coarse-grained structure for high device performance and easy routing.

Logic Array Block

A logic array block (LAB) consists of eight LEs, their associated carry and cascade chains, LAB control signals, and the LAB local interconnect. The LAB provides the coarse-grained structure of the FLEX 8000 architecture. This structure enables FLEX 8000 devices to provide efficient routing, high device utilization, and high performance. Figure 2 shows a block diagram of the FLEX 8000 LAB.

Altera Corporation

Each LAB provides four control signals that can be used in all eight LEs. Two of these signals can be used as clocks, and the other two for clear/preset control. The LAB control signals can be driven directly from a dedicated input pin, an I/O pin, or any internal signal via the LAB local interconnect. The dedicated inputs are typically used for global clock, clear, or preset signals because they provide synchronous control with very low skew across the device. FLEX 8000 devices support up to four individual global clock, clear, or preset control signals. If logic is required on a control signal, it can be generated in one or more LEs in any LAB and driven into the local interconnect of the target LAB.

Logic Element

The logic element (LE) is the smallest unit of logic in the FLEX 8000 architecture, with a compact size that provides efficient logic utilization. Each LE contains a 4-input LUT, a programmable flipflop, a carry chain, and cascade chain. Figure 3 shows a block diagram of an LE.

The LUT is a function generator that can quickly compute any function of four variables. The programmable flipflop in the LE can be configured for D, T, JK, or SR operation. The clock, clear, and preset control signals on the flipflop can be driven by dedicated input pins, general-purpose I/O pins, or any internal logic. For purely combinatorial functions, the flipflop is bypassed and the output of the LUT goes directly to the output of the LE.

Normal Mode

The normal mode is suitable for general logic applications and wide decoding functions that can take advantage of a cascade chain. In normal mode, four data inputs from the LAB local interconnect and the carry-in signal are the inputs to a 4-input LUT. Using a configurable SRAM bit, the MAX+PLUS II Compiler automatically selects the carry-in or the DATA3 signal as an input. The LUT output can be combined with the cascade-in signal to form a cascade chain through the cascade-out signal. The LE-Out signal—the data output of the LE—is either the combinatorial output of the LUT and cascade chain, or the data output (Q) of the programmable register.

Arithmetic Mode

The arithmetic mode offers two 3-input LUTs that are ideal for implementing adders, accumulators, and comparators. One LUT provides a 3-bit function; the other generates a carry bit. As shown in Figure 6, the first LUT uses the carry-in signal and two data inputs from the LAB local interconnect to generate a combinatorial or registered output. For example, in an adder, this output is the sum of three bits: a, b, and the carry-in. The second LUT uses the same three signals to generate a carry-out signal, thereby creating a carry chain. The arithmetic mode also supports a cascade chain.

Up/Down Counter Mode

The up/down counter mode offers counter enable, synchronous up/down control, and data loading options. These control signals are generated by the data inputs from the LAB local interconnect, the carry-in signal, and output feedback from the programmable register. Two 3-input LUTs are used: one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading. Data can also be loaded asynchronously with the clear and preset register control signals, without using the LUT resources.

Clearable Counter Mode

The clearable counter mode is similar to the up/down counter mode, but supports a synchronous clear instead of the up/down control; the clear function is substituted for the cascade-in signal in the up/down counter mode. Two 3-input LUTs are used: one generates the counter data, and the other generates the fast carry bit. Synchronous loading is provided by a 2-to-1 multiplexer, and the output of this multiplexer is ANDed with a synchronous clear.

Internal Tri-State Emulation

Internal tri-state emulation provides internal tri-stating without the limitations of a physical tri-state bus. In a physical tri-state bus, the tri-state buffers' output enable signals select the signal that drives the bus. However, if multiple output enable signals are active, contending signals can be driven onto the bus. Conversely, if no output enable signals are active, the bus will float. Internal tri-state emulation resolves contending tri-state buffers to a low value and floating buses to a high value, thereby eliminating these problems. The MAX+PLUS II software automatically implements tri-state bus functionality with a multiplexer.

Clear & Preset Logic Control

Logic for the programmable register's clear and preset functions is controlled by the DATA3, LABCTRL1, and LABCTRL2 inputs to the LE. The clear and preset control structure of the LE is used to asynchronously load signals into a register. The register can be set up so that LABCTRL1 implements an asynchronous load. The data to be loaded is driven to DATA3; when LABCTRL1 is asserted, DATA3 is loaded into the register.

During compilation, the MAX+PLUS II Compiler automatically selects the best control signal implementation. Because the clear and preset functions are active-low, the Compiler automatically assigns a logic high to an unused clear or preset.

The clear and preset logic is implemented in one of the following six asynchronous modes, which are chosen during design entry. LPM functions that use registers will automatically use the correct asynchronous mode. See Figure 7.

- Clear only
- Preset only
- Clear and preset
- Load with clear
- Load with preset
- Load without clear or preset

Asynchronous Clear

A register is cleared by one of the two LABCTRL signals. When the CLRn port receives a low signal, the register is set to zero.

Asynchronous Preset

An asynchronous preset is implemented as either an asynchronous load or an asynchronous clear. If DATA3 is tied to VCC, asserting LABCTRL1 asynchronously loads a 1 into the register. Alternatively, the MAX+PLUS II software can provide preset control by using the clear and inverting the input and output of the register. Inversion control is available for the inputs to both LEs and IOEs. Therefore, if a register is preset by only one of the two LABCTRL signals, the DATA3 input is not needed and can be used for one of the LE operating modes.

Asynchronous Clear & Preset

When implementing asynchronous clear and preset, LABCTRL1 controls the preset and LABCTRL2 controls the clear. The DATA3 input is tied to VCC; therefore, asserting LABCTRL1 asynchronously loads a 1 into the register, effectively presetting the register. Asserting LABCTRL2 clears the register.

Asynchronous Load with Clear

When implementing an asynchronous load with the clear, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear. LABCTRL2 implements the clear by controlling the register clear.

Asynchronous Load with Preset

When implementing an asynchronous load in conjunction with a preset, the MAX+PLUS II software provides preset control by using the clear and inverting the input and output of the register. Asserting LABCTRL2 clears the register, while asserting LABCTRL1 loads the register. The MAX+PLUS II software inverts the signal that drives the DATA3 signal to account for the inversion of the register's output.

Asynchronous Load without Clear or Preset

When implementing an asynchronous load without the clear or preset, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear.

FastTrack Interconnect

In the FLEX 8000 architecture, connections between LEs and device I/O pins are provided by the FastTrack Interconnect, a series of continuous horizontal (row) and vertical (column) routing channels that traverse the entire FLEX 8000 device. This device-wide routing structure provides predictable performance even in complex designs. In contrast, the segmented routing structure in FPGAs requires switch matrices to connect a variable number of routing paths, which increases the delays between logic resources and reduces performance.

The LABs within FLEX 8000 devices are arranged into a matrix of columns and rows. Each row of LABs has a dedicated row interconnect that routes signals both into and out of the LABs in the row. The row interconnect can then drive I/O pins or feed other LABs in the device. Figure 8 shows how an LE drives the row and column interconnect.

Figure 8. FLEX 8000 LAB Connections to Row & Column Interconnect

Figure 10. FLEX 8000 IOE

Numbers in parentheses are for EPF81500A devices only.

Row-to-IOE Connections

Figure 11 illustrates the connection between row interconnect channels and IOEs. An input signal from an IOE can drive two separate row channels. When an IOE is used as an output, the signal is driven by an *n*-to-1 multiplexer that selects the row channels. The size of the multiplexer varies with the number of columns in a device. EPF81500A devices use a 27-to-1 multiplexer; EPF81188A, EPF8820A, EPF8636A, and EPF8452A devices use a 21-to-1 multiplexer; and EPF8282A and EPF8282AV devices use a 13-to-1 multiplexer. Eight IOEs are connected to each side of the row channels.

The instruction register length for FLEX 8000 devices is three bits. Table 7 shows the boundary-scan register length for FLEX 8000 devices.

Table 7. FLEX 8000 Boundary-Scan Register Length						
Device Boundary-Scan Register Le						
EPF8282A, EPF8282AV	273					
EPF8636A	417					
EPF8820A	465					
EPF81500A	645					

FLEX 8000 devices that support JTAG include weak pull-ups on the JTAG pins. Figure 14 shows the timing requirements for the JTAG signals.

Figure 14. EPF8282A, EPF8282AV, EPF8636A, EPF8820A & EPF81500A JTAG Waveforms

Table 8 shows the timing parameters and values for EPF8282A, EPF8282AV, EPF8636A, EPF8820A, and EPF81500A devices.

Table 8. JTAG Timing Parameters & Values								
Symbol	Parameter	EPF8282A EPF8282AV EPF8636A EPF8820A EPF81500A		Unit				
		Min	Max					
t _{JCP}	TCK clock period	100		ns				
t _{JCH}	TCK clock high time	50		ns				
t _{JCL}	TCK clock low time	50		ns				
t _{JPSU}	JTAG port setup time	20		ns				
t _{JPH}	JTAG port hold time	45		ns				
t _{JPCO}	JTAG port clock to output		25	ns				
t _{JPZX}	JTAG port high-impedance to valid output		25	ns				
t _{JPXZ}	JTAG port valid output to high-impedance		25	ns				
t _{JSSU}	Capture register setup time	20		ns				
t _{JSH}	Capture register hold time	45		ns				
t _{JSCO}	Update register clock to output		35	ns				
t _{JSZX}	Update register high-impedance to valid output		35	ns				
t _{JSXZ}	Update register valid output to high-impedance		35	ns				

For detailed information on JTAG operation in FLEX 8000 devices, refer to *Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices)*.

Generic Testing

Each FLEX 8000 device is functionally tested and specified by Altera. Complete testing of each configurable SRAM bit and all logic functionality ensures 100% configuration yield. AC test measurements for FLEX 8000 devices are made under conditions equivalent to those shown in Figure 15. Designers can use multiple test patterns to configure devices during all stages of the production flow.

Figure 15. FLEX 8000 AC Test Conditions

Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-groundcurrent transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Numbers in parentheses are for 3.3-V devices or outputs. Numbers without parentheses are for 5.0-V devices or outputs.

Operating Conditions

Tables 9 through 12 provide information on absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for 5.0-V FLEX 8000 devices.

Table 9. FLEX 8000 5.0-V Device Absolute Maximum Ratings Note (1)								
Symbol	Parameter	Conditions	Min	Max	Unit			
V _{CC}	Supply voltage	With respect to ground (2)	-2.0	7.0	V			
VI	DC input voltage		-2.0	7.0	V			
IOUT	DC output current, per pin		-25	25	mA			
T _{STG}	Storage temperature	No bias	-65	150	°C			
T _{AMB}	Ambient temperature	Under bias	-65	135	°C			
Τ _J	Junction temperature	Ceramic packages, under bias		150	°C			
		PQFP and RQFP, under bias		135	°C			

Table 10. FLEX 8000 5.0-V Device Recommended Operating Conditions								
Symbol	Parameter	Conditions	Min	Max	Unit			
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4)	4.75 (4.50)	5.25 (5.50)	V			
V _{CCIO}	Supply voltage for output buffers, 5.0-V operation	(3), (4)	4.75 (4.50)	5.25 (5.50)	V			
	Supply voltage for output buffers, 3.3-V operation	(3), (4)	3.00 (3.00)	3.60 (3.60)	V			
VI	Input voltage		-0.5	V_{CCINT} + 0.5	V			
Vo	Output voltage		0	V _{CCIO}	V			
Τ _Α	Operating temperature	For commercial use	0	70	°C			
		For industrial use	-40	85	°C			
t _R	Input rise time			40	ns			
t _F	Input fall time			40	ns			

Table 11. FLEX 8000 5.0-V Device DC Operating Conditions Notes (5), (6)								
Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
V _{IH}	High-level input voltage		2.0		V_{CCINT} + 0.5	V		
V _{IL}	Low-level input voltage		-0.5		0.8	V		
V _{OH}	5.0-V high-level TTL output voltage	I _{OH} = -4 mA DC <i>(7)</i> V _{CCIO} = 4.75 V	2.4			V		
	3.3-V high-level TTL output voltage	I _{OH} = -4 mA DC <i>(7)</i> V _{CCIO} = 3.00 V	2.4			V		
	3.3-V high-level CMOS output voltage	I _{OH} = -0.1 mA DC (7) V _{CCIO} = 3.00 V	V _{CCIO} – 0.2			V		
V _{OL}	5.0-V low-level TTL output voltage	I _{OL} = 12 mA DC <i>(</i> 7 <i>)</i> V _{CCIO} = 4.75 V			0.45	V		
	3.3-V low-level TTL output voltage	I _{OL} = 12 mA DC <i>(</i> 7 <i>)</i> V _{CCIO} = 3.00 V			0.45	V		
	3.3-V low-level CMOS output voltage	I _{OL} = 0.1 mA DC <i>(7)</i> V _{CCIO} = 3.00 V			0.2	V		
I _I	Input leakage current	$V_{I} = V_{CC}$ or ground	-10		10	μA		
I _{OZ}	Tri-state output off-state current	$V_{O} = V_{CC}$ or ground	-40		40	μA		
I _{CC0}	V _{CC} supply current (standby)	V _I = ground, no load		0.5	10	mA		

1

Figure 16. Output Drive Characteristics of 5.0-V FLEX 8000 Devices (Except EPF8282A)

Figure 17 shows the typical output drive characteristics of 5.0-V EPF8282A devices. The output driver is compliant with *PCI Local Bus Specification, Revision 2.2.*

Figure 18 shows the typical output drive characteristics of EPF8282AV devices.

FLEX 8000 Programmable Logic Device Family Data Sheet

Table 21. FLEX 8000 Timing Model Interconnect Paths						
Source	Destination	Total Delay				
LE-Out	LE in same LAB	t _{LOCAL}				
LE-Out	LE in same row, different LAB	$t_{ROW} + t_{LOCAL}$				
LE-Out	LE in different row	$t_{COL} + t_{ROW} + t_{LOCAL}$				
LE-Out	IOE on column	t _{COL}				
LE-Out	IOE on row	t _{ROW}				
IOE on row	LE in same row	$t_{ROW} + t_{LOCAL}$				
IOE on column	Any LE	$t_{COL} + t_{ROW} + t_{LOCAL}$				

Tables 22 through 49 show the FLEX 8000 internal and external timing parameters.

Table 22. EPF8282A Internal I/O Element Timing Parameters								
Symbol	Speed Grade							
	A	-2	A	-3	ļ	-4		
	Min	Max	Min	Max	Min	Мах		
t _{IOD}		0.7		0.8		0.9	ns	
t _{IOC}		1.7		1.8		1.9	ns	
t _{IOE}		1.7		1.8		1.9	ns	
t _{IOCO}		1.0		1.0		1.0	ns	
t _{IOCOMB}		0.3		0.2		0.1	ns	
t _{IOSU}	1.4		1.6		1.8		ns	
t _{IOH}	0.0		0.0		0.0		ns	
t _{IOCLR}		1.2		1.2		1.2	ns	
t _{IN}		1.5		1.6		1.7	ns	
t _{OD1}		1.1		1.4		1.7	ns	
t _{OD2}		-		-		-	ns	
t _{OD3}		4.6		4.9		5.2	ns	
t _{XZ}		1.4		1.6		1.8	ns	
t _{ZX1}		1.4		1.6		1.8	ns	
t _{ZX2}		-		-		-	ns	
t _{ZX3}		4.9		5.1		5.3	ns	

Symbol			Speed	d Grade			Unit
	A	-2	A-3		A-4		1
	Min	Max	Min	Max	Min	Max	
t _{LABCASC}		0.3		0.3		0.4	ns
t _{LABCARRY}		0.3		0.3		0.4	ns
t _{LOCAL}		0.5		0.6		0.8	ns
t _{ROW}		4.2		4.2		4.2	ns
t _{COL}		2.5		2.5		2.5	ns
t _{DIN_C}		5.0		5.0		5.5	ns
t _{DIN_D}		7.2		7.2		7.2	ns
t _{DIN_IO}		5.0		5.0		5.5	ns

T

Symbol		Unit			
İ	A	-3	A		
İ	Min	Мах	Min	Мах	
t _{LUT}		3.2		7.3	ns
t _{CLUT}		0.0		1.4	ns
t _{RLUT}		1.5		5.1	ns
t _{GATE}		0.0		0.0	ns
t _{CASC}		0.9		2.8	ns
t _{CICO}		0.6		1.5	ns
t _{CGEN}		0.7		2.2	ns
t _{CGENR}		1.5		3.7	ns
t _C		2.5		4.7	ns
t _{CH}	4.0		6.0		ns
t _{CL}	4.0		6.0		ns
t _{CO}		0.6		0.9	ns
t _{COMB}		0.6		0.9	ns
t _{SU}	1.2		2.4		ns
t _H	1.5		4.6		ns
t _{PRE}		0.8		1.3	ns
t _{CLR}		0.8		1.3	ns

Table 29. EPF8282AV External Timing Parameters							
Symbol		Unit					
	A-3		A				
	Min	Max	Min	Max]		
t _{DRR}		24.8		50.1	ns		
t _{ODH}	1.0		1.0		ns		

Table 32. EPF8452A LE Timing Parameters							
Symbol	Speed Grade						
	A	-2	A	-3	A	-4	
	Min	Max	Min	Max	Min	Max	
t _{LUT}		2.0		2.3		3.0	ns
t _{CLUT}		0.0		0.2		0.1	ns
t _{RLUT}		0.9		1.6		1.6	ns
t _{GATE}		0.0		0.0		0.0	ns
t _{CASC}		0.6		0.7		0.9	ns
t _{CICO}		0.4		0.5		0.6	ns
t _{CGEN}		0.4		0.9		0.8	ns
t _{CGENR}		0.9		1.4		1.5	ns
t _C		1.6		1.8		2.4	ns
t _{CH}	4.0		4.0		4.0		ns
t _{CL}	4.0		4.0		4.0		ns
t _{CO}		0.4		0.5		0.6	ns
t _{COMB}		0.4		0.5		0.6	ns
t _{SU}	0.8		1.0		1.1		ns
t _H	0.9		1.1		1.4		ns
t _{PRE}		0.6		0.7		0.8	ns
t _{CLR}		0.6		0.7		0.8	ns

Table 33. EPF8452A External Timing Parameters

Symbol	Speed Grade							
	A-2		A-3		A-4			
	Min	Max	Min	Max	Min	Max		
t _{DRR}		16.0		20.0		25.0	ns	
t _{ODH}	1.0		1.0		1.0		ns	

Symbol	Speed Grade							
	A-2		A-3		A-4		1	
	Min	Max	Min	Max	Min	Мах	1	
t _{IOD}		0.7		0.8		0.9	ns	
t _{IOC}		1.7		1.8		1.9	ns	
t _{IOE}		1.7		1.8		1.9	ns	
t _{IOCO}		1.0		1.0		1.0	ns	
t _{IOCOMB}		0.3		0.2		0.1	ns	
t _{IOSU}	1.4		1.6		1.8		ns	
t _{IOH}	0.0		0.0		0.0		ns	
t _{IOCLR}		1.2		1.2		1.2	ns	
t _{IN}		1.5		1.6		1.7	ns	
t _{OD1}		1.1		1.4		1.7	ns	
t _{OD2}		1.6		1.9		2.2	ns	
t _{OD3}		4.6		4.9		5.2	ns	
t _{XZ}		1.4		1.6		1.8	ns	
t _{ZX1}		1.4		1.6		1.8	ns	
t _{ZX2}		1.9		2.1		2.3	ns	
t _{ZX3}		4.9		5.1		5.3	ns	

Table 39. EPF8820A Interconnect Timing Parameters									
Symbol	Speed Grade								
	A-2		A-3		A-4				
	Min	Max	Min	Max	Min	Max	-		
t _{LABCASC}		0.3		0.3		0.4	ns		
t _{LABCARRY}		0.3		0.3		0.4	ns		
t _{LOCAL}		0.5		0.6		0.8	ns		
t _{ROW}		5.0		5.0		5.0	ns		
t _{COL}		3.0		3.0		3.0	ns		
t _{DIN_C}		5.0		5.0		5.5	ns		
t _{DIN_D}		7.0		7.0		7.5	ns		
t _{DIN 10}		5.0		5.0		5.5	ns		

Γ

٦

Device Pin-Outs

Tables 52 through 54 show the pin names and numbers for the dedicated pins in each FLEX 8000 device package.

Table 52. FLEX 8000 84-, 100-, 144- & 160-Pin Package Pin-Outs (Part 1 of 3)								
Pin Name	84-Pin PLCC EPF8282A	84-Pin PLCC EPF8452A EPF8636A	100-Pin TQFP EPF8282A EPF8282AV	100-Pin TQFP EPF8452A	144-Pin TQFP EPF8820A	160-Pin PGA EPF8452A	160-Pin PQFP EPF8820A (1)	
nSP <i>(</i> 2 <i>)</i>	75	75	75	76	110	R1	1	
MSELO (2)	74	74	74	75	109	P2	2	
MSEL1 (2)	53	53	51	51	72	A1	44	
nSTATUS (2)	32	32	24	25	37	C13	82	
nCONFIG (2)	33	33	25	26	38	A15	81	
DCLK (2)	10	10	100	100	143	P14	125	
CONF_DONE (2)	11	11	1	1	144	N13	124	
nWS	30	30	22	23	33	F13	87	
nRS	48	48	42	45	31	C6	89	
RDCLK	49	49	45	46	12	B5	110	
nCS	29	29	21	22	4	D15	118	
CS	28	28	19	21	3	E15	121	
RDYnBUSY	77	77	77	78	20	P3	100	
CLKUSR	50	50	47	47	13	C5	107	
ADD17	51	51	49	48	75	B4	40	
ADD16	36	55	28	54	76	E2	39	
ADD15	56	56	55	55	77	D1	38	
ADD14	57	57	57	57	78	E1	37	
ADD13	58	58	58	58	79	F3	36	
ADD12	60	60	59	60	83	F2	32	
ADD11	61	61	60	61	85	F1	30	
ADD10	62	62	61	62	87	G2	28	
ADD9	63	63	62	64	89	G1	26	
ADD8	64	64	64	65	92	H1	22	
ADD7	65	65	65	66	94	H2	20	
ADD6	66	66	66	67	95	J1	18	
ADD5	67	67	67	68	97	J2	16	
ADD4	69	69	68	70	102	K2	11	
ADD3	70	70	69	71	103	K1	10	
ADD2	71	71	71	72	104	K3	8	
ADD1	76	72	76	73	105	M1	7	

Table 53. FLEX 8000 160-, 192- & 208-Pin Package Pin-Outs (Part 1 of 2)							
Pin Name	160-Pin PQFP EPF8452A	160-Pin PQFP EPF8636A	192-Pin PGA EPF8636A EPF8820A	208-Pin PQFP EPF8636A (1)	208-Pin PQFP EPF8820A (1)	208-Pin PQFP EPF81188A <i>(1)</i>	
nSP (2)	120	1	R15	207	207	5	
MSELO (2)	117	3	T15	4	4	21	
MSEL1 (2)	84	38	Т3	49	49	33	
nSTATUS (2)	37	83	B3	108	108	124	
nCONFIG (2)	40	81	C3	103	103	107	
DCLK (2)	1	120	C15	158	158	154	
CONF_DONE (2)	4	118	B15	153	153	138	
n₩S	30	89	C5	114	114	118	
nRS	71	50	B5	66	116	121	
RDCLK	73	48	C11	64	137	137	
nCS	29	91	B13	116	145	142	
CS	27	93	A16	118	148	144	
RDYnBUSY	125	155	A8	201	127	128	
CLKUSR	76	44	A10	59	134	134	
ADD17	78	43	R5	57	43	46	
ADD16	91	33	U3	43	42	45	
ADD15	92	31	Т5	41	41	44	
ADD14	94	29	U4	39	40	39	
ADD13	95	27	R6	37	39	37	
ADD12	96	24	Т6	31	35	36	
ADD11	97	23	R7	30	33	31	
ADD10	98	22	Т7	29	31	30	
ADD9	99	21	Т8	28	29	29	
ADD8	101	20	U9	24	25	26	
ADD7	102	19	U10	23	23	25	
ADD6	103	18	U11	22	21	24	
ADD5	104	17	U12	21	19	18	
ADD4	105	13	R12	14	14	17	
ADD3	106	11	U14	12	13	16	
ADD2	109	9	U15	10	11	10	
ADD1	110	7	R13	8	10	9	
ADD0	123	157	U16	203	9	8	
DATA7	144	137	H17	178	178	177	
DATA6	150	132	G17	172	176	175	
DATA5	152	129	F17	169	174	172	

Altera Corporation