

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	84
Number of Logic Elements/Cells	672
Total RAM Bits	-
Number of I/O	112
Number of Gates	8000
Voltage - Supply	4.75V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf8820atc144-2n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

...and More Features

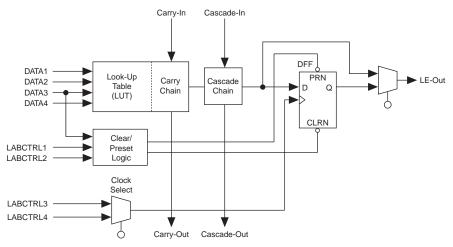
- Peripheral register for fast setup and clock-to-output delay
- Fabricated on an advanced SRAM process
- Available in a variety of packages with 84 to 304 pins (see Table 2)
- Software design support and automatic place-and-route provided by the Altera® MAX+PLUS® II development system for Windows-based PCs, as well as Sun SPARCstation, HP 9000 Series 700/800, and IBM RISC System/6000 workstations
- Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, and Veribest

Table 2. FLE.	Table 2. FLEX 8000 Package Options & I/O Pin Count Note (1)											
Device	84- Pin PLCC	100- Pin TQFP	144- Pin TQFP	160- Pin PQFP	160- Pin PGA	192- Pin PGA	208- Pin PQFP	225- Pin BGA	232- Pin PGA	240- Pin PQFP	280- Pin PGA	304- Pin RQFP
EPF8282A	68	78										
EPF8282AV		78										
EPF8452A	68	68		120	120							
EPF8636A	68			118		136	136					
EPF8820A			112	120		152	152	152				
EPF81188A							148		184	184		
EPF81500A										181	208	208

Note:

General Description

Altera's Flexible Logic Element MatriX (FLEX®) family combines the benefits of both erasable programmable logic devices (EPLDs) and field-programmable gate arrays (FPGAs). The FLEX 8000 device family is ideal for a variety of applications because it combines the fine-grained architecture and high register count characteristics of FPGAs with the high speed and predictable interconnect delays of EPLDs. Logic is implemented in LEs that include compact 4-input look-up tables (LUTs) and programmable registers. High performance is provided by a fast, continuous network of routing resources.


⁽¹⁾ FLEX 8000 device package types include plastic J-lead chip carrier (PLCC), thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat pack (RQFP), ball-grid array (BGA), and pin-grid array (PGA) packages.

Each LAB provides four control signals that can be used in all eight LEs. Two of these signals can be used as clocks, and the other two for clear/preset control. The LAB control signals can be driven directly from a dedicated input pin, an I/O pin, or any internal signal via the LAB local interconnect. The dedicated inputs are typically used for global clock, clear, or preset signals because they provide synchronous control with very low skew across the device. FLEX 8000 devices support up to four individual global clock, clear, or preset control signals. If logic is required on a control signal, it can be generated in one or more LEs in any LAB and driven into the local interconnect of the target LAB.

Logic Element

The logic element (LE) is the smallest unit of logic in the FLEX 8000 architecture, with a compact size that provides efficient logic utilization. Each LE contains a 4-input LUT, a programmable flipflop, a carry chain, and cascade chain. Figure 3 shows a block diagram of an LE.

Figure 3. FLEX 8000 LE

The LUT is a function generator that can quickly compute any function of four variables. The programmable flipflop in the LE can be configured for D, T, JK, or SR operation. The clock, clear, and preset control signals on the flipflop can be driven by dedicated input pins, general-purpose I/O pins, or any internal logic. For purely combinatorial functions, the flipflop is bypassed and the output of the LUT goes directly to the output of the LE.

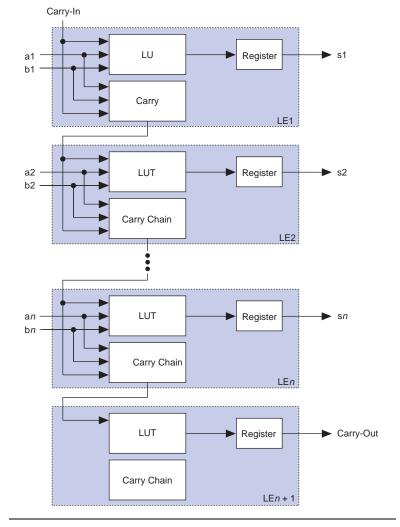


Figure 4. FLEX 8000 Carry Chain Operation

Cascade Chain

With the cascade chain, the FLEX 8000 architecture can implement functions that have a very wide fan-in. Adjacent LUTs can be used to compute portions of the function in parallel; the cascade chain serially connects the intermediate values. The cascade chain can use a logical AND or logical OR (via De Morgan's inversion) to connect the outputs of adjacent LEs. Each additional LE provides four more inputs to the effective width of a function, with a delay as low as 0.6 ns per LE.

The MAX+PLUS II Compiler can create cascade chains automatically during design processing; designers can also insert cascade chain logic manually during design entry. Cascade chains longer than eight LEs are automatically implemented by linking LABs together. The last LE of an LAB cascades to the first LE of the next LAB.

Figure 5 shows how the cascade function can connect adjacent LEs to form functions with a wide fan-in. These examples show functions of 4n variables implemented with n LEs. For a device with an A-2 speed grade, the LE delay is 2.4 ns; the cascade chain delay is 0.6 ns. With the cascade chain, 4.2 ns is needed to decode a 16-bit address.

Figure 5. FLEX 8000 Cascade Chain Operation

LE Operating Modes

The FLEX 8000 LE can operate in one of four modes, each of which uses LE resources differently. See Figure 6. In each mode, seven of the ten available inputs to the LE—the four data inputs from the LAB local

Normal Mode

The normal mode is suitable for general logic applications and wide decoding functions that can take advantage of a cascade chain. In normal mode, four data inputs from the LAB local interconnect and the carry-in signal are the inputs to a 4-input LUT. Using a configurable SRAM bit, the MAX+PLUS II Compiler automatically selects the carry-in or the DATA3 signal as an input. The LUT output can be combined with the cascade-in signal to form a cascade chain through the cascade-out signal. The LE-Out signal—the data output of the LE—is either the combinatorial output of the LUT and cascade chain, or the data output (Q) of the programmable register.

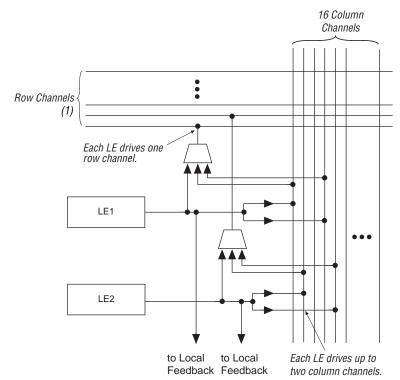
Arithmetic Mode

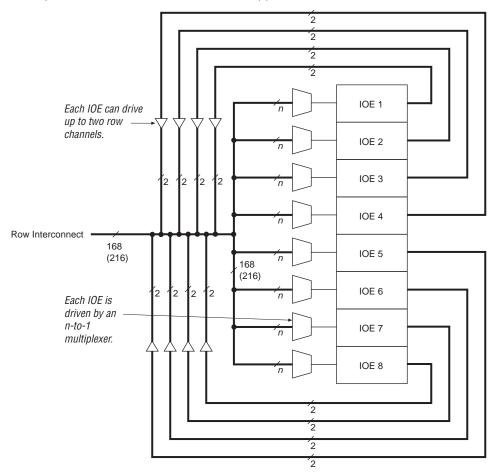
The arithmetic mode offers two 3-input LUTs that are ideal for implementing adders, accumulators, and comparators. One LUT provides a 3-bit function; the other generates a carry bit. As shown in Figure 6, the first LUT uses the carry-in signal and two data inputs from the LAB local interconnect to generate a combinatorial or registered

FastTrack Interconnect

In the FLEX 8000 architecture, connections between LEs and device I/O pins are provided by the FastTrack Interconnect, a series of continuous horizontal (row) and vertical (column) routing channels that traverse the entire FLEX 8000 device. This device-wide routing structure provides predictable performance even in complex designs. In contrast, the segmented routing structure in FPGAs requires switch matrices to connect a variable number of routing paths, which increases the delays between logic resources and reduces performance.

The LABs within FLEX 8000 devices are arranged into a matrix of columns and rows. Each row of LABs has a dedicated row interconnect that routes signals both into and out of the LABs in the row. The row interconnect can then drive I/O pins or feed other LABs in the device. Figure 8 shows how an LE drives the row and column interconnect.




Figure 8. FLEX 8000 LAB Connections to Row & Column Interconnect

Note:

(1) See Table 4 for the number of row channels.

Figure 11. FLEX 8000 Row-to-IOE Connections

Numbers in parentheses are for EPF81500A devices. See Note (1).

Note:

- (1) n = 13 for EPF8282A and EPF8282AV devices.
 - *n* = 21 for EPF8452A, EPF8636A, EPF8820A, and EPF81188A devices.
 - n = 27 for EPF81500A devices.

Column-to-IOE Connections

Two IOEs are located at the top and bottom of the column channels (see Figure 12). When an IOE is used as an input, it can drive up to two separate column channels. The output signal to an IOE can choose from 8 of the 16 column channels through an 8-to-1 multiplexer.

MultiVolt I/O Interface

The FLEX 8000 device architecture supports the MultiVolt I/O interface feature, which allows EPF81500A, EPF81188A, EPF8820A, and EPF8636A devices to interface with systems with differing supply voltages. These devices in all packages—except for EPF8636A devices in 84-pin PLCC packages—can be set for 3.3-V or 5.0-V I/O pin operation. These devices have one set of $V_{\rm CC}$ pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

The VCCINT pins must always be connected to a 5.0-V power supply. With a 5.0-V $V_{\rm CCINT}$ level, input voltages are at TTL levels and are therefore compatible with 3.3-V and 5.0-V inputs.

The VCCIO pins can be connected to either a 3.3-V or 5.0-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 5.0-V power supply, the output levels are compatible with 5.0-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is at 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with $V_{\rm CCIO}$ levels lower than 4.75 V incur a nominally greater timing delay of $t_{\rm OD2}$ instead of $t_{\rm OD1}$. See Table 8 on page 26.

IEEE Std. 1149.1 (JTAG) Boundary-Scan Support

The EPF8282A, EPF8282AV, EPF8636A, EPF8820A, and EPF81500A devices provide JTAG BST circuitry. FLEX 8000 devices with JTAG circuitry support the JTAG instructions shown in Table 6.

Table 6. EPF8282A,	Table 6. EPF8282A, EPF8282AV, EPF8636A, EPF8820A & EPF81500A JTAG Instructions							
JTAG Instruction	Description							
SAMPLE/PRELOAD	Allows a snapshot of the signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern to be output at the device pins.							
EXTEST	Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins.							
BYPASS	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through the selected device to adjacent devices during normal device operation.							

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4)	4.75 (4.50)	5.25 (5.50)	V
V _{CCIO}	Supply voltage for output buffers, 5.0-V operation	(3), (4)	4.75 (4.50)	5.25 (5.50)	V
	Supply voltage for output buffers, 3.3-V operation	(3), (4)	3.00 (3.00)	3.60 (3.60)	V
V _I	Input voltage		-0.5	V _{CCINT} + 0.5	V
Vo	Output voltage		0	V _{CCIO}	V
T _A	Operating temperature	For commercial use	0	70	°C
		For industrial use	-40	85	°C
t _R	Input rise time			40	ns
t _F	Input fall time			40	ns

Table 1	Table 11. FLEX 8000 5.0-V Device DC Operating ConditionsNotes (5), (6)								
Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
V_{IH}	High-level input voltage		2.0		V _{CCINT} + 0.5	V			
V _{IL}	Low-level input voltage		-0.5		0.8	V			
V _{OH}	5.0-V high-level TTL output voltage	$I_{OH} = -4 \text{ mA DC } (7)$ $V_{CCIO} = 4.75 \text{ V}$	2.4			V			
	3.3-V high-level TTL output voltage	$I_{OH} = -4 \text{ mA DC } (7)$ $V_{CCIO} = 3.00 \text{ V}$	2.4			V			
	3.3-V high-level CMOS output voltage	$I_{OH} = -0.1 \text{ mA DC } (7)$ $V_{CCIO} = 3.00 \text{ V}$	V _{CCIO} - 0.2			V			
V _{OL}	5.0-V low-level TTL output voltage	I _{OL} = 12 mA DC (7) V _{CCIO} = 4.75 V			0.45	V			
	3.3-V low-level TTL output voltage	I _{OL} = 12 mA DC (7) V _{CCIO} = 3.00 V			0.45	V			
	3.3-V low-level CMOS output voltage	I _{OL} = 0.1 mA DC (7) V _{CCIO} = 3.00 V			0.2	V			
I _I	Input leakage current	$V_I = V_{CC}$ or ground	-10		10	μΑ			
I _{OZ}	Tri-state output off-state current	$V_O = V_{CC}$ or ground	-40		40	μA			
I _{CC0}	V _{CC} supply current (standby)	V _I = ground, no load		0.5	10	mA			

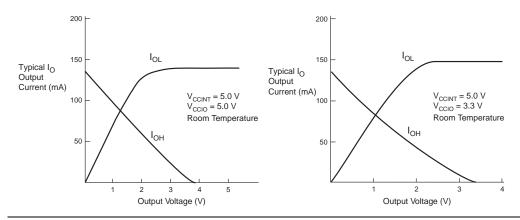


Figure 16. Output Drive Characteristics of 5.0-V FLEX 8000 Devices (Except EPF8282A)

Figure 17 shows the typical output drive characteristics of 5.0-V EPF8282A devices. The output driver is compliant with *PCI Local Bus Specification, Revision 2.2*.

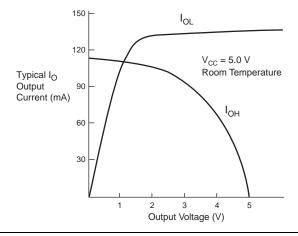


Figure 17. Output Drive Characteristics of EPF8282A Devices with 5.0-V V_{CCIO}

Figure 18 shows the typical output drive characteristics of EPF8282AV devices.

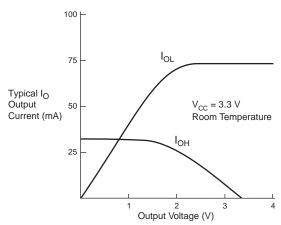


Figure 18. Output Drive Characteristics of EPF8282AV Devices

Timing Model

The continuous, high-performance FastTrack Interconnect routing structure ensures predictable performance and accurate simulation and timing analysis. This predictable performance contrasts with that of FPGAs, which use a segmented connection scheme and hence have unpredictable performance. Timing simulation and delay prediction are available with the MAX+PLUS II Simulator and Timing Analyzer, or with industry-standard EDA tools. The Simulator offers both pre-synthesis functional simulation to evaluate logic design accuracy and post-synthesis timing simulation with 0.1-ns resolution. The Timing Analyzer provides point-to-point timing delay information, setup and hold time prediction, and device-wide performance analysis.

Tables 17 through 20 describe the FLEX 8000 timing parameters and their symbols.

Cumbal	Parameter
Symbol	Faiailietei
t _{IOD}	IOE register data delay
t _{IOC}	IOE register control signal delay
t _{IOE}	Output enable delay
t _{IOCO}	IOE register clock-to-output delay
t _{IOCOMB}	IOE combinatorial delay
t _{IOSU}	IOE register setup time before clock; IOE register recovery time after asynchronous clear
t _{IOH}	IOE register hold time after clock
t _{IOCLR}	IOE register clear delay
t _{IN}	Input pad and buffer delay
t _{OD1}	Output buffer and pad delay, slow slew rate = off, $V_{CCIO} = 5.0 \text{ V C1} = 35 \text{ pF}$ (2)
t _{OD2}	Output buffer and pad delay, slow slew rate = off, $V_{CCIO} = 3.3 \text{ V C1} = 35 \text{ pF } (2)$
t _{OD3}	Output buffer and pad delay, slow slew rate = on, C1 = 35 pF (3)
t_{XZ}	Output buffer disable delay, C1 = 5 pF
t_{ZX1}	Output buffer enable delay, slow slew rate = off, V _{CCIO} = 5.0 V, C1 = 35 pF (2)
t_{ZX2}	Output buffer enable delay, slow slew rate = off, V _{CCIO} = 3.3 V, C1 = 35 pF (2)
t_{ZX3}	Output buffer enable delay, slow slew rate = on, C1 = 35 pF (3)

Table 18. F	Table 18. FLEX 8000 LE Timing ParametersNote (1)						
Symbol	Parameter						
t_{LUT}	LUT delay for data-in						
t _{CLUT}	LUT delay for carry-in						
t _{RLUT}	LUT delay for LE register feedback						
t _{GATE}	Cascade gate delay						
t _{CASC}	Cascade chain routing delay						
t _{CICO}	Carry-in to carry-out delay						
t _{CGEN}	Data-in to carry-out delay						
t _{CGENR}	LE register feedback to carry-out delay						
t_{C}	LE register control signal delay						
t _{CH}	LE register clock high time						
t _{CL}	LE register clock low time						
t_{CO}	LE register clock-to-output delay						
t _{COMB}	Combinatorial delay						
t _{SU}	LE register setup time before clock; LE register recovery time after asynchronous preset, clear, or load						
t_H	LE register hold time after clock						
t _{PRE}	LE register preset delay						
t _{CLR}	LE register clear delay						

Table 19. FLEX 8000 Interconnect Timing Parameters Note (1)						
Symbol	Parameter					
t _{LABCASC}	Cascade delay between LEs in different LABs					
t _{LABCARRY}	Carry delay between LEs in different LABs					
t _{LOCAL}	LAB local interconnect delay					
t _{ROW}	Row interconnect routing delay (4)					
t_{COL}	Column interconnect routing delay					
t _{DIN_C}	Dedicated input to LE control delay					
t _{DIN_D}	Dedicated input to LE data delay (4)					
t _{DIN_IO}	Dedicated input to IOE control delay					

Table 20. FLEX 8000 External Reference Timing Characteristics Note (5)					
Symbol	Parameter				
t _{DRR}	Register-to-register delay via 4 LEs, 3 row interconnects, and 4 local interconnects (6)				
t _{ODH}	Output data hold time after clock (7)				

Notes to tables:

- (1) Internal timing parameters cannot be measured explicitly. They are worst-case delays based on testable and external parameters specified by Altera. Internal timing parameters should be used for estimating device performance. Post-compilation timing simulation or timing analysis is required to determine actual worst-case performance.
- (2) These values are specified in Table 10 on page 28 or Table 14 on page 29.
- (3) For the t_{OD3} and t_{ZX3} parameters, $V_{CCIO} = 3.3 \text{ V or } 5.0 \text{ V}$.
- (4) The t_{ROW} and t_{DIN_D} delays are worst-case values for typical applications. Post-compilation timing simulation or timing analysis is required to determine actual worst-case performance.
- (5) External reference timing characteristics are factory-tested, worst-case values specified by Altera. A representative subset of signal paths is tested to approximate typical device applications.
- (6) For more information on test conditions, see *Application Note 76* (*Understanding FLEX 8000 Timing*).
- (7) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies to global and non-global clocking, and for LE and I/O element registers.

The FLEX 8000 timing model shows the delays for various paths and functions in the circuit. See Figure 19. This model contains three distinct parts: the LE; the IOE; and the interconnect, including the row and column FastTrack Interconnect, LAB local interconnect, and carry and cascade interconnect paths. Each parameter shown in Figure 19 is expressed as a worst-case value in Tables 22 through 49. Hand-calculations that use the FLEX 8000 timing model and these timing parameters can be used to estimate FLEX 8000 device performance. Timing simulation or timing analysis after compilation is required to determine the final worst-case performance. Table 21 summarizes the interconnect paths shown in Figure 19.

For more information on timing parameters, go to *Application Note 76* (*Understanding FLEX 8000 Timing*).

Symbol			Speed	Grade			Unit
	А	-2	А	-3	А	1	
	Min	Max	Min	Max	Min	Max	1
t _{LABCASC}		0.3		0.3		0.4	ns
t _{LABCARRY}		0.3		0.3		0.4	ns
t _{LOCAL}		0.5		0.6		0.8	ns
t _{ROW}		4.2		4.2		4.2	ns
t_{COL}		2.5		2.5		2.5	ns
t _{DIN_C}		5.0		5.0		5.5	ns
t _{DIN_D}		7.2		7.2		7.2	ns
t _{DIN_IO}		5.0		5.0		5.5	ns

Symbol	Speed Grade								
	A-2		A-3		A-4				
	Min	Max	Min	Max	Min	Max			
t_{IOD}		0.7		0.8		0.9	ns		
t_{IOC}		1.7		1.8		1.9	ns		
t_{IOE}		1.7		1.8		1.9	ns		
t_{IOCO}		1.0		1.0		1.0	ns		
t_{IOCOMB}		0.3		0.2		0.1	ns		
t _{IOSU}	1.4		1.6		1.8		ns		
t_{IOH}	0.0		0.0		0.0		ns		
t_{IOCLR}		1.2		1.2		1.2	ns		
t_{IN}		1.5		1.6		1.7	ns		
t_{OD1}		1.1		1.4		1.7	ns		
t_{OD2}		_		_		_	ns		
t_{OD3}		4.6		4.9		5.2	ns		
t_{XZ}		1.4	_	1.6		1.8	ns		
t_{ZX1}		1.4		1.6		1.8	ns		
t_{ZX2}		-	_	-		-	ns		
t_{ZX3}		4.9		5.1		5.3	ns		

Symbol			Speed	Grade			Unit
	A-2		A-3		A-4		1
	Min	Max	Min	Max	Min	Max	
t _{LABCASC}		0.3		0.4		0.4	ns
t _{LABCARRY}		0.3		0.4		0.4	ns
t _{LOCAL}		0.5		0.5		0.7	ns
t _{ROW}		5.0		5.0		5.0	ns
t_{COL}		3.0		3.0		3.0	ns
t _{DIN_C}		5.0		5.0		5.5	ns
t _{DIN D}		7.0		7.0		7.5	ns
t _{DIN IO}		5.0		5.0		5.5	ns

Symbol	Speed Grade							
	A-2		A-3		A-4			
	Min	Max	Min	Max	Min	Max		
t_{LUT}		2.0		2.3		3.0	ns	
t_{CLUT}		0.0		0.2		0.1	ns	
t_{RLUT}		0.9		1.6		1.6	ns	
t _{GATE}		0.0		0.0		0.0	ns	
t _{CASC}		0.6		0.7		0.9	ns	
t _{CICO}		0.4		0.5		0.6	ns	
t _{CGEN}		0.4		0.9		0.8	ns	
t _{CGENR}		0.9		1.4		1.5	ns	
t_C		1.6		1.8		2.4	ns	
t _{CH}	4.0		4.0		4.0		ns	
t_{CL}	4.0		4.0		4.0		ns	
t_{CO}		0.4		0.5		0.6	ns	
t _{COMB}		0.4		0.5		0.6	ns	
t _{SU}	0.8		1.0		1.1		ns	
t_H	0.9		1.1		1.4		ns	
t _{PRE}		0.6		0.7		0.8	ns	
t _{CLR}		0.6		0.7		0.8	ns	

Table 33. EPF845	52A External Til	ming Paramet	ers						
Symbol		Speed Grade							
	A	A-2 A-3		A-4		_			
	Min	Max	Min	Max	Min	Max			
t _{DRR}		16.0		20.0		25.0	ns		
t _{ODH}	1.0		1.0		1.0		ns		

Symbol	Speed Grade							
	A-2		A-3		A-4		Unit	
	Min	Max	Min	Max	Min	Max		
t_{IOD}		0.7		0.8		0.9	ns	
t _{IOC}		1.7		1.8		1.9	ns	
t _{IOE}		1.7		1.8		1.9	ns	
t _{IOCO}		1.0		1.0		1.0	ns	
t _{IOCOMB}		0.3		0.2		0.1	ns	
t _{IOSU}	1.4		1.6		1.8		ns	
t _{IOH}	0.0		0.0		0.0		ns	
t _{IOCLR}		1.2		1.2		1.2	ns	
t _{IN}		1.5		1.6		1.7	ns	
t _{OD1}		1.1		1.4		1.7	ns	
t _{OD2}		1.6		1.9		2.2	ns	
t _{OD3}		4.6		4.9		5.2	ns	
t_{XZ}		1.4		1.6		1.8	ns	
t_{ZX1}		1.4		1.6		1.8	ns	
t_{ZX2}		1.9		2.1		2.3	ns	
t_{ZX3}		4.9		5.1		5.3	ns	

Symbol			Speed	Grade			Unit
	A-2		A-3		A-4		7
	Min	Max	Min	Max	Min	Max	
t _{LABCASC}		0.3		0.3		0.4	ns
t _{LABCARRY}		0.3		0.3		0.4	ns
t _{LOCAL}		0.5		0.6		0.8	ns
t _{ROW}		5.0		5.0		5.0	ns
t _{COL}		3.0		3.0		3.0	ns
t _{DIN_C}		5.0		5.0		5.5	ns
t _{DIN_D}		7.0		7.0		7.5	ns
t _{DIN_IO}		5.0		5.0		5.5	ns

Table 48. EPF81500A LE Timing Parameters								
Symbol	Speed Grade							
	A-2		A-3		A-4			
	Min	Max	Min	Max	Min	Max		
t_{LUT}		2.0		2.5		3.2	ns	
t_{CLUT}		0.0		0.0		0.0	ns	
t _{RLUT}		0.9		1.1		1.5	ns	
t _{GATE}		0.0		0.0		0.0	ns	
t _{CASC}		0.6		0.7		0.9	ns	
t _{CICO}		0.4		0.5		0.6	ns	
t _{CGEN}		0.4		0.5		0.7	ns	
t _{CGENR}		0.9		1.1		1.5	ns	
t_C		1.6		2.0		2.5	ns	
t _{CH}	4.0		4.0		4.0		ns	
t_{CL}	4.0		4.0		4.0		ns	
t_{CO}		0.4		0.5		0.6	ns	
t _{COMB}		0.4		0.5		0.6	ns	
t _{SU}	0.8		1.1		1.2		ns	
t _H	0.9		1.1		1.5		ns	
t _{PRE}		0.6		0.7		0.8	ns	
t _{CLR}		0.6		0.7		0.8	ns	

Table 49. EPF815	500A External	Timing Param	neters					
Symbol	Speed Grade							
	A-2		A-3		A-4		1	
	Min	Max	Min	Max	Min	Max		
t _{DRR}		16.1		20.1		25.1	ns	
t _{ODH}	1.0		1.0		1.0		ns	

Operating Modes

The FLEX 8000 architecture uses SRAM elements that require configuration data to be loaded whenever the device powers up and begins operation. The process of physically loading the SRAM programming data into the device is called *configuration*. During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. The I/O pins are tri-stated during power-up, and before and during configuration. The configuration and initialization processes together are called *command mode*; normal device operation is called *user mode*.

SRAM elements allow FLEX 8000 devices to be reconfigured in-circuit with new programming data that is loaded into the device. Real-time reconfiguration is performed by forcing the device into command mode with a device pin, loading different programming data, reinitializing the device, and resuming user-mode operation. The entire reconfiguration process requires less than 100 ms and can be used to dynamically reconfigure an entire system. In-field upgrades can be performed by distributing new configuration files.

Configuration Schemes

The configuration data for a FLEX 8000 device can be loaded with one of six configuration schemes, chosen on the basis of the target application. Both active and passive schemes are available. In the active configuration schemes, the FLEX 8000 device functions as the controller, directing the loading operation, controlling external configuration devices, and completing the loading process. The clock source for all active configuration schemes is an oscillator on the FLEX 8000 device that operates between 2 MHz and 6 MHz. In the passive configuration schemes, an external controller guides the FLEX 8000 device. Table 51 shows the data source for each of the six configuration schemes.

Table 51. Data Source for Configuration							
Configuration Scheme	Acronym	Data Source					
Active serial	AS	Altera configuration device					
Active parallel up	APU	Parallel configuration device					
Active parallel down	APD	Parallel configuration device					
Passive serial	PS	Serial data path					
Passive parallel synchronous	PPS	Intelligent host					
Passive parallel asynchronous	PPA	Intelligent host					

Pin Name	225-Pin BGA	232-Pin PGA	240-Pin PQFP	240-Pin PQFP	280-Pin PGA	304-Pin RQFP
	EPF8820A	EPF81188A	EPF81188A	EPF81500A	EPF81500A	EPF81500A
nSP <i>(2)</i>	A15	C14	237	237	W1	304
MSEL0 (2)	B14	G15	21	19	N1	26
MSEL1 (2)	R15	L15	40	38	H3	51
nSTATUS (2)	P2	L3	141	142	G19	178
nCONFIG (2)	R1	R4	117	120	B18	152
DCLK (2)	B2	C4	184	183	U18	230
CONF_DONE (2)	A1	G3	160	161	M16	204
nWS	L4	P1	133	134	F18	167
nRS	K5	N1	137	138	G18	171
RDCLK	F1	G2	158	159	M17	202
nCS	D1	E2	166	167	N16	212
CS	C1	E3	169	170	N18	215
RDYnBUSY	J3	K2	146	147	J17	183
CLKUSR	G2	H2	155	156	K19	199
ADD17	M14	R15	58	56	E3	73
ADD16	L12	T17	56	54	E2	71
ADD15	M15	P15	54	52	F4	69
ADD14	L13	M14	47	45	G1	60
ADD13	L14	M15	45	43	H2	58
ADD12	K13	M16	43	41	H1	56
ADD11	K15	K15	36	34	J3	47
ADD10	J13	K17	34	32	K3	45
ADD9	J15	J14	32	30	K4	43
ADD8	G14	J15	29	27	L1	34
ADD7	G13	H17	27	25	L2	32
ADD6	G11	H15	25	23	M1	30
ADD5	F14	F16	18	16	N2	20
ADD4	E13	F15	16	14	N3	18
ADD3	D15	F14	14	12	N4	16
ADD2	D14	D15	7	5	U1	8
ADD1	E12	B17	5	3	U2	6
ADD0	C15	C15	3	1	V1	4
DATA7	A7	A7	205	199	W13	254
DATA6	D7	D8	203	197	W14	252
DATA5	A6	B7	200	196	W15	250