E·XFL

Intel - EPF8820ATC144-4N Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	84
Number of Logic Elements/Cells	672
Total RAM Bits	-
Number of I/O	112
Number of Gates	8000
Voltage - Supply	4.75V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf8820atc144-4n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

JTAG BST circuitry	Yes	No	Yes	Yes	No	Yes

...and More Features

Peripheral register for fast setup and clock-to-output delay
 Fabricated on an educated CDAM succession

- Fabricated on an advanced SRAM process
 - Available in a variety of packages with 84 to 304 pins (see Table 2)
 Software design support and automatic place-and-route provided by the Altera[®] MAX+PLUS[®] II development system for Windows-based PCs, as well as Sun SPARCstation, HP 9000 Series 700/800, and IBM RISC System/6000 workstations
 - Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, and Veribest

Table 2. FLE	Table 2. FLEX 8000 Package Options & I/O Pin Count Note (1)											
Device	84- Pin PLCC	100- Pin TQFP	144- Pin TQFP	160- Pin PQFP	160- Pin PGA	192- Pin PGA	208- Pin PQFP	225- Pin BGA	232- Pin PGA	240- Pin PQFP	280- Pin PGA	304- Pin RQFP
EPF8282A	68	78										
EPF8282AV		78										
EPF8452A	68	68		120	120							
EPF8636A	68			118		136	136					
EPF8820A			112	120		152	152	152				
EPF81188A							148		184	184		
EPF81500A										181	208	208

Note:

(1) FLEX 8000 device package types include plastic J-lead chip carrier (PLCC), thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat pack (RQFP), ball-grid array (BGA), and pin-grid array (PGA) packages.

General Description

Altera's Flexible Logic Element MatriX (FLEX[®]) family combines the benefits of both erasable programmable logic devices (EPLDs) and fieldprogrammable gate arrays (FPGAs). The FLEX 8000 device family is ideal for a variety of applications because it combines the fine-grained architecture and high register count characteristics of FPGAs with the high speed and predictable interconnect delays of EPLDs. Logic is implemented in LEs that include compact 4-input look-up tables (LUTs) and programmable registers. High performance is provided by a fast, continuous network of routing resources. FLEX 8000 devices provide a large number of storage elements for applications such as digital signal processing (DSP), wide-data-path manipulation, and data transformation. These devices are an excellent choice for bus interfaces, TTL integration, coprocessor functions, and high-speed controllers. The high-pin-count packages can integrate multiple 32-bit buses into a single device. Table 3 shows FLEX 8000 performance and LE requirements for typical applications.

Application	LEs Used		Speed Grade		
		A-2	A-3	A-4	
16-bit loadable counter	16	125	95	83	MHz
16-bit up/down counter	16	125	95	83	MHz
24-bit accumulator	24	87	67	58	MHz
16-bit address decode	4	4.2	4.9	6.3	ns
16-to-1 multiplexer	10	6.6	7.9	9.5	ns

All FLEX 8000 device packages provide four dedicated inputs for synchronous control signals with large fan-outs. Each I/O pin has an associated register on the periphery of the device. As outputs, these registers provide fast clock-to-output times; as inputs, they offer quick setup times.

The logic and interconnections in the FLEX 8000 architecture are configured with CMOS SRAM elements. FLEX 8000 devices are configured at system power-up with data stored in an industry-standard parallel EPROM or an Altera serial configuration devices, or with data provided by a system controller. Altera offers the EPC1, EPC1213, EPC1064, and EPC1441 configuration devices, which configure FLEX 8000 devices via a serial data stream. Configuration data can also be stored in an industry-standard 32 K × 8 bit or larger configuration device, or downloaded from system RAM. After a FLEX 8000 device has been configured, it can be reconfigured in-circuit by resetting the device and loading new data. Because reconfiguration requires less than 100 ms, realtime changes can be made during system operation. For information on how to configure FLEX 8000 devices, go to the following documents:

- Configuration Devices for APEX & FLEX Devices Data Sheet
- BitBlaster Serial Download Cable Data Sheet
- ByteBlasterMV Parallel Port Download Cable Data Sheet
- *Application Note 33 (Configuring FLEX 8000 Devices)*
- Application Note 38 (Configuring Multiple FLEX 8000 Devices)

The FLEX 8000 architecture provides two dedicated high-speed data paths—carry chains and cascade chains—that connect adjacent LEs without using local interconnect paths. The carry chain supports highspeed counters and adders; the cascade chain implements wide-input functions with minimum delay. Carry and cascade chains connect all LEs in an LAB and all LABs in the same row. Heavy use of carry and cascade chains can reduce routing flexibility. Therefore, the use of carry and cascade chains should be limited to speed-critical portions of a design.

Carry Chain

The carry chain provides a very fast (less than 1 ns) carry-forward function between LEs. The carry-in signal from a lower-order bit moves forward into the higher-order bit via the carry chain, and feeds into both the LUT and the next portion of the carry chain. This feature allows the FLEX 8000 architecture to implement high-speed counters and adders of arbitrary width. The MAX+PLUS II Compiler can create carry chains automatically during design processing; designers can also insert carry chain logic manually during design entry.

Figure 4 shows how an *n*-bit full adder can be implemented in n + 1 LEs with the carry chain. One portion of the LUT generates the sum of two bits using the input signals and the carry-in signal; the sum is routed to the output of the LE. The register is typically bypassed for simple adders, but can be used for an accumulator function. Another portion of the LUT and the carry chain logic generate the carry-out signal, which is routed directly to the carry-in signal of the next-higher-order bit. The final carry-out signal is routed to another LE, where it can be used as a general-purpose signal. In addition to mathematical functions, carry chain logic supports very fast counters and comparators.

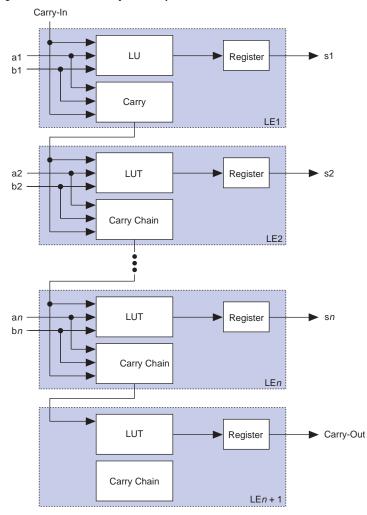


Figure 4. FLEX 8000 Carry Chain Operation

Cascade Chain

With the cascade chain, the FLEX 8000 architecture can implement functions that have a very wide fan-in. Adjacent LUTs can be used to compute portions of the function in parallel; the cascade chain serially connects the intermediate values. The cascade chain can use a logical AND or logical OR (via De Morgan's inversion) to connect the outputs of adjacent LEs. Each additional LE provides four more inputs to the effective width of a function, with a delay as low as 0.6 ns per LE.

Asynchronous Clear

A register is cleared by one of the two LABCTRL signals. When the CLRn port receives a low signal, the register is set to zero.

Asynchronous Preset

An asynchronous preset is implemented as either an asynchronous load or an asynchronous clear. If DATA3 is tied to VCC, asserting LABCTRL1 asynchronously loads a 1 into the register. Alternatively, the MAX+PLUS II software can provide preset control by using the clear and inverting the input and output of the register. Inversion control is available for the inputs to both LEs and IOEs. Therefore, if a register is preset by only one of the two LABCTRL signals, the DATA3 input is not needed and can be used for one of the LE operating modes.

Asynchronous Clear & Preset

When implementing asynchronous clear and preset, LABCTRL1 controls the preset and LABCTRL2 controls the clear. The DATA3 input is tied to VCC; therefore, asserting LABCTRL1 asynchronously loads a 1 into the register, effectively presetting the register. Asserting LABCTRL2 clears the register.

Asynchronous Load with Clear

When implementing an asynchronous load with the clear, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear. LABCTRL2 implements the clear by controlling the register clear.

Asynchronous Load with Preset

When implementing an asynchronous load in conjunction with a preset, the MAX+PLUS II software provides preset control by using the clear and inverting the input and output of the register. Asserting LABCTRL2 clears the register, while asserting LABCTRL1 loads the register. The MAX+PLUS II software inverts the signal that drives the DATA3 signal to account for the inversion of the register's output.

Asynchronous Load without Clear or Preset

When implementing an asynchronous load without the clear or preset, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear.

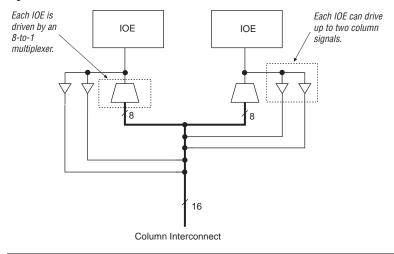


Figure 12. FLEX 8000 Column-to-IOE Connections

In addition to general-purpose I/O pins, FLEX 8000 devices have four dedicated input pins. These dedicated inputs provide low-skew, device-wide signal distribution, and are typically used for global clock, clear, and preset control signals. The signals from the dedicated inputs are available as control signals for all LABs and I/O elements in the device. The dedicated inputs can also be used as general-purpose data inputs because they can feed the local interconnect of each LAB in the device.

Signals enter the FLEX 8000 device either from the I/O pins that provide general-purpose input capability or from the four dedicated inputs. The IOEs are located at the ends of the row and column interconnect channels.

I/O pins can be used as input, output, or bidirectional pins. Each I/O pin has a register that can be used either as an input register for external data that requires fast setup times, or as an output register for data that requires fast clock-to-output performance. The MAX+PLUS II Compiler uses the programmable inversion option to invert signals automatically from the row and column interconnect when appropriate.

The clock, clear, and output enable controls for the IOEs are provided by a network of I/O control signals. These signals can be supplied by either the dedicated input pins or by internal logic. The IOE control-signal paths are designed to minimize the skew across the device. All control-signal sources are buffered onto high-speed drivers that drive the signals around the periphery of the device. This "peripheral bus" can be configured to provide up to four output enable signals (10 in EPF81500A devices), and up to two clock or clear signals. Figure 13 on page 22 shows how two output enable signals are shared with one clock and one clear signal. The instruction register length for FLEX 8000 devices is three bits. Table 7 shows the boundary-scan register length for FLEX 8000 devices.

Table 7. FLEX 8000 Boundary-Scan Register Length				
Device	Boundary-Scan Register Length			
EPF8282A, EPF8282AV	273			
EPF8636A	417			
EPF8820A	465			
EPF81500A	645			

FLEX 8000 devices that support JTAG include weak pull-ups on the JTAG pins. Figure 14 shows the timing requirements for the JTAG signals.

Figure 14. EPF8282A, EPF8282AV, EPF8636A, EPF8820A & EPF81500A JTAG Waveforms

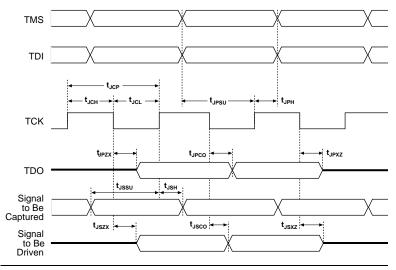


Table 8 shows the timing parameters and values for EPF8282A, EPF8282AV, EPF8636A, EPF8820A, and EPF81500A devices.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4)	4.75 (4.50)	5.25 (5.50)	V
V _{CCIO}	Supply voltage for output buffers, 5.0-V operation	(3), (4)	4.75 (4.50)	5.25 (5.50)	V
	Supply voltage for output buffers, 3.3-V operation	(3), (4)	3.00 (3.00)	3.60 (3.60)	V
VI	Input voltage		-0.5	V _{CCINT} + 0.5	V
Vo	Output voltage		0	V _{CCIO}	V
Τ _A	Operating temperature	For commercial use	0	70	°C
		For industrial use	-40	85	°C
t _R	Input rise time			40	ns
t _F	Input fall time			40	ns

Table 1	1. FLEX 8000 5.0-V Device DC	C Operating Conditions	Notes (5), (6)			
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{IH}	High-level input voltage		2.0		V _{CCINT} + 0.5	V
V _{IL}	Low-level input voltage		-0.5		0.8	V
V _{OH}	5.0-V high-level TTL output voltage	I _{OH} = -4 mA DC (7) V _{CCIO} = 4.75 V	2.4			V
	3.3-V high-level TTL output voltage	I _{OH} = -4 mA DC (7) V _{CCIO} = 3.00 V	2.4			V
	3.3-V high-level CMOS output voltage	I _{OH} = -0.1 mA DC (7) V _{CCIO} = 3.00 V	V _{CCIO} – 0.2			V
V _{OL}	5.0-V low-level TTL output voltage	I _{OL} = 12 mA DC (7) V _{CCIO} = 4.75 V			0.45	V
	3.3-V low-level TTL output voltage	I _{OL} = 12 mA DC (7) V _{CCIO} = 3.00 V			0.45	V
	3.3-V low-level CMOS output voltage	I _{OL} = 0.1 mA DC (7) V _{CCIO} = 3.00 V			0.2	V
I _I	Input leakage current	$V_{I} = V_{CC}$ or ground	-10		10	μA
I _{OZ}	Tri-state output off-state current	$V_{O} = V_{CC}$ or ground	-40		40	μA
I _{CC0}	V _{CC} supply current (standby)	V _I = ground, no load		0.5	10	mA

1

Table 1	Table 12. FLEX 8000 5.0-V Device Capacitance Note (8)						
Symbol	Parameter	Conditions	Min	Max	Unit		
C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF		
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		10	pF		

Notes to tables:

(1) See the Operating Requirements for Altera Devices Data Sheet.

- (2) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 7.0 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) The maximum V_{CC} rise time is 100 ms.
- (4) Numbers in parentheses are for industrial-temperature-range devices.
- (5) Typical values are for $T_A = 25^\circ \text{ C}$ and $V_{CC} = 5.0 \text{ V}$.
- (6) These values are specified in Table 10 on page 28.
- (7) The I_{OH} parameter refers to high-level TTL or CMOS output current; the I_{OL} parameter refers to low-level TTL or CMOS output current.
- (8) Capacitance is sample-tested only.

Tables 13 through 16 provide information on absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for 3.3-V FLEX 8000 devices.

Table 13. FLEX 8000 3.3-V Device Absolute Maximum Ratings Note (1)									
Symbol	Parameter	Conditions	Min	Max	Unit				
V _{CC}	Supply voltage	With respect to ground (2)	-2.0	5.3	V				
VI	DC input voltage		-2.0	5.3	V				
I _{OUT}	DC output current, per pin		-25	25	mA				
T _{STG}	Storage temperature	No bias	-65	150	°C				
T _{AMB}	Ambient temperature	Under bias	-65	135	°C				
ΤJ	Junction temperature	Plastic packages, under bias		135	°C				

Table 1	Table 14. FLEX 8000 3.3-V Device Recommended Operating Conditions										
Symbol	Parameter	Conditions	Min	Max	Unit						
V _{CC}	Supply voltage	(3)	3.0	3.6	V						
VI	Input voltage		-0.3	V _{CC} + 0.3	V						
Vo	Output voltage		0	V _{CC}	V						
Τ _Α	Operating temperature	For commercial use	0	70	°C						
t _R	Input rise time			40	ns						
t _F	Input fall time			40	ns						

FLEX 8000 Programmable Logic Device Family Data Sheet

Table 1	Table 15. FLEX 8000 3.3-V Device DC Operating Conditions Note (4)										
Symbol	Parameter	Conditions	Min	Тур	Max	Unit					
V _{IH}	High-level input voltage		2.0		V _{CC} + 0.3	V					
V _{IL}	Low-level input voltage		-0.3		0.8	V					
V _{OH}	High-level output voltage	I _{OH} = -0.1 mA DC <i>(</i> 5 <i>)</i>	$V_{CC} - 0.2$			V					
V _{OL}	Low-level output voltage	I _{OL} = 4 mA DC <i>(</i> 5 <i>)</i>			0.45	V					
I _I	Input leakage current	$V_{I} = V_{CC}$ or ground	-10		10	μA					
I _{OZ}	Tri-state output off-state current	$V_{O} = V_{CC}$ or ground	-40		40	μA					
I _{CC0}	V _{CC} supply current (standby)	V _I = ground, no load (6)		0.3	10	mA					

Table 1	Table 16. FLEX 8000 3.3-V Device Capacitance Note (7)							
Symbol	Parameter	Conditions	Min	Max	Unit			
C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF			
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		10	pF			

Notes to tables:

(1) See the Operating Requirements for Altera Devices Data Sheet.

(2) Minimum DC input voltage is -0.3 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.3 V for input currents less than 100 mA and periods shorter than 20 ns.

(3) The maximum V_{CC} rise time is 100 ms. \overline{V}_{CC} must rise monotonically.

(4) These values are specified in Table 14 on page 29.

(5) The I_{OH} parameter refers to high-level TTL output current; the I_{OL} parameter refers to low-level TTL output current.

(6) Typical values are for $T_A = 25^\circ \text{ C}$ and $V_{CC} = 3.3 \text{ V}$.

(7) Capacitance is sample-tested only.

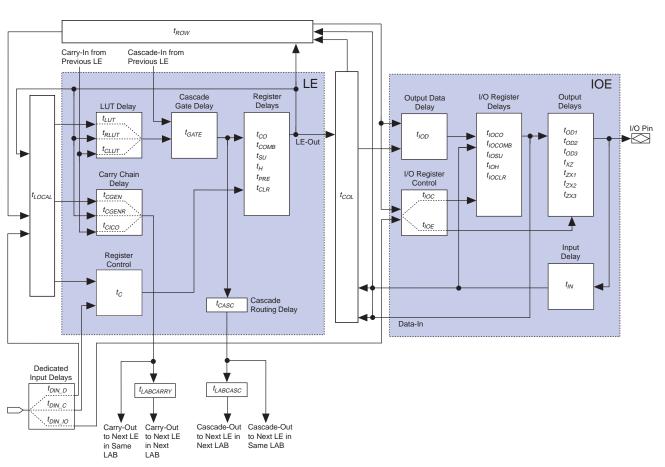
Figure 16 shows the typical output drive characteristics of 5.0-V FLEX 8000 devices. The output driver is compliant with *PCI Local Bus Specification, Revision* 2.2.

Symbol	Parameter
t _{LABCASC}	Cascade delay between LEs in different LABs
t _{LABCARRY}	Carry delay between LEs in different LABs
t _{LOCAL}	LAB local interconnect delay
t _{ROW}	Row interconnect routing delay (4)
t _{COL}	Column interconnect routing delay
t _{DIN_C}	Dedicated input to LE control delay
t _{DIN_D}	Dedicated input to LE data delay (4)
t _{DIN IO}	Dedicated input to IOE control delay

Table 20. FLEX 8000 External Reference Timing Characteristics Note (5)

Symbol	Parameter
t _{DRR}	Register-to-register delay via 4 LEs, 3 row interconnects, and 4 local interconnects (6)
t _{ODH}	Output data hold time after clock (7)

Notes to tables:


- Internal timing parameters cannot be measured explicitly. They are worst-case delays based on testable and external parameters specified by Altera. Internal timing parameters should be used for estimating device performance. Post-compilation timing simulation or timing analysis is required to determine actual worst-case performance.
- (2) These values are specified in Table 10 on page 28 or Table 14 on page 29.
- (3) For the t_{OD3} and t_{ZX3} parameters, $V_{CCIO} = 3.3$ V or 5.0 V.
- (4) The t_{ROW} and t_{DIN_D} delays are worst-case values for typical applications. Post-compilation timing simulation or timing analysis is required to determine actual worst-case performance.
- (5) External reference timing characteristics are factory-tested, worst-case values specified by Altera. A representative subset of signal paths is tested to approximate typical device applications.
- (6) For more information on test conditions, see Application Note 76 (Understanding FLEX 8000 Timing).
- (7) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies to global and non-global clocking, and for LE and I/O element registers.

The FLEX 8000 timing model shows the delays for various paths and functions in the circuit. See Figure 19. This model contains three distinct parts: the LE; the IOE; and the interconnect, including the row and column FastTrack Interconnect, LAB local interconnect, and carry and cascade interconnect paths. Each parameter shown in Figure 19 is expressed as a worst-case value in Tables 22 through 49. Hand-calculations that use the FLEX 8000 timing model and these timing parameters can be used to estimate FLEX 8000 device performance. Timing simulation or timing analysis after compilation is required to determine the final worst-case performance. Table 21 summarizes the interconnect paths shown in Figure 19.

For more information on timing parameters, go to *Application Note 76* (*Understanding FLEX 8000 Timing*).

Altera Corporation

Figure 19. FLEX 8000 Timing Model

Π

Symbol	Speed Grade							
	A-3		A	-4				
	Min	Max	Min	Max				
t _{LUT}		3.2		7.3	ns			
t _{CLUT}		0.0		1.4	ns			
t _{RLUT}		1.5		5.1	ns			
t _{GATE}		0.0		0.0	ns			
t _{CASC}		0.9		2.8	ns			
t _{CICO}		0.6		1.5	ns			
t _{CGEN}		0.7		2.2	ns			
t _{CGENR}		1.5		3.7	ns			
t _C		2.5		4.7	ns			
t _{CH}	4.0		6.0		ns			
t _{CL}	4.0		6.0		ns			
t _{CO}		0.6		0.9	ns			
t _{COMB}		0.6		0.9	ns			
t _{SU}	1.2		2.4		ns			
t _H	1.5		4.6		ns			
t _{PRE}		0.8		1.3	ns			
t _{CLR}		0.8		1.3	ns			

Table 29. EPF8282AV External Timing Parameters										
Symbol		Speed Grade								
	A	A-3		A-4						
	Min	Max	Min	Max						
t _{DRR}		24.8		50.1	ns					
t _{ODH}	1.0		1.0		ns					

Symbol	Speed Grade								
	A-2		A-3		A-4		7		
	Min	Max	Min	Max	Min	Max			
t _{IOD}		0.7		0.8		0.9	ns		
t _{IOC}		1.7		1.8		1.9	ns		
t _{IOE}		1.7		1.8		1.9	ns		
t _{IOCO}		1.0		1.0		1.0	ns		
t _{IOCOMB}		0.3		0.2		0.1	ns		
t _{IOSU}	1.4		1.6		1.8		ns		
t _{IOH}	0.0		0.0		0.0		ns		
t _{IOCLR}		1.2		1.2		1.2	ns		
t _{IN}		1.5		1.6		1.7	ns		
t _{OD1}		1.1		1.4		1.7	ns		
t _{OD2}		1.6		1.9		2.2	ns		
t _{OD3}		4.6		4.9		5.2	ns		
t _{XZ}		1.4		1.6		1.8	ns		
t _{ZX1}		1.4		1.6		1.8	ns		
t _{ZX2}		1.9		2.1		2.3	ns		
t _{ZX3}		4.9		5.1		5.3	ns		

Symbol		Speed Grade								
	A	A-2		A-3		-4				
	Min	Max	Min	Max	Min	Max	-			
t _{LABCASC}		0.3		0.4		0.4	ns			
t _{LABCARRY}		0.3		0.4		0.4	ns			
t _{LOCAL}		0.5		0.5		0.7	ns			
t _{ROW}		5.0		5.0		5.0	ns			
t _{COL}		3.0		3.0		3.0	ns			
t _{DIN_C}		5.0		5.0		5.5	ns			
t _{DIN_D}		7.0		7.0		7.5	ns			
t _{DIN_IO}		5.0		5.0		5.5	ns			

Г

٦

Symbol	Speed Grade								
	A-2		A-3		A-4				
	Min	Max	Min	Max	Min	Max			
t _{IOD}		0.7		0.8		0.9	ns		
t _{IOC}		1.7		1.8		1.9	ns		
t _{IOE}		1.7		1.8		1.9	ns		
t _{IOCO}		1.0		1.0		1.0	ns		
t _{IOCOMB}		0.3		0.2		0.1	ns		
t _{IOSU}	1.4		1.6		1.8		ns		
t _{IOH}	0.0		0.0		0.0		ns		
t _{IOCLR}		1.2		1.2		1.2	ns		
t _{IN}		1.5		1.6		1.7	ns		
t _{OD1}		1.1		1.4		1.7	ns		
t _{OD2}		1.6		1.9		2.2	ns		
t _{OD3}		4.6		4.9		5.2	ns		
t _{XZ}		1.4		1.6		1.8	ns		
t _{ZX1}		1.4		1.6		1.8	ns		
t _{ZX2}		1.9		2.1		2.3	ns		
t _{ZX3}		4.9		5.1		5.3	ns		

Symbol		Speed Grade								
	A	A-2		A-3		A-4				
	Min	Max	Min	Max	Min	Max				
t _{LABCASC}		0.3		0.3		0.4	ns			
t _{LABCARRY}		0.3		0.3		0.4	ns			
t _{LOCAL}		0.5		0.6		0.8	ns			
t _{ROW}		5.0		5.0		5.0	ns			
t _{COL}		3.0		3.0		3.0	ns			
t _{DIN_C}		5.0		5.0		5.5	ns			
t _{DIN_D}		7.0		7.0		7.5	ns			
t _{DIN IO}		5.0		5.0		5.5	ns			

Γ

٦

Symbol	Speed Grade							
	A-2		A-3		A-4		7	
	Min	Мах	Min	Мах	Min	Max		
t _{LUT}		2.0		2.5		3.2	ns	
t _{CLUT}		0.0		0.0		0.0	ns	
t _{RLUT}		0.9		1.1		1.5	ns	
t _{GATE}		0.0		0.0		0.0	ns	
t _{CASC}		0.6		0.7		0.9	ns	
t _{CICO}		0.4		0.5		0.6	ns	
t _{CGEN}		0.4		0.5		0.7	ns	
t _{CGENR}		0.9		1.1		1.5	ns	
t _C		1.6		2.0		2.5	ns	
t _{CH}	4.0		4.0		4.0		ns	
t _{CL}	4.0		4.0		4.0		ns	
t _{CO}		0.4		0.5		0.6	ns	
t _{COMB}		0.4		0.5		0.6	ns	
t _{SU}	0.8		1.1		1.2		ns	
t _H	0.9		1.1		1.5		ns	
t _{PRE}		0.6		0.7		0.8	ns	
t _{CLR}		0.6		0.7		0.8	ns	

Symbol		Speed Grade						
	A	-2	A	-3	A	-4		
	Min	Max	Min	Max	Min	Max		
t _{DRR}		16.0		20.0		25.0	ns	
t _{ODH}	1.0		1.0		1.0		ns	

Symbol	Speed Grade								
	A-2		A-3		A-4		7		
	Min	Max	Min	Max	Min	Max			
t _{LUT}		2.0		2.5		3.2	ns		
t _{CLUT}		0.0		0.0		0.0	ns		
t _{RLUT}		0.9		1.1		1.5	ns		
t _{GATE}		0.0		0.0		0.0	ns		
t _{CASC}		0.6		0.7		0.9	ns		
t _{CICO}		0.4		0.5		0.6	ns		
t _{CGEN}		0.4		0.5		0.7	ns		
t _{CGENR}		0.9		1.1		1.5	ns		
t _C		1.6		2.0		2.5	ns		
t _{CH}	4.0		4.0		4.0		ns		
t _{CL}	4.0		4.0		4.0		ns		
t _{CO}		0.4		0.5		0.6	ns		
t _{COMB}		0.4		0.5		0.6	ns		
t _{SU}	0.8		1.1		1.2		ns		
t _H	0.9		1.1		1.5		ns		
t _{PRE}		0.6		0.7		0.8	ns		
t _{CLR}		0.6		0.7		0.8	ns		

Symbol	Speed Grade						
	A-2		A-3		A-4		
	Min	Max	Min	Max	Min	Мах	
t _{DRR}		16.1		20.1		25.1	ns
t _{oDH}	1.0		1.0		1.0		ns

Power Consumption

The supply power (P) for FLEX 8000 devices can be calculated with the following equation:

 $P = P_{INT} + P_{IO} = [(I_{CCSTANDBY} + I_{CCACTIVE}) \times V_{CC}] + P_{IO}$

Typical I_{CCSTANDBY} values are shown as I_{CC0} in Table 11 on page 28 and Table 15 on page 30. The P_{IO} value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note* 74 (*Evaluating Power for Altera Devices*). The I_{CCACTIVE} value depends on the switching frequency and the application logic. This value can be calculated based on the amount of current that each LE typically consumes.

The following equation shows the general formula for calculating $I_{\mbox{\scriptsize CCACTIVE}}$:

$$I_{CCACTIVE} = K \times f_{MAX} \times N \times tog_{LC} \times \frac{\mu A}{MHz \times LE}$$

The parameters in this equation are shown below:

f _{MAX}	=	Maximum operating frequency in MHz
Ν	=	Total number of logic cells used in the device
tog _{LC}	=	Average percentage of logic cells toggling at each clock
Κ	=	Constant, shown in Table 50

Table 50. Values for Constant K				
Device	к			
5.0-V FLEX 8000 devices	75			
3.3-V FLEX 8000 devices	60			

This calculation provides an I_{CC} estimate based on typical conditions with no output load. The actual I_{CC} value should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions.

Figure 20 shows the relationship between $\rm I_{\rm CC}$ and operating frequency for several LE utilization values.

Operating Modes

The FLEX 8000 architecture uses SRAM elements that require configuration data to be loaded whenever the device powers up and begins operation. The process of physically loading the SRAM programming data into the device is called *configuration*. During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. The I/O pins are tri-stated during power-up, and before and during configuration. The configuration and initialization processes together are called *command mode*; normal device operation is called *user mode*.

SRAM elements allow FLEX 8000 devices to be reconfigured in-circuit with new programming data that is loaded into the device. Real-time reconfiguration is performed by forcing the device into command mode with a device pin, loading different programming data, reinitializing the device, and resuming user-mode operation. The entire reconfiguration process requires less than 100 ms and can be used to dynamically reconfigure an entire system. In-field upgrades can be performed by distributing new configuration files.

Configuration Schemes

The configuration data for a FLEX 8000 device can be loaded with one of six configuration schemes, chosen on the basis of the target application. Both active and passive schemes are available. In the active configuration schemes, the FLEX 8000 device functions as the controller, directing the loading operation, controlling external configuration devices, and completing the loading process. The clock source for all active configuration schemes is an oscillator on the FLEX 8000 device that operates between 2 MHz and 6 MHz. In the passive configuration schemes, an external controller guides the FLEX 8000 device. Table 51 shows the data source for each of the six configuration schemes.

Table 51. Data Source for Configuration					
Configuration Scheme	Acronym	Data Source			
Active serial	AS	Altera configuration device			
Active parallel up	APU	Parallel configuration device			
Active parallel down	APD	Parallel configuration device			
Passive serial	PS	Serial data path			
Passive parallel synchronous	PPS	Intelligent host			
Passive parallel asynchronous	PPA	Intelligent host			

Pin Name	225-Pin BGA EPF8820A	232-Pin PGA EPF81188A	240-Pin PQFP EPF81188A	240-Pin PQFP EPF81500A	280-Pin PGA EPF81500A	304-Pin RQFP EPF81500A
DATA4	A5	C7	198	194	W16	248
data3	B5	D7	196	193	W17	246
DATA2	E6	B5	194	190	V16	243
DATA1	D5	A3	191	189	U16	241
DATA0	C4	A2	189	187	V17	239
SDOUT (3)	K1	N2	135	136	F19	169
TDI	F15 (4)	-	-	63 (14)	B1 (14)	80 (14)
TDO	J2 (4)	-	-	117	C17	149
тск <i>(6)</i>	J14 <i>(4)</i>	-	-	116 (14)	A19 (14)	148 (14)
TMS	J12 <i>(4)</i>	-	-	64 (14)	C2 (14)	81 (14)
TRST (7)	P14	-	-	115 (14)	A18 (14)	145 (14)
Dedicated Inputs (10)	F4, L1, K12, E15	C1, C17, R1, R17	10, 51, 130, 171	8, 49, 131, 172	F1, F16, P3, P19	12, 64, 164, 217
VCCINT (5.0 V)	F5, F10, E1, L2, K4, M12, P15, H13, H14, B15, C13	E4, H4, L4, P12, L14, H14, E14, R14, U1	20, 42, 64, 66, 114, 128, 150, 172, 236	18, 40, 60, 62, 91, 114, 129, 151, 173, 209, 236	E8, E10, E12,	24, 54, 77, 144, 79, 115, 162, 191, 218 266, 301
VCCIO (5.0 V or 3.3 V)	H3, H2, P6, R6, P10, N10, R14, N13, H15, H12, D12, A14, B10, A10, B6, C6, A2, C3, M4, R2	N10, M13, M5, K13, K5, H13, H5, F5, E10, E8, N8, F13	19, 41, 65, 81, 99, 116, 140, 162, 186, 202, 220, 235	17, 39, 61, 78, 94, 108, 130, 152, 174, 191, 205, 221, 235	D14, E7, E9, E11, E13, R6, R8, R10, R12, T13, T15	