# E · / Relesas Electronics America Inc - <u>UPD70F3616M2GKA-GAK-AX Datasheet</u>



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Obsolete                                                                                |
|----------------------------|-----------------------------------------------------------------------------------------|
| Core Processor             | -                                                                                       |
| Core Size                  | -                                                                                       |
| Speed                      | -                                                                                       |
| Connectivity               | -                                                                                       |
| Peripherals                | -                                                                                       |
| Number of I/O              | -                                                                                       |
| Program Memory Size        | -                                                                                       |
| Program Memory Type        | -                                                                                       |
| EEPROM Size                | -                                                                                       |
| RAM Size                   | -                                                                                       |
| Voltage - Supply (Vcc/Vdd) | -                                                                                       |
| Data Converters            | -                                                                                       |
| Oscillator Type            | -                                                                                       |
| Operating Temperature      | -                                                                                       |
| Mounting Type              | -                                                                                       |
| Package / Case             | -                                                                                       |
| Supplier Device Package    | -                                                                                       |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/upd70f3616m2gka-gak-ax |
|                            |                                                                                         |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# **Notes for CMOS Devices**

#### 1. Precaution against ESD for semiconductors

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

#### 2. Handling of unused input pins for CMOS

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

#### 3. Status before initialization of MOS devices

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

# Legal Notes

- The information in this document is current as of January 2007. The information is subject to change
  without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or
  data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products
  and/or types are available in every country. Please check with an NEC sales representative for
  availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such NEC Electronics products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics
  products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated
  entirely. To minimize risks of damage to property or injury (including death) to persons arising from
  defects in NEC Electronics products, customers must incorporate sufficient safety measures in their
  design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact NEC Electronics sales representative in advance to determine NEC Electronics 's willingness to support a given application.

- **Notes: 1.** "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
  - **2.** "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).
  - **3.** SuperFlash<sup>®</sup> is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan. This product uses SuperFlash<sup>®</sup> technology licensed from Silicon Storage Technology, Inc.

# **Table of Contents**

| 1.      | Pin Group Information                                            | 6   |
|---------|------------------------------------------------------------------|-----|
| 1.1     | Device package information                                       |     |
| 1.2     | Pin Groups 1x: Pins supplied by EVDD                             |     |
| 1.3     | Pin Groups 2x: Pins supplied by EVDD                             |     |
| 1.4     | Pin Groups 3x: Pins supplied by BVDD.                            |     |
| 1.5     | Pin Groups 4: Pins supplied by AVREF0.                           |     |
| 1.6     | Pin Groups 6: Pins supplied by EVDD.                             |     |
| 1.7     | Pin Groups 7: Pins supplied by VRO                               |     |
|         |                                                                  |     |
| 2.      | Electrical Specifications                                        | 9   |
| 2.1     | Absolute Maximum Ratings                                         | . 9 |
| 2.2     | Capacities                                                       | 10  |
| 2.3     | Operating condition                                              | 10  |
| 2.4     | Voltage Regulator Characteristics                                | 11  |
| 2.5     | Clock Generator Circuit.                                         | 11  |
| 2.5.1   | Main System Clock Oscillation Circuit Characteristics            | 11  |
| 2.5.2   | Sub System Clock Oscillation Circuit Characteristics             |     |
| 2.5.3   | Internal-OSC Characteristics                                     |     |
| 2.5.4   | PLL Characteristics                                              | 13  |
| 2.6     | DC Characteristics                                               | 14  |
| 2.6.1   | Input/Output Level                                               | 14  |
| 2.6.2   | PIN leakage current                                              | 15  |
| 2.6.3   | Power supply current                                             | 16  |
| 2.6.3.1 | FF3-L μPD70F3615, μPD70F3616, μPD70F3617, μPD70F3618, μPD70F3619 | 16  |
| 2.7     | AC Characteristics                                               |     |
| 2.7.1   | CLKOUT Output Timing                                             | 21  |
| 2.7.2   | RESET, Interrupt, ADTRG Timing.                                  | 22  |
| 2.7.3   | Key Return Timing                                                |     |
| 2.7.4   | Timer Timing                                                     | 22  |
| 2.7.5   | CSI Timing                                                       | 23  |
| 2.7.6   | UART Timing                                                      | 23  |
| 2.7.7   | IIC Timing                                                       | 24  |
| 2.7.8   | CAN Timing                                                       | 26  |
| 2.8     | A/D Converter                                                    | 27  |
| 2.9     | POC                                                              | 28  |
| 2.10    | LVI                                                              | 29  |
| 2.11    | RAM Retention Flag.                                              | 29  |
| 2.12    | Data Retention Characteristics.                                  |     |
| 2.13    | Flash Memory Programming Characteristics                         |     |
|         |                                                                  |     |
| 3.      | Package                                                          | 32  |
| 3.1     | Package Dimension                                                |     |
| 3.2     | Product Marking                                                  |     |
| 3.2.1   | Marking of pin 1 at a QFP (Quad Flat Package)                    |     |
| 3.2.2   | Identification of Lead-Free Products                             | 34  |
|         |                                                                  |     |
| 4.      | Change History                                                   | 35  |

# 1. Pin Group Information

#### 1.1 Device package information

The V850ES/Fx3-L device series comprises several members. An overview with the pin and package information is given in the following table:

| Series Member | # Pins | Device package information |
|---------------|--------|----------------------------|
| µPD70F3610    |        |                            |
| µPD70F3611    |        |                            |
| µPD70F3612    | 64     | FE3-L                      |
| µPD70F3613    |        |                            |
| µPD70F3614    |        |                            |
| µPD70F3615    |        |                            |
| µPD70F3616    |        |                            |
| µPD70F3617    | 80     | FF3-L                      |
| µPD70F3618    |        |                            |
| µPD70F3619    |        |                            |
| µPD70F3620    |        |                            |
| µPD70F3621    | 100    | FG3-L                      |
| µPD70F3622    |        |                            |

This document describes the specification for the V850ES/FF3-L.

#### 1.2 Pin Groups 1x: Pins supplied by EVDD

#### 1B: (SHMT1)

- P04, P30-31, P34; P40, P91, P913-915 (FE3-L)
- P04, P30-31, P34; P38-39, P40, P91, P913-915 (FF3-L)
- P04, P30-31, P34; P36-39, P40, P91, P911, P913-915 (FG3-L)
- 1D: (SHMT3)
  - P00-03, P05-P06, P32-33, P35, P41-42, P50-55, P90, P96-99 (FE3-L)
  - P00-03, P05-P06, P32-33, P35, P41-42, P50-55, P90, P96-99 (FF3-L)
  - P00-03, P05-P06, P10-11, P32-33, P35, P41-42, P50-55, P90, P92-910, P912 (FG3-L)

#### 1.3 Pin Groups 2x: Pins supplied by EVDD

2A: (CMOS)

- PCM0-1 (FE3-L)
- PCM0-3, PCS0-1, PCT0-1, PCT4, PCT6 (FF3-L)
- 2D: (SHMT3)
  - PDL0-7 (FE3-L)
  - PDL0-11 (FF3-L)

# NEC

# 1.4 Pin Groups 3x: Pins supplied by BVDD

3A: (CMOS) - PCM0-3, PCS0-1, PCT0-1, PCT4, PCT6 (FG3-L) 3D: (SHMT3) - PDL0-13 (FG3-L)

## 1.5 Pin Groups 4: Pins supplied by AVREF0

- 4: (CMOS)

  - P70-79 (FE3-L) P70-711 (FF3-L)
  - P70-715 (FG3-L)

# 1.6 Pin Groups 6: Pins supplied by EVDD

- RESET (SHMT2)
- IC, FLMD0

## 1.7 Pin Groups 7: Pins supplied by VRO

- X1, X2, XT1, XT2



# 2. Electrical Specifications

This product has to be used only under the conditions of VDD=EVDD. Operation is not ensured at the time of using this product except this condition.

The operating ambient temperature of each quality grade is as follows:

(A)-Grade:  $Ta = -40 \text{ to } +85^{\circ}\text{C}$ (A1)-Grade:  $Ta = -40 \text{ to } +110^{\circ}\text{C}$ (A2)-Grade:  $Ta = -40 \text{ to } +125^{\circ}\text{C}$ 

#### 2.1 Absolute Maximum Ratings

#### Absolute Maximum Ratings (Ta=25°C)

|                           | · · /  |                      |          |                       |                             |      |  |  |
|---------------------------|--------|----------------------|----------|-----------------------|-----------------------------|------|--|--|
| Parameter                 | Symbol | Conditions           |          |                       | Rating                      | Unit |  |  |
|                           | VDD    | VDD=EV               |          |                       | -0.5 to +6.5                |      |  |  |
|                           | EVDD   | VDD=EVDD             |          |                       | -0.5 to +6.5                |      |  |  |
| Supply voltage            | AVREF0 |                      |          |                       | -0.5 to +6.5                | v    |  |  |
| Supply voltage            | VSS    | VSS=EVSS=AVSS        |          |                       | -0.5 to +0.5                | v    |  |  |
|                           | EVSS   | VSS=EVSS             |          |                       | -0.5 to +0.5                |      |  |  |
|                           | AVSS   | VSS=EVSS             | =AVSS    |                       | -0.5 to +0.5                |      |  |  |
| Input voltage             | VI1    | Pin Group 1          | x, 2x, 6 |                       | -0.5 to EVDD+0.5<br>Note1   | V    |  |  |
|                           | VI3    | Pin Grou             | ıp 7     |                       | -0.5 to VRO+0.5<br>Note1    | v    |  |  |
| Analog<br>input voltage   | VIAN   | Pin Grou             | ıp 4     |                       | -0.5 to AVREF0+0.5<br>Note1 | V    |  |  |
|                           |        |                      |          | 1 pin                 | -4                          |      |  |  |
|                           |        | Din Crown 1x 2x      |          | (A)                   | -50                         |      |  |  |
| High level output current |        | Pin Group 1x, 2x     | Total    | (A1)                  | -20                         |      |  |  |
|                           |        |                      |          | (A2)                  | -20                         | mA   |  |  |
|                           | IOH    |                      |          | 1 pin                 | -4                          |      |  |  |
|                           |        | Pin Group 4          |          | (A) <sup>Note2</sup>  | -20                         |      |  |  |
|                           |        |                      | Total    | (A1) <sup>Note2</sup> | -10                         |      |  |  |
|                           |        |                      |          | (A2) <sup>Note3</sup> | -10                         |      |  |  |
|                           |        |                      |          | 1 pin                 | 4                           |      |  |  |
|                           |        |                      |          | (A)                   | 50                          | -    |  |  |
|                           |        | Pin Group 1x, 2x     | Total    | (A1)                  | 20                          |      |  |  |
| Low level                 |        |                      |          | (A2)                  | 20                          | 1    |  |  |
| output current            | IOL    |                      |          | 1 pin                 | 4                           | mA   |  |  |
| output outront            |        | Dia Oraura 4         |          | (A) <sup>Note2</sup>  | 20                          |      |  |  |
|                           |        | Pin Group 4          | Total    | (A1) <sup>Note2</sup> | 10                          |      |  |  |
|                           |        |                      |          | (A2) <sup>Note3</sup> | 10                          |      |  |  |
|                           |        | Normal operating mo  |          | (A)                   | -40 to +85                  |      |  |  |
|                           |        | Flash programming mo |          | (,,)                  | 10 10 - 00                  |      |  |  |
| Operating ambient         | Та     | Normal operating mo  |          | (A1)                  | -40 to +110                 | °C   |  |  |
| temperature               |        | Flash programming mo |          | (,)                   | 10 10 1110                  | Ŭ    |  |  |
|                           |        | Normal operating mo  |          | (A2) -40 to +125      |                             |      |  |  |
|                           |        | Flash programming mo | ode      | (/ )_/                |                             |      |  |  |
| Storage temperature       | Tstg   |                      |          |                       | -40 to +125                 | °C   |  |  |

**Remarks: 1.** The characteristics of the dual-function pins are the same as those of the port pins unless otherwise specified

Notes: 1. Be sure not to exceed the absolute maximum ratings (Max. value) of each supply voltage.

- **2.** Excluding ADC IAREF0 current.
- 3. Including ADC IAREF0 current.

#### 2.2 Capacities

| (Ta - 25°C |                                                | N. |
|------------|------------------------------------------------|----|
| (ia = 25 C | C, VDD = EVDD = AVREF0 = VSS = EVSS = AVSS = 0 | V) |

| Parameter                | Symbol | Conditions                       | MIN. | TYP. | MAX. | Unit |
|--------------------------|--------|----------------------------------|------|------|------|------|
| Input/output capacitance | CIO    | f=1MHz, Not measured pins is 0V. |      |      | 10   | рF   |

# 2.3 Operating condition

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7uF, VDD = EVDD = 3.3 to 5.5V, AVREF0 = 3.3 to 5.5V, VSS = EVSS = AVSS = 0V)

| Internal System clock frequency (f <sub>VBCLK</sub> )  | Supply voltage                 | Operating Condition                                                                                                                                                                                                            |
|--------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                        | 3.5V≤VDD≤5.5V <sup>Note1</sup> | Operation of functions is enabled                                                                                                                                                                                              |
| 4.0≤f <sub>xx</sub> ≤20MHz<br>Note1                    | 3.3V≤VDD<3.5V                  | The following functions are operable: <ul> <li>CPU</li> <li>Flash (including programming</li> <li>RAM</li> <li>IO Buffer</li> <li>Port</li> <li>WT</li> <li>WDT</li> <li>INT</li> <li>CLM</li> <li>POC</li> <li>LVI</li> </ul> |
|                                                        | 3.3V≤AVRF0≤5.5V                | <ul> <li>A/D Converter</li> <li>stop ADC for AVREF0 &lt; 4.0V<br/>(ADA0CE bit =0)</li> <li>Refer to chapter '2.8 A/D Converter' for<br/>details.</li> </ul>                                                                    |
| 32kHz≤f <sub>XT</sub> ≤35kHz (Crystal)                 | 3.3V≤VDD<5.5V                  |                                                                                                                                                                                                                                |
| 12.5kHz⊴f <sub>XT</sub> ≤27.5kHz <sup>Note2</sup> (RC) | Note1                          | -                                                                                                                                                                                                                              |
| f <sub>RL</sub> (240kHz Internal-OSC)                  | 3.3V≤VDD<5.5V <sup>Note1</sup> | -                                                                                                                                                                                                                              |

Notes: 1. VDD = EVDD

2. RC Oscillation frequency is min. 25kHz max. 55kHz. This clock is divided by 2 internally.

#### 2.5.2 Sub System Clock Oscillation Circuit Characteristics

| (1a = -40 to +o | $(1a = -40 \ (0 + 85 \ C, C = 4.7 \ ur, vDD = EvDD = 3.3 \ (0 5.5v, AVREF0 = 3.3 \ (0 5.5v, v3S = EvSS = AVSS = 0v)$ |                                                  |            |      |        |      |      |  |  |  |  |
|-----------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------|------|--------|------|------|--|--|--|--|
| Resonator       | Recommended Circuit                                                                                                  | Parameter                                        | Conditions | MIN. | TYP.   | MAX. | Unit |  |  |  |  |
| Crystal         |                                                                                                                      | Oscillator fre-<br>quency (fxt) <sup>Note1</sup> |            | 32   | 32.768 | 35   | kHz  |  |  |  |  |
| resonator       | Refer to Figure 1                                                                                                    | Oscillation stabiliza-<br>tion time Note2        |            |      |        | 10   | s    |  |  |  |  |

#### (Ta = -40 to +85°C, C=4.7uF, VDD = EVDD = 3.3 to 5.5V, AVREF0 = 3.3 to 5.5V, VSS = EVSS = AVSS = 0V)

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7uF, VDD = EVDD = 3.3 to 5.5V, AVREF0 = 3.3 to 5.5V, VSS = EVSS = AVSS = 0V)

| 0 4.1 al , 100 | $-4.7$ $a_1$ , $a_2$ , $a_3$ , $a_4$ , |                                            |                                                               |      |      |      |      |  |  |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------|------|------|------|------|--|--|--|
| Resonator      | Recommended Circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Parameter                                  | Conditions                                                    | MIN. | TYP. | MAX. | Unit |  |  |  |
| RC             | Defer to Figure 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Oscillator<br>frequency <sup>Note1,4</sup> | R=390KΩ ±5% <sup>Note3</sup> ,<br>C=47pF±10% <sup>Note3</sup> | 25   | 40   | 55   | kHz  |  |  |  |
| resonator      | Refer to Figure 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Oscillation stabiliza-<br>tion time Note2  |                                                               |      |      | 100  | μs   |  |  |  |

**Notes: 1.** Indicates only oscillation circuit characteristics. Refer to "AC Characteristic" for cpu operation clock.

- 2. Time required to stabilize oscillation after VDD reaches oscillator voltage range min. 3.3V
- 3. In order to avoid the influence of wiring capacity, shorten wiring as much as possible.
- 4. RC Oscillation frequency is typ. 40kHz. This clock is divided (1/2) internally. In case of RC Oscillator, internal system clock frequency (fxt) is min. 12.5kHz, typ. 20kHz, max. 27.5kHz.





#### 2.5.3 Internal-OSC Characteristics

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7uF, VDD = EVDD = 3.3 to 5.5V, AVREF0 = 3.3 to 5.5V, VSS = EVSS = AVSS = 0V)

| Parameter             | Symbol          | Conditions          | MIN. | TYP. | MAX. | Unit |
|-----------------------|-----------------|---------------------|------|------|------|------|
| Output                | f <sub>RL</sub> | 240kHz Internal-OSC | 204  | 240  | 276  | kHz  |
| frequency             | f <sub>RH</sub> | 8MHz Internal-OSC   | 7.2  | 8.0  | 8.8  | MHz  |
| Oscillation           |                 | 240kHz Internal-OSC |      | 10   | 36   | μs   |
| stabilization<br>time |                 | 8MHz Internal-OSC   | 51   | 92   | 256  | μs   |

# 2.5.4 PLL Characteristics

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade,

| Parameter                     | Symbol            | Conditions                                | MIN. | TYP. | MAX. | Unit |
|-------------------------------|-------------------|-------------------------------------------|------|------|------|------|
| Input froguopov               | fx                |                                           | 4    |      | 16   | MHz  |
| Input frequency               | f <sub>PLLI</sub> | Note1                                     | 3    |      | 6    | MHz  |
| Output frequency              | fxx               |                                           | 10   |      | 20   | MHz  |
| Lock time                     | tPLL              | After VDD reaches voltage range min. 3.3V |      |      | 800  | μs   |
| Output period jitter<br>Note2 | tpj               | Peak to peak                              |      |      | 2.0  | ns   |

**Notes: 1.** The input of the PLL ( $f_{PLLI}$ ) can be set to  $f_X$ ,  $f_X/2$ , or  $f_X/4$ . The divider is set through an option byte in the code flash memory.2. Not tested in production.

# 2.6.2 PIN leakage current

#### (C=4.7uF, VDD = EVDD = 3.3 to 5.5V, AVREF0 = 3.3 to 5.5V, VSS = EVSS = AVSS = 0V)

| Parameter              | Symbol | Conditions |                  | MIN.    | TYP. |      | Unit |      |      |
|------------------------|--------|------------|------------------|---------|------|------|------|------|------|
| Faiametei              | Symbol | 0          | nullions         | IVIIIN. | ITF. | (A)  | (A1) | (A2) | Onit |
| High level input leak- | ILIH1  | VI=VDD     | Analog pins      |         |      | 0.2  | 0.4  | 0.5  |      |
| age current            |        |            | Other pins Note1 |         |      | 0.5  | 0.8  | 1.0  |      |
| Low level input        | ILIL1  | VI=0V      | Analog pins      |         |      | -0.2 | -0.4 | -0.5 |      |
| leakage current        |        | VI=0V      | Other pins Note1 |         |      | -0.5 | -0.8 | -1.0 |      |
| High level output      | ILOH1  | VO=VDD     | Analog pins      |         |      | 0.2  | 0.4  | 0.5  | μA   |
| leakage current        | ILUHI  | VO=VDD     | Other pins       |         |      | 0.5  | 0.8  | 1.0  |      |
| Low level output       | ILOL1  | VO=0V      | Analog pins      |         |      | -0.2 | -0.4 | -0.5 |      |
| leakage current        | ILULI  | v0-0v      | Other pins       |         |      | -0.5 | -0.8 | -1.0 |      |

Notes: 1. The input leakage current of FLMD0 is as follows:

High level input leakage current :

- (A)-Grade 2.0µA
- (A1)-Grade 4.0µA
- (A2)-Grade  $5.0 \mu A$

Low level input leakage current:

- (A)-Grade -2.0µA
- (A1)-Grade -4.0µA
- (A2)-Grade 5.0µA

| Mada                  | Cumpheal                     |                                                             | 0.0                                                         | a diti a a                                      |                                                 | TVD         |          | MAX. |      | Linit |
|-----------------------|------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------|----------|------|------|-------|
| Mode                  | Symbol                       |                                                             |                                                             | ondition                                        |                                                 | TYP.        | (A)      | (A1) | (A2) | Unit  |
|                       |                              |                                                             |                                                             |                                                 | f <sub>xx</sub> =5MHz<br>f <sub>x</sub> =5MHz   | 1.4         | 2.2      | 2.5  | 2.8  | mA    |
|                       | Peripheral (TAA, UARTD) run- | PLL: OFF<br>4MHz≤f <sub>xx</sub> ≤16MHz<br><sub>Note7</sub> | f <sub>xx</sub> =12MHz<br>f <sub>x</sub> =12MHz             | 2.0                                             | 3.1                                             | 3.4         | 3.7      | mA   |      |       |
|                       | ning                         | }                                                           |                                                             | f <sub>xx</sub> =16MHz<br>f <sub>x</sub> =16MHz | 2.4                                             | 3.6         | 3.9      | 4.2  | mA   |       |
| IDLE1                 | IDLE1 IDD3                   |                                                             |                                                             | fxx=8MHz, 8MHz In                               | ternal-OSC <sup>Note3</sup>                     | 1.5         | 2.3      | 2.6  | 2.9  | mA    |
| mode IDD3             |                              |                                                             |                                                             | f <sub>xx</sub> =5MHz<br>f <sub>x</sub> =5MHz   | 1.2                                             |             |          |      | mA   |       |
|                       |                              | All peripherals stopped                                     | PLL: OFF<br>4MHz≤f <sub>xx</sub> ≤16MHz<br><sub>Note7</sub> | f <sub>xx</sub> =12MHz<br>f <sub>x</sub> =12MHz | 1.4                                             |             | -        |      | mA   |       |
|                       |                              |                                                             | Note7                                                       | f <sub>xx</sub> =16MHz<br>f <sub>x</sub> =16MHz | 1.6                                             |             |          |      | mA   |       |
|                       |                              |                                                             |                                                             | fxx=8MHz, 8MHz In                               | ternal-OSC <sup>Note3</sup>                     | 1.1         |          |      |      | mA    |
|                       |                              | PLL: OFF<br>4MHz≤f <sub>xx</sub> ≤16MHz                     |                                                             |                                                 | f <sub>xx</sub> =5MHz<br>f <sub>x</sub> =5MHz   | 0.4         | 0.7      | 0.9  | 1.1  | mA    |
| IDLE2                 | IDD4                         |                                                             |                                                             |                                                 | f <sub>xx</sub> =12MHz<br>f <sub>x</sub> =12MHz | 0.7         | 1.0      | 1.2  | 1.5  | mA    |
| mode                  |                              |                                                             | Note7                                                       |                                                 |                                                 | 0.8         | 1.2      | 1.4  | 1.7  | mA    |
|                       |                              | fz                                                          | fxx=8MHz, 8MHz Internal-OSC <sup>Note3</sup>                |                                                 |                                                 |             | 0.5      | 0.7  | 1.0  | mA    |
| SUB                   |                              |                                                             |                                                             | or (fxt = 32,768kHz)                            |                                                 | 80          | 400      | -    | -    | μA    |
| operating             | IDD5                         |                                                             | RC resonator                                                | (fxt=20kHz) Note6                               |                                                 | 80          | 400      | 600  | 850  | μA    |
| mode <sup>Note5</sup> |                              | 240                                                         | ) kHz Internal-O                                            | SC (SubOSC stoppe                               | d)                                              | 220         | 1000     | 1200 | 1450 | μA    |
| SubIDLE               |                              |                                                             | Crystal resonate                                            | or (fxt = 32,768kHz)                            |                                                 | 20          | 190      | -    | -    | μA    |
| mode                  | IDD6                         |                                                             | RC resonator                                                | (fxt=20kHz) <sup>Note6</sup>                    |                                                 | 40          | 220      | 420  | 670  | μA    |
| Note3,5               |                              | 240kHz Internal-OSC (SubOSC stopped)                        |                                                             |                                                 |                                                 |             | 180      | 380  | 630  | μA    |
| STOP                  |                              | POC stop                                                    |                                                             | 0kHz Internal-OSC st                            |                                                 | 7.5<br>15.5 | 80       | 280  | 530  | μA    |
| mode                  | IDD7                         |                                                             |                                                             |                                                 | Iz Internal-OSC working                         |             | 95<br>85 | 295  | 545  | μA    |
| Note3,4               |                              | POC work                                                    | POC work 240kHz Internal-OSC stop                           |                                                 |                                                 |             |          | 285  | 535  | μA    |
|                       |                              |                                                             | 240k                                                        | Hz Internal-OSC wor                             | king                                            | 18.5        | 100      | 300  | 550  | μA    |

18

Datasheet U19191EE1V0DS00

NEC

V850ES/FF3-L

#### 2.7.2 RESET, Interrupt, ADTRG Timing

 $(Ta = -40 \text{ to } +85^{\circ}\text{C} \text{ for (A})-\text{Grade}, Ta = -40 \text{ to } +110^{\circ}\text{C} \text{ for (A1)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, VDD = EVDD = 3.3 \text{ to } 5.5\text{V}, AVREF0 = 3.3 \text{ to } 5.5\text{V}, VSS = EVSS = AVSS = 0\text{V}, CL=50\text{pF})$ 

| Parameter                                     | Symbol | Conditions           | MIN.  | TYP. | MAX. | Unit |
|-----------------------------------------------|--------|----------------------|-------|------|------|------|
| _RESET input low level width                  | tWRSL  | analog filter        | 250   |      |      | ns   |
| NMI input high level width                    | tWNIH  | analog filter        | 250   |      |      | ns   |
| NMI input low level width                     | tWNIL  | analog filter        | 250   |      |      | ns   |
| INTPn <sup>Note1</sup> input high level width | tWITH  | analog filter ,n=0-8 | 250   |      |      | ns   |
|                                               |        | digital filter ,n=3  | Note2 |      |      | ns   |
| INTPn Note1 input low level width             | tWITL  | analog filter ,n=0-8 | 250   |      |      | ns   |
|                                               |        | digital filter ,n=3  | Note2 |      |      | ns   |

Notes: 1. ADTRG is same spec (P03/INTP0/ADTRG). DRST is same spec (P05/INTP2/DRST)
2. 2Tsamp+20 or 3Tsamp+20 ("Tsamp" is Noise reject sampling clock (NF macro))

- **Remarks: 1.** The above minimum values show pulse widths that are surely detected as an effective edge. An effective may also be detected even if the input pulse width is less than the above minimum specification.
  - 2. RESET, NMI, INTPn, ADTRG and DRST have analog noise filter. The typical filter time is typ=60ns.

#### 2.7.3 Key Return Timing

 $(Ta = -40 \text{ to } +85^{\circ}\text{C} \text{ for (A})-\text{Grade}, Ta = -40 \text{ to } +110^{\circ}\text{C} \text{ for (A1)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, VDD = EVDD = 3.3 \text{ to } 5.5V, AVREF0 = 3.3 \text{ to } 5.5V, VSS = EVSS = AVSS = 0V, CL=50\text{pF})$ 

| VDD = LVDD = 0.0 (0 0.0 V, AVI(L) 0 = | 0.0 to 0.0 v, ve | 0 = 1000 = 4000 = 00, 01 = 5001 |      |      |      |      |
|---------------------------------------|------------------|---------------------------------|------|------|------|------|
| Parameter                             | Symbol           | Conditions                      | MIN. | TYP. | MAX. | Unit |
| KRn input high level width            | tWKRH            | analog filter ,n=0-7            | 250  |      |      | ns   |
| KRn input low level width             | tWKRL            | analog filter ,n=0-7            | 250  |      |      | ns   |

**Remarks: 1.** The above minimum values show pulse widths that are surely detected as an effective edge. An effective may also be detected even if the input pulse width is less than the above minimum specification.

2. KRn inputs have analog noise filter. The typical filter time is typ=60ns.

#### 2.7.4 Timer Timing

 $(Ta = -40 \text{ to } +85^{\circ}\text{C} \text{ for (A})\text{-}Grade, Ta = -40 \text{ to } +110^{\circ}\text{C} \text{ for (A1)-}Grade, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-}Grade, VDD = EVDD = 3.5 \text{ to } 5.5\text{V}, AVREF0 = 3.5 \text{ to } 5.5\text{V}, VSS = EVSS = AVSS = 0\text{V}, CL = 50\text{pF})$ 

| VDD = EVDD = 3.5 10          | 5.5V, AVRE | FU - 3.5 10 5.5V, V33 - EV33 - AV | 33 - 0V, CL-50PF) |      |      |      |      |
|------------------------------|------------|-----------------------------------|-------------------|------|------|------|------|
| Parameter                    | Symbol     | Conditions                        |                   | MIN. | TYP. | MAX. | Unit |
| TI input high level<br>width | tTIH       | TIAA00-01,10-11,20-21,30-31,4     | 0-41 Note1        | 250  |      |      | ns   |
| TI input low level<br>width  | tTIL       | TIAA00-01,10-11,20-21,30-31,4     | 0-41 Note1        | 250  |      |      | ns   |
| TO output cycle              | tTCYK      | TIAA00-01,10-11,20-21,30-31, 4    | 40-41 Note1       |      |      | 10   | MHz  |

Notes: 1. Except for the external trigger and external event function.

- **Remarks: 1.** The above minimum values show pulse widths that are surely detected as an effective edge. An effective may also be detected even if the input pulse width is less than the above minimum specification.
  - 2. TIAAn inputs have analog noise filter. The typical filter time is typ=60ns.

## 2.7.5 CSI Timing

#### (a) Master mode

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, VDD = EVDD = 3.5 to 5.5V, AVREF0 = 3.5 to 5.5V, VSS = EVSS = AVSS = 0V, CL=50pF)

| Parameter                     | Symbol | Conditions | MIN.       | MAX. | Unit |
|-------------------------------|--------|------------|------------|------|------|
| SCKBn cycle time              | tKCY1  |            | 125        |      | ns   |
| SCKBn high level width        | tKH1   |            | tKCY1/2-15 |      | ns   |
| SCKBn low level width         | tKL1   |            | tKCY1/2-15 |      | ns   |
| SIBn setup time ( to SCKBn )  | tSIK1  |            | 30         |      | ns   |
| SIBn hold time ( from SCKBn ) | tKSI1  |            | 25         |      | ns   |
| Delay time from SCKBn to SOBn | tKSO1  |            |            | 25   | ns   |

#### (b) Slave mode

 $(Ta = -40 \text{ to } +85^{\circ}\text{C} \text{ for (A})-\text{Grade}, Ta = -40 \text{ to } +110^{\circ}\text{C} \text{ for (A1)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, VDD = EVDD = 3.5 \text{ to } 5.5V, AVREF0 = 3.5 \text{ to } 5.5V, VSS = EVSS = AVSS = 0V, CL=50\text{pF})$ 

| vDD = EvDD = 5.5 (0.5.5), AVREPU = 5.5 (0.5.5), v33 = Ev33 = AV33 = 00, CE=50pP) |        |            |      |      |      |  |  |  |  |
|----------------------------------------------------------------------------------|--------|------------|------|------|------|--|--|--|--|
| Parameter                                                                        | Symbol | Conditions | MIN. | MAX. | Unit |  |  |  |  |
| SCKBn cycle time                                                                 | tKCY1  |            | 200  |      | ns   |  |  |  |  |
| SCKBn high level width                                                           | tKH1   |            | 90   |      | ns   |  |  |  |  |
| SCKBn low level width                                                            | tKL1   |            | 90   |      | ns   |  |  |  |  |
| SIBn setup time ( to SCKBn )                                                     | tSIK1  |            | 50   |      | ns   |  |  |  |  |
| SIBn hold time ( from SCKBn )                                                    | tKSI1  |            | 50   |      | ns   |  |  |  |  |
| Delay time from SCKBn to SOBn                                                    | tKSO1  |            |      | 50   | ns   |  |  |  |  |



#### 2.7.6 UART Timing

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, VDD = EVDD = 3.5 to 5.5V, AVREF0 = 3.5 to 5.5V, VSS = EVSS = AVSS = 0V, CL=50pF)

| ,               |        | · · · · · · · · · · · · · · · · · · · | ,,   |      |      |      |
|-----------------|--------|---------------------------------------|------|------|------|------|
| Parameter       | Symbol | Conditions                            | MIN. | TYP. | MAX. | Unit |
| Transfer rate   |        |                                       |      |      | 1.5  | Mbps |
| ASCK0 frequency |        |                                       |      |      | 10   | MHz  |

#### 2.7.7 IIC Timing

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, VDD = EVDD = 3.5 to 5.5V, AVREF0 = 3.5 to 5.5V, VSS = EVSS = AVSS = 0V, CL=50pF)

|                                | Parameter                  | Symbol  | Normal             | mode | High-spee            | d mode               | Unit |
|--------------------------------|----------------------------|---------|--------------------|------|----------------------|----------------------|------|
|                                | Falametei                  | Symbol  | min.               | max. | min.                 | max.                 | Unit |
| SCL00 clock                    | frequency                  | fCLK    | 0                  | 100  | 0                    | 400                  | kHz  |
| Bus-free time tions)           | (between stop/start condi- | tBUF    | 4.7                |      | 1.3                  |                      | μs   |
| Hold time <sup>Note</sup>      | 1                          | tHD:STA | 4.0                |      | 0.6                  |                      | μs   |
| SCL00 clock                    | low-level width            | tLOW    | 4.7                |      | 1.3                  |                      | μs   |
| SCL00 clock                    | high-level width           | tHIGH   | 4.0                |      | 0.6                  |                      | μs   |
| Setup time for                 | r start/restart conditions | tSU:STA | 4.7                |      | 0.6                  |                      | μs   |
| Data hold                      | CBUS compatible master     |         | 5.0                |      |                      |                      | μs   |
| time                           | IIC mode                   | tHD:DAT | 0 <sup>Note2</sup> |      | 0 <sup>Note2</sup>   | 0.9 <sup>Note3</sup> | μs   |
| Data setup tin                 | ne                         | tSU:DAT | 250                |      | 100 <sup>Note4</sup> |                      | ns   |
| SDA00 and S                    | CL00 signal rise time      | tR      |                    | 1000 | 20+0.1Cb             | 300                  | ns   |
| SDA00 and S                    | CL00 signal fall time      | tF      |                    | 300  | 20+0.1Cb             | 300                  | ns   |
| Stop condition                 | n setup time               | tSU:STO | 4.0                |      | 0.6                  |                      | μs   |
| Pilse width wi<br>input filter | th spike supporessed by    | tSP     |                    |      | 0                    | 50                   | ns   |
| Capacitance I                  | oad of each bus line       | Cb      |                    | 400  |                      | 400                  | pF   |

Notes: 1. At the start condition, the first clock pulse is generated after the hold time

**2.** The system requires a minimum of 300ns hold time Internally for the SDA signal ( at VIH-min. of SCL00 signal )

In order to occupy the undefined area at the falling edge of SCL00.

- **3.** If the system does not extend the SCL00 signal low hold time ( tlow ), only the maximum data hold time (tHD:DAT ) needs to be satisfied.
- 4. The high-speed-mode IIC bus can be used In a normal-mode IIC bus system. In this case, set the high-speed-mode IIC bus so that It meets the following conditions.
  If the system does not extend the SCL00 signal's low state hold time: SU:DAT?250ns

- If the system extends the SCL00 signal's low state hold time:

Transmit the following data bit to the SDA00 line prior to releasing the SCL00 line (tRmax.+tSU:DAT=1000+250=1250ns: Normal mode IIC bus specification ).

**5.** Cb: Total capacitance of one bus line (unit: pF)

# 2.8 A/D Converter

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7uF, VDD = EVDD = 3.5 to 5.5V, AVREF0 = 4.0 to 5.5V, VSS = EVSS = AVSS = 0V)

| Parameter                                                         | Symbol | Conditions                   | MIN. | TYP.  | M/<br>(A),(A1) | AX.<br>(A2) | Unit |
|-------------------------------------------------------------------|--------|------------------------------|------|-------|----------------|-------------|------|
| Resolution                                                        |        |                              |      |       | 1              | 0           | bit  |
| Overall error <sup>Note1</sup>                                    |        | 4.0V≤AVREF0<5.5V             |      | ±0.15 | ±0.3           | ±0.35       | %FSR |
| Conversion time                                                   | tCONV  |                              | 3.10 |       | 1              | 6           | μs   |
| Stabilization time                                                | tSTA   | After ADA0PS bit = 0 -><br>1 | 2    |       |                |             | μs   |
| Recovery time for power down mode                                 | tDPU   |                              | 1    |       |                |             | μs   |
| Zero-scale error <sup>Note1</sup>                                 | ZSE    |                              |      |       | ±0.3           | ±0.35       | %FSR |
| Full-scale error <sup>Note1</sup>                                 | FSE    |                              |      |       | ±0.3           | ±0.35       | %FSR |
| Integral non-liniearity error <sup>Note2</sup>                    | INL    |                              |      |       | ±2.5           |             | LSB  |
| Differential non-liniearity error <sup>Note2</sup>                | DNL    |                              |      |       | ±´             | 1.5         | LSB  |
| Analog input voltage                                              | VIAN   |                              | AVSS |       | AVF            | REF0        | V    |
| Analog input equivalent<br>circuit capacitance <sup>Note3,4</sup> | CINA   |                              |      |       | 6.             | 19          | pF   |
| Analog input equivalent<br>circuit resistance <sup>Note3</sup>    | RINA   |                              |      |       | 2.             | 55          | kΩ   |
| AVREF0 current                                                    | IAREF0 | A/D operating                |      | 4     |                | 7           | mA   |
|                                                                   | IAREFU | A/D operation stop           |      | 1     | 10             |             | μA   |
| Conversion rusult when using                                      |        | AVREF0 conversion            | 3FC  |       | 3              | FF          | HEX  |
| Diagnostic function                                               |        | AVSS conversion              | 000  |       | 0              | 03          | HEX  |

Notes: 1. Overall error excluding quantization error (±0.05%FSE). It is indicated as a ratio to the fullscale value.

- Excluding quantization error (±1/2 LSB)
   Reference value. Not tested in production.
- 4. Does not include input/output capacitance CIO

# 2.9 POC

#### (Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7uF, VDD = EVDD, VSS = EVSS = AVSS = 0V)

| • III al , 100 2100, 100 | 2100 /1100 | •••                                             |       |      |      |      |
|--------------------------|------------|-------------------------------------------------|-------|------|------|------|
| Parameter                | Symbol     | Conditions                                      | MIN.  | TYP. | MAX. | Unit |
| Detect voltage           | VPOC0      |                                                 | 3.3   | 3.5  | 3.7  | V    |
| Supply voltage rise time | tPTH       | From VDD=0V to<br>VDD=3.3V                      | 0.002 |      |      | ms   |
| Response time1 Note1     | tPTHD      | In case of power on.<br>After VDD reaches 3.7V. |       |      | 2.0  | ms   |
| Response time2 Note2     | tPD        | In case of power off.<br>After VDD drop 3.3V.   |       | 0.2  | 1.0  | ms   |
| VDD minimum width        | tPW        |                                                 | 0.2   |      |      | ms   |

Notes: 1. From detect voltage to release reset signal

2. From detect voltage to occurrence of reset signal



**Note:** POC is available only in M2 devices. Refer to 'Ordering information' in the V850ES/Fx3-L User'sManual.

# 2.10 LVI

# $(Ta = -40 \text{ to } +85^{\circ}\text{C} \text{ for (A})-\text{Grade}, Ta = -40 \text{ to } +110^{\circ}\text{C} \text{ for (A1)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, C=4.745^{\circ}\text{C} \text{ for (A2)-Grade}, C=4.755^{\circ}\text{C} \text{ for (A2)-Grad}, C=4.755^{\circ}\text{C} \text{ for (A2)-Grade}, C=4.755^{\circ}\text{C} \text{ fo$

| C=4.7uF, $VDD = EVDD = 3.3$ to 5.5V, $A$        | C=4./uF, VDD = EVDD = 3.3 to 5.5V, AVREF0 = 3.3 to 5.5V, VSS = EVSS = AVSS = 0V) |                                                                 |      |      |      |      |  |  |  |  |
|-------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------|------|------|------|------|--|--|--|--|
| Parameter                                       | Symbol                                                                           | Conditions                                                      | MIN. | TYP. | MAX. | Unit |  |  |  |  |
| Detect voltage                                  | VLVI0                                                                            |                                                                 | 3.8  | 4.0  | 4.2  | V    |  |  |  |  |
| Delect vollage                                  | VLVI1                                                                            |                                                                 | 3.5  | 3.7  | 3.9  | V    |  |  |  |  |
| Response time Note1                             | tLD                                                                              | After VDD reaches VLVI0/1(max).<br>After VDD drop VLVI0/1(min). |      | 0.2  | 2.0  | ms   |  |  |  |  |
| VDD minimum width                               | tLW                                                                              |                                                                 | 0.2  |      |      | ms   |  |  |  |  |
| Reference voltage stabilization wait time Note2 | tLWAIT                                                                           | After VDD reaches 3.3V.<br>After LVION bit (LVIM.bit7) = 0->1   |      | 0.1  | 0.2  | ms   |  |  |  |  |

Notes: 1. From detect voltage to occurrence interrupt/reset signal

**2.** If POC functionality is available, the wait time is not needed.



#### 2.11 RAM Retention Flag

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7uF, VDD = EVDD = 1.9 to 5.5V, VSS = EVSS = AVSS = 0V)

| Parameter                | Symbol  | Conditions              | MIN.  | TYP. | MAX. | Unit |
|--------------------------|---------|-------------------------|-------|------|------|------|
| Detect voltage           | VRAMH   |                         | 1.9   | 2.0  | 2.1  | V    |
| Supply voltage rise time | tRAMHTH | From VDD=0V to VDD=3.3V | 0.002 |      | 1800 | ms   |
| Response time Note1      | tRAMHD  | After VDD reaches 2.1V. |       | 0.2  | 2.0  | ms   |
| VDD minimum width        | tRAMHW  |                         | 0.2   |      |      | ms   |

| Notes: 1. | From detect voltage to set RAMFbit (RAMS.bit0) |
|-----------|------------------------------------------------|
|-----------|------------------------------------------------|





#### 2.13 Flash Memory Programming Characteristics

#### (a) Basic Characteristics

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7uF, VDD = EVDD, AVREF0 = 3.5 to 5.5V, VSS = EVSS = AVSS = 0V)

| Parameter                | Symbol | Conditions | MIN.     | TYP. | (A)  | MAX.<br>(A1) | (A2)  | Unit |
|--------------------------|--------|------------|----------|------|------|--------------|-------|------|
| Operation frequency      | fCPU   |            | 4        |      | 20   |              | MHz   |      |
| Supply voltage           | VDD    |            | 3.3      |      |      | 5.5          |       | V    |
| Number of rewrites       | CWRT   | Code Flash |          |      | 1000 |              | count |      |
| High level input voltage | VIH    | FLMD0      | 0.8-EVDD |      | EVDD |              | V     |      |
| Low level input voltage  | VIL    | FLMD0      | EVSS     |      | 0    | .2·EVD       | D     | V    |
| Programming temperature  | tPRG   |            | -40      |      | +85  | +110         | +125  | °C   |
| Data retention           |        | Code Flash | 15       |      |      |              |       | year |

**Remark:** The initial write when the product is shipped, any erase  $\rightarrow$  write set of operations, or any programming operation is counted as one rewrite.

Example: P: Program(write) E: Erase

Product is shipped  $\rightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P$ : Rewrite count: 3 Product is chipped  $\rightarrow E \rightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P$ : Rewrite count: 3

Product is shipped  $\rightarrow$  E  $\rightarrow$  P  $\rightarrow$  E  $\rightarrow$  P  $\rightarrow$  E  $\rightarrow$  P : Rewrite count: 3

#### (b) Serial Writing Operation Characteristics

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7uF, VDD = EVDD, AVREF0 = 3.5 to 5.5V, VSS = EVSS = AVSS = 0V, CL=50pF)

| Parameter                                              | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |  |  |
|--------------------------------------------------------|--------|------------|------|------|------|------|--|--|
| FLMD0 setup time (from VDD)                            | tDP    |            | 1    |      |      | ms   |  |  |
| RESET release (from FLMD0)                             | tPR    |            | 2    |      |      | ms   |  |  |
| FLMD0 pulse input start<br>(from raise edge of _RESET) | tRP    |            | 800  |      |      | μs   |  |  |
| FLMD0 high level width /<br>low level width            | tPW    |            | 10   |      | 100  | μs   |  |  |
| FLMD0 raise time                                       | tR     |            |      |      | 50   | ns   |  |  |
| FLMD0 fall time                                        | tF     |            |      |      | 50   | ns   |  |  |





# 4. Change History

| Version | Chapter | Comment         |
|---------|---------|-----------------|
| V1.0    |         | Initial release |

# NEC

# Facsimile Message

FAX

Although NEC has taken all possible steps to ensure that the documentation supplied to our customers is complete, bug free and up-to-date, we readily accept that errors may occur. Despite all the care and precautions we've taken, you may encounter problems in the documentation. Please complete this form whenever you'd like to report errors or suggest improvements to us.

Address

Tel.

From:

Name

Company

Thank you for your kind support.

| North America<br>NEC Electronics America Inc.<br>Corporate Communications Dept.<br>Fax: 1-800-729-9288<br>1-408-588-6130 | Hong Kong, Philippines, Oceania<br>NEC Electronics Hong Kong Ltd.<br>Fax: +852-2886-9022/9044 | Asian Nations except Philippines<br>NEC Electronics Singapore Pte. Ltd.<br>Fax: +65-6250-3583 |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Europe<br>NEC Electronics (Europe) GmbH<br>Market Communication Dept.<br>Fax: +49(0)-211-6503-1344                       | <b>Korea</b><br>NEC Electronics Hong Kong Ltd.<br>Seoul Branch<br>Fax: 02-528-4411            | Japan<br>NEC Semiconductor Technical Hotline<br>Fax: +81- 44-435-9608                         |
|                                                                                                                          | <b>Taiwan</b><br>NEC Electronics Taiwan Ltd.<br>Fax: 02-2719-5951                             |                                                                                               |

I would like to report the following error/make the following suggestion:

Document title: \_\_\_

Document number: \_\_\_\_

\_\_\_\_\_ Page number: \_\_\_\_\_

If possible, please fax the referenced page or drawing.

| <b>Document Rating</b> | Excellent | Good | Acceptable | Poor |
|------------------------|-----------|------|------------|------|
| Clarity                |           |      |            |      |
| Technical Accuracy     |           |      |            |      |
| Organization           |           |      |            |      |