

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	-
Core Size	-
Speed	-
Connectivity	-
Peripherals	-
Number of I/O	-
Program Memory Size	-
Program Memory Type	-
EEPROM Size	-
RAM Size	-
Voltage - Supply (Vcc/Vdd)	-
Data Converters	-
Oscillator Type	-
Operating Temperature	-
Mounting Type	-
Package / Case	-
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd70f3617m2gka1-gak-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Legal Notes

- The information in this document is current as of January 2007. The information is subject to change
 without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or
 data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products
 and/or types are available in every country. Please check with an NEC sales representative for
 availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such NEC Electronics products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics
 products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated
 entirely. To minimize risks of damage to property or injury (including death) to persons arising from
 defects in NEC Electronics products, customers must incorporate sufficient safety measures in their
 design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact NEC Electronics sales representative in advance to determine NEC Electronics 's willingness to support a given application.

- **Notes: 1.** "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
 - **2.** "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).
 - **3.** SuperFlash[®] is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan. This product uses SuperFlash[®] technology licensed from Silicon Storage Technology, Inc.

NEC

1.4 Pin Groups 3x: Pins supplied by BVDD

3A: (CMOS) - PCM0-3, PCS0-1, PCT0-1, PCT4, PCT6 (FG3-L) 3D: (SHMT3) - PDL0-13 (FG3-L)

1.5 Pin Groups 4: Pins supplied by AVREF0

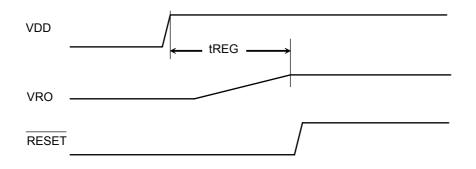
- 4: (CMOS)

 - P70-79 (FE3-L) P70-711 (FF3-L)
 - P70-715 (FG3-L)

1.6 Pin Groups 6: Pins supplied by EVDD

- RESET (SHMT2)
- IC, FLMD0

1.7 Pin Groups 7: Pins supplied by VRO


- X1, X2, XT1, XT2

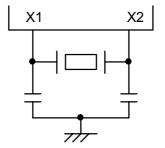
2.4 Voltage Regulator Characteristics

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7 μ F. VDD = EVDD. VSS = EVSS = AVSS = 0V))

$\mathbf{O} = \mathbf{H} \cdot \mathbf{I} \mathbf{U} \mathbf{I}$, $\mathbf{V} \mathbf{D} \mathbf{D} = \mathbf{L} \mathbf{V} \mathbf{D} \mathbf{L}$									
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit			
Input voltage	VDD		3.5		5.5	V			
	VDD	Limited function see '2.3 Operating condition'	3.3			V			
Output voltage	VRO			2.5		V			
Output voltage	t _{REG} Note	After VDD reaches voltage range min. 3.3V			1	ms			
stabilization time		To connect C=4.7uF on REGC terminal				1113			

Note: In case of non-POC device, be sure to start VDD in the state of RESET=VSS=0V. For POC devices there is no need to control external RESET terminal. For decives with POC function the internal RESET signal will automatically controlled until VRO is stable.

2.5 Clock Generator Circuit


2.5.1 Main System Clock Oscillation Circuit Characteristics

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade,
C=4.7uF, VDD = EVDD = 3.3 to 5.5V, AVREF0 = 3.3 to 5.5V, VSS = EVSS = AVSS = 0V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal / Ceramic resona- tor	Defects firms halow	Oscillator fre- quency (fx) ^{Note1}		4		16	MHz
	Refer to figure below	Oscillation stabili-	After STOP mode	54 ^{Note4}	Note3		μs
		zation time Note2	After IDLE2 mode	54 ^{Note4}	Note3		μs

Notes: 1. Indicates only oscillation circuit characteristics. Refer to '2.7 AC Characteristics' for CPU operation clock.

- 2. Time required to stabilize oscillation after VDD reaches oscillator voltage range MIN. 3.3V
- 3. Depends on the setting of the oscillation stabilization time select register (OSTS)
- **4.** Minimum time required to stabilize flash. Time has to be secured by setting the oscillation stabilization time select register (OSTS)

2.6 DC Characteristics

2.6.1 Input/Output Level

C=4.7uF, VDD = EVI	DD = 3.3			S = EVSS = A	VSS = 0V)		
Parameter	Symbol		nditions	MIN.	TYP.	MAX.	Unit
	VIH1	Pin G	Group 1B	0.7·EVDD		EVDD	V
	VIH2	Pin G	Group 1D	0.8-EVDD		EVDD	V
High level	VINZ	Pin G	Froup 2D	0.8.EVDD		EVDD	V
input voltage	VIH3	Pin G	Group 2A	0.7·EVDD		EVDD	V
	VIH4	Pin (Group 4	0.7·AVREF0		AVREF0	V
High level	VIH5	Pin Group 6		0.8-EVDD		EVDD	V
	VIL1	Pin G	Group 1B	EVSS		0.3·EVDD	V
		Pin G	Group 1D	EVSS		0.4·EVDD	V
Low level	VIL2	Pin G	Group 2D	EVSS		0.4·EVDD	V
input voltage	VIL3	Pin Group 2A		EVSS		0.3·EVDD	V
	VIL4	Pin (Group 4	AVSS		0.3·AVREF0	V
	VIL5	Pin (Group 6	EVSS		0.2·EVDD	V
	VHYS1	Pin Group 1B	Center point at 0.5-EVDD Note3		0.267·EVDD - 0.51V		V
		Pin Group 1D	Center point at 0.6-EVDD Note3		0.192·EVDD - 0.31V		V
input hysteresis	VHYS2	Pin Group 2D	Center point at 0.6·EVDD Note3		0.192·EVDD - 0.31V		V
	VHYS5	Pin Group 6	Center point at 0.5·EVDD Note3		0.535·EVDD - 0.9V		V
	VOH1	Pin Group	IOH=-1.0mA	EVDD-1.0		EVDD	V
•	VOIII	1x, 2x	IOH=-100μA	EVDD-0.5		EVDD	V
	VOH3	Pin Group 4	IOH=-1.0mA	AVREF0-1.0		AVREF0	V
	Vono		IOH=-100μA	AVREF0-0.5		AVREF0	V
Low level output	VOL1	Pin Group 1x, 2x	IOL=1.0mA	0		0.4	V
voltage ^{Note2}		P914, 915	IOL=3.0mA			-	
0-#			0.4	V			
Software pull-up resistor	R1	V	'I=0V	10	30	100	kΩ
Software Note1 pull-down resistor	R2	VI:	=VDD	10	30	100	kΩ

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7uF, VDD = EVDD = 3.3 to 5.5V, AVREF0 = 3.3 to 5.5V, VSS = EVSS = AVSS = 0V)

Remark: The characteristics of the dual-function pins are the same as those of the port pins unless otherwise specified.

Notes: 1. DRST terminal only. (Control register is OCDM)

- 2. Total IOH/IOL for each power supply line (EVDD and AVREF0).
 - (A-Grade) :max 20mA/-20mA
 - (A1-/A2-Grade): max. 10mA/-10mA

AVREF0 IOH/IOL current is excluding ADC0 current IAREF0.

3. Typical value. Not tested and guaranteed

2.6.2 PIN leakage current

(C=4.7uF, VDD = EVDD = 3.3 to 5.5V, AVREF0 = 3.3 to 5.5V, VSS = EVSS = AVSS = 0V)

Parameter	Symbol	Co	nditions	MIN.	TYP.		Unit		
Faiametei	Symbol	0	nullions	IVIIIN.	ITF.	(A)	(A1)	(A2)	Onit
High level input leak-	ILIH1	VI=VDD	Analog pins			0.2	0.4	0.5	
age current			Other pins Note1			0.5	0.8	1.0	
Low level input	ILIL1	VI=0V	Analog pins			-0.2	-0.4	-0.5	
leakage current		VI=0V	Other pins Note1			-0.5	-0.8	-1.0	
High level output	ILOH1	VO=VDD	Analog pins			0.2	0.4	0.5	μA
leakage current	ILUHI	VO=VDD	Other pins			0.5	0.8	1.0	
Low level output	ILOL1	VO=0V	Analog pins			-0.2	-0.4	-0.5	
leakage current	ILULI	v0-0v	Other pins			-0.5	-0.8	-1.0	

Notes: 1. The input leakage current of FLMD0 is as follows:

High level input leakage current :

- (A)-Grade 2.0µA
- (A1)-Grade 4.0µA
- (A2)-Grade $5.0 \mu A$

Low level input leakage current:

- (A)-Grade -2.0µA
- (A1)-Grade -4.0µA
- (A2)-Grade 5.0µA

⇒ 2.6.3 Power supply current

2.6.3.1 FF3-L µPD70F3615, µPD70F3616, µPD70F3617, µPD70F3618, µPD70F3619

(a) Absolute values

 $(Ta = -40 \text{ to } +85^{\circ}\text{C} \text{ for (A)-Grade}, Ta = -40 \text{ to } +110^{\circ}\text{C} \text{ for (A1)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Gra$

C=4.7uF, VDD = EVDD = 3.3 to 5.5V, AVREF0 = 3.3 to 5.5V, VSS = EVSS = AVSS = 0V^{Note1})

Mode	Symbol		Co	ndition	,	TYP.		MAX.		Unit
woue	Symbol			maillion		LTF.	(A)	(A1)	(A2)	Unit
				PLL: ON	f _{xx} =10MHz f _x =5MHz	16		24		mA
			Doriphoral: f	16MHz≤f _{xx} ≤20MHz	f _{xx} =20MHz f _x =10MHz	25			mA	
A	All peripherals running	Peripheral: f _{xx} PRSI option: 0	PLL: OFF	f _{xx} =8MHz 8MHz Internal- OSC ^{Note3}	12	19			mA	
				4MHz≤f _{xx} ≤16MHz	f _{xx} =16MHz f _x =16MHz	20		28		mA
Operating		DD1	Peripheral: f _{xx} /2 PRSI option: 1	PLL: ON 10MHz≤f _{xx} ≤20MHz	f _{xx} =20MHz f _x =10MHz	22		32		mA
mode Note2		All peripherals stopped		PLL: ON 16MHz≤f _{xx} ≤20MHz	f _{xx} =10MHz f _x =5MHz	13				mA
					f _{xx} =20MHz f _x =10MHz	21				mA
				PLL: OFF	f _{xx} =8MHz 8MHz Internal- OSC ^{Note3}	11		-		mA
			4MHz≤f _{xx} ≤16MHz	f _{xx} =16MHz f _x =16MHz	18				mA	
			Peripheral: f _{xx} /2 PRSI option: 1	PLL: ON 10MHz≤f _{xx} ≤20MHz	f _{xx} =20MHz f _x =10MHz	21				mA

Mode	Symbol			ondition		TYP.		MAX.		Unit
wode	Symbol			nation		TTP.	(A)	(A1)	(A2)	Unit
				PLL: ON	f _{xx} =10MHz f _x =5MHz	10	15			mA
			Dorinhoroly f	16MHz≤f _{xx} ≤20MHz	f _{xx} =20MHz f _x =10MHz	17		25		mA
		All peripherals running	Peripheral: f _{xx} PRSI option: 0	PLL: OFF 4MHz≤f _{xx} ≤16MHz -	f _{xx} =8MHz 8MHz Internal- OSC ^{Note3}	7		11		
		22			f _{xx} =16MHz f _x =16MHz	12		18		mA
HALT	נחחו		Peripheral: f _{xx} /2 PRSI option: 1	PLL: ON 10MHz≤f _{xx} ≤20MHz	f _{xx} =20MHz f _x =10MHz	14		21		mA
mode	IDD2	IDD2 All peripherals stopped		PLL: ON 16MHz⊴f _{xx} ≤20MHz	f _{xx} =10MHz f _x =5MHz	7				mA
					f _{xx} =20MHz f _x =10MHz	12				mA
				PLL: OFF 4MHz≤f _{xx} ≤16MHz	f _{xx} =8MHz 8MHz Internal- OSC ^{Note3}	5		-		mA
					f _{xx} =16MHz f _x =16MHz	9				mA
			Peripheral: f _{xx} /2 PRSI option: 1	PLL: ON 10MHz≤f _{xx} ≤20MHz	f _{xx} =20MHz f _x =10MHz	11]			

(b) Calculation formulas

$(Ta = -40 \text{ to } +85^{\circ}C \text{ for } (A)-Grade, Ta = -40 \text{ to } +110^{\circ}C \text{ for } (A1)-Grade, Ta = -40 \text{ to } +125^{\circ}C \text{ for } (A2)-Grade, C=4.7uF, VDD = EVDD = 3.3 \text{ to } 5.5V, AVREF0 = 3.3 \text{ to } 5.5V, VSS = EVSS = AVSS = 0V^{Note1})$

Mode	Symbol		Condition		TYP. Note8	MAX. Note8		Unit				
Mode	Symbol		Condition		TTP. Noted	(A)	(A1)	(A2)	Onic			
			Peripheral: f _{xx}	PLL: ON 16MHz≤f _{xx} ≤20MHz	0.93·f _{xx} +6.3		1.12·f _{xx} +12.6		mA			
		All peripherals running	PRSI option: 0	PLL: OFF 4MHz≤f _{xx} ≤16MHz	0.93·f _{xx} +4.7		1.12·f _{xx} +9.7		mA			
Operating			Peripheral: f _{xx} /2 PRSI option: 1	PLL: ON 10MHz≤f _{xx} ≤20MHz	0.85·f _{xx} +5.2	1.03·f _{xx} +11		+11.3				
mode Note2	IDD1		Peripheral: ff _{xx-}	PLL: ON 16MHz≤f _{xx} ≤20MHz	0.78·f _{xx} +5.4				mA			
	All peripherals stopped		All peripherals stopped		· ·	PRSI option: 0	PLL: OFF 4MHz≤f _{xx} ≤16MHz	0.80·f _{xx} +4.9		-		mA
			Peripheral: f _{xx} /2 PRSI option: 1	PLL: ON 10MHz≤f _{xx} ≤20MHz	0.76·f _{xx} +5.4			mA				
			Peripheral: ff _{xx-}	PLL: ON 16MHz≤f _{xx} ≤20MHz	0.70·f _{xx} +3.0	0.97*f _{xx} +5.2			mA			
		All peripherals running	PRSI option: 0	PLL: OFF 4MHz≤f _{xx} ≤16MHz	0.65·f _{xx} +1.9		0.90*f _{xx} +3.6		mA			
HALT	IDD2		Peripheral: f _{xx} /2 PRSI option: 1	PLL: ON 10MHz≤f _{xx} ≤20MHz	0.54·f _{xx} +2.8		0.63*f _{xx} +8.60		mA			
mode	IDD2		Peripheral: f _{xx}	PLL: ON 16MHz≤f _{xx} ≤20MHz	0.46·f _{xx} +2.8				mA			
		All peripherals stopped	PRSI option: 0	PLL: OFF 4MHz≤f _{xx} ≤16MHz	0.44·f _{xx} +1.6		-		mA			
			Peripheral: f _{xx} /2 PRSI option: 1	PLL: ON 10MHz≤f _{xx} ≤20MHz	0.46·f _{xx} +1.8				mA			
IDLE1 mode	IDD3		A, UARTD) run- ing	PLL: OFF 4MHz≤f _{xx} ≤16MHz	0.092·f _{xx} +0.90	0.128·f _{xx} + 1.52	0.128·f _{xx} + 1.82	0.128·f _{xx} + 2.12	mA			
		All periphe	rals stopped		0.035·f _{xx} +1.01	-		•	mA			
IDLE2 mode	IDD4		PLL: OFF 4MHz ≤f _{xx} ≤16MHz	Note7	0.037·f _{xx} +0.21	$0.049 \cdot f_{xx} + 0.43 0.049 \cdot f_{xx} + 0.63 0.049 \cdot f_{xx} + 0.83$		0.049· f_{xx} + 0.43 0.049· f_{xx} + 0.63 0.049· f_{xx} +		0.049·f _{xx} + 0.88	mA	

- **Notes: 1.** VDD and EVDD total current. (Ports are stopped). AVREF0 current, port buffer current (including a current flowing in the on-chip pull-up/pulldown resistor) are not included.
 - The code flash is in read mode. When the device is in programming mode (Self-programming mode) the current value (MAX. value) adds by the following value:
 - Self-programming mode:
 + In case of PLL OFF: 7-(0.33*fxx+0.1) [mA]
 + In case of PLL ON: 7-(0.18*fxx+3.0) [mA]
 - **3.** Main OSC is stopped.
 - 4. Do not use SubOSC.
 - 5. POC is working. 240kHz Internal-OSC is working. 8MHz Internal-OSC is stopped.
 - 6. RC Oscillation frequency is typ.40kHz. This clock is divided by 1/2 internally.
 - 7. 8MHz Internal-OSC is stopped
 - **8.** The formulas are for reference only. Not all possible values for f_{xx} are tested in the outgoing device inspection.

2.7.2 RESET, Interrupt, ADTRG Timing

 $(Ta = -40 \text{ to } +85^{\circ}\text{C} \text{ for (A})-\text{Grade}, Ta = -40 \text{ to } +110^{\circ}\text{C} \text{ for (A1)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, VDD = EVDD = 3.3 \text{ to } 5.5\text{V}, AVREF0 = 3.3 \text{ to } 5.5\text{V}, VSS = EVSS = AVSS = 0\text{V}, CL=50\text{pF})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit			
_RESET input low level width	tWRSL	analog filter	250			ns			
NMI input high level width	tWNIH	analog filter	250			ns			
NMI input low level width	tWNIL	analog filter	250			ns			
INTPn ^{Note1} input high level width	tWITH	analog filter ,n=0-8	250			ns			
		digital filter ,n=3	Note2			ns			
INTPn Note1 input low level width	tWITL	analog filter ,n=0-8	250			ns			
		digital filter ,n=3	Note2			ns			

Notes: 1. ADTRG is same spec (P03/INTP0/ADTRG). DRST is same spec (P05/INTP2/DRST)
2. 2Tsamp+20 or 3Tsamp+20 ("Tsamp" is Noise reject sampling clock (NF macro))

- **Remarks: 1.** The above minimum values show pulse widths that are surely detected as an effective edge. An effective may also be detected even if the input pulse width is less than the above minimum specification.
 - 2. RESET, NMI, INTPn, ADTRG and DRST have analog noise filter. The typical filter time is typ=60ns.

2.7.3 Key Return Timing

 $(Ta = -40 \text{ to } +85^{\circ}\text{C} \text{ for (A})-\text{Grade}, Ta = -40 \text{ to } +110^{\circ}\text{C} \text{ for (A1)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, VDD = EVDD = 3.3 \text{ to } 5.5V, AVREF0 = 3.3 \text{ to } 5.5V, VSS = EVSS = AVSS = 0V, CL=50\text{pF})$

VDD = LVDD = 0.0 (0 0.0 V, AVI(L) 0 =	vbb = Evbb = 0.0 (0 0.00, AV(E) 0 = 0.0 (0 0.00, V00 = Ev00 = AV(0) = 00, 0E=000)										
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit					
KRn input high level width	tWKRH	analog filter ,n=0-7	250			ns					
KRn input low level width	tWKRL	analog filter ,n=0-7	250			ns					

Remarks: 1. The above minimum values show pulse widths that are surely detected as an effective edge. An effective may also be detected even if the input pulse width is less than the above minimum specification.

2. KRn inputs have analog noise filter. The typical filter time is typ=60ns.

2.7.4 Timer Timing

 $(Ta = -40 \text{ to } +85^{\circ}\text{C} \text{ for (A})\text{-}Grade, Ta = -40 \text{ to } +110^{\circ}\text{C} \text{ for (A1)-}Grade, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-}Grade, VDD = EVDD = 3.5 \text{ to } 5.5\text{V}, AVREF0 = 3.5 \text{ to } 5.5\text{V}, VSS = EVSS = AVSS = 0\text{V}, CL = 50\text{pF})$

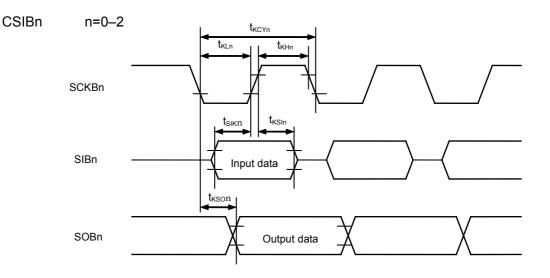
VDD = EVDD = 3.5 10	VDD - EVDD - 5.5 to 5.5 v, AVREPU - 5.5 to 5.5 v, V35 - EV35 - AV35 - 0v, CE-50pr)											
Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit					
TI input high level width	tTIH	TIAA00-01,10-11,20-21,30-31,4	0-41 Note1	250			ns					
TI input low level width	tTIL	TIAA00-01,10-11,20-21,30-31,4	0-41 Note1	250			ns					
TO output cycle	tTCYK	TIAA00-01,10-11,20-21,30-31, 4	40-41 Note1			10	MHz					

Notes: 1. Except for the external trigger and external event function.

- **Remarks: 1.** The above minimum values show pulse widths that are surely detected as an effective edge. An effective may also be detected even if the input pulse width is less than the above minimum specification.
 - 2. TIAAn inputs have analog noise filter. The typical filter time is typ=60ns.

2.7.5 CSI Timing

(a) Master mode


(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, VDD = EVDD = 3.5 to 5.5V, AVREF0 = 3.5 to 5.5V, VSS = EVSS = AVSS = 0V, CL=50pF)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCKBn cycle time	tKCY1		125		ns
SCKBn high level width	tKH1		tKCY1/2-15		ns
SCKBn low level width	tKL1		tKCY1/2-15		ns
SIBn setup time (to SCKBn)	tSIK1		30		ns
SIBn hold time (from SCKBn)	tKSI1		25		ns
Delay time from SCKBn to SOBn	tKSO1			25	ns

(b) Slave mode

 $(Ta = -40 \text{ to } +85^{\circ}\text{C} \text{ for (A})-\text{Grade}, Ta = -40 \text{ to } +110^{\circ}\text{C} \text{ for (A1)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, VDD = EVDD = 3.5 \text{ to } 5.5V, AVREF0 = 3.5 \text{ to } 5.5V, VSS = EVSS = AVSS = 0V, CL=50\text{pF})$

$v_{DD} = Ev_{DD} = 5.5 (0.5.5), AVREPU = 5.5 (0.5.5), v_{33} = Ev_{33} = Av_{33} = 00, CE = 50pr)$								
Parameter	Symbol	Conditions	MIN.	MAX.	Unit			
SCKBn cycle time	tKCY1		200		ns			
SCKBn high level width	tKH1		90		ns			
SCKBn low level width	tKL1		90		ns			
SIBn setup time (to SCKBn)	tSIK1		50		ns			
SIBn hold time (from SCKBn)	tKSI1		50		ns			
Delay time from SCKBn to SOBn	tKSO1			50	ns			

2.7.6 UART Timing

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, VDD = EVDD = 3.5 to 5.5V, AVREF0 = 3.5 to 5.5V, VSS = EVSS = AVSS = 0V, CL=50pF)

,		· · · · · · · · · · · · · · · · · · ·	,,			
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					1.5	Mbps
ASCK0 frequency					10	MHz

2.7.7 IIC Timing

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, VDD = EVDD = 3.5 to 5.5V, AVREF0 = 3.5 to 5.5V, VSS = EVSS = AVSS = 0V, CL=50pF)

	Parameter	Symbol	Normal	mode	High-spee	d mode	Unit
	Falametei	Symbol	min.	max.	min.	max.	Unit
SCL00 clock	frequency	fCLK	0	100	0	400	kHz
Bus-free time tions)	(between stop/start condi-	tBUF	4.7		1.3		μs
Hold time ^{Note}	1	tHD:STA	4.0		0.6		μs
SCL00 clock	low-level width	tLOW	4.7		1.3		μs
SCL00 clock	high-level width	tHIGH	4.0		0.6		μs
Setup time for	r start/restart conditions	tSU:STA	4.7		0.6		μs
Data hold	CBUS compatible master		5.0				μs
time	IIC mode	tHD:DAT	0 ^{Note2}		0 ^{Note2}	0.9 ^{Note3}	μs
Data setup tin	ne	tSU:DAT	250		100 ^{Note4}		ns
SDA00 and S	CL00 signal rise time	tR		1000	20+0.1Cb	300	ns
SDA00 and S	CL00 signal fall time	tF		300	20+0.1Cb	300	ns
Stop condition	n setup time	tSU:STO	4.0		0.6		μs
Pilse width wi input filter	th spike supporessed by	tSP			0	50	ns
Capacitance I	oad of each bus line	Cb		400		400	pF

Notes: 1. At the start condition, the first clock pulse is generated after the hold time

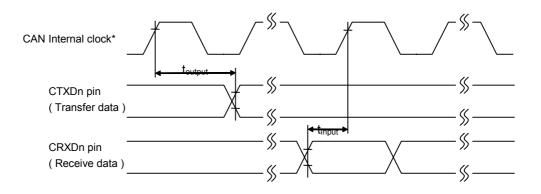
2. The system requires a minimum of 300ns hold time Internally for the SDA signal (at VIH-min. of SCL00 signal)

In order to occupy the undefined area at the falling edge of SCL00.

- **3.** If the system does not extend the SCL00 signal low hold time (tlow), only the maximum data hold time (tHD:DAT) needs to be satisfied.
- 4. The high-speed-mode IIC bus can be used In a normal-mode IIC bus system. In this case, set the high-speed-mode IIC bus so that It meets the following conditions.
 If the system does not extend the SCL00 signal's low state hold time: SU:DAT?250ns

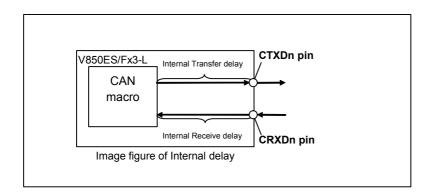
- If the system extends the SCL00 signal's low state hold time:

Transmit the following data bit to the SDA00 line prior to releasing the SCL00 line (tRmax.+tSU:DAT=1000+250=1250ns: Normal mode IIC bus specification).


5. Cb: Total capacitance of one bus line (unit: pF)

2.7.8 CAN Timing

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade,


VDD = EVDD = 3.5 to 5.5V, A	/REF0 = 3.5 to 5	5.5V, VSS = EVSS = AVSS	= 0V, CL=50pF)	

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					1	Mbps
Internal delay time					100	ns

Internal delay time (tNODE)= Internal Transfer Delay(toutput) + Internal Receive Delay(tinput)

*) CAN Internal clock (f_{CAN}) :CAN baud rate clock

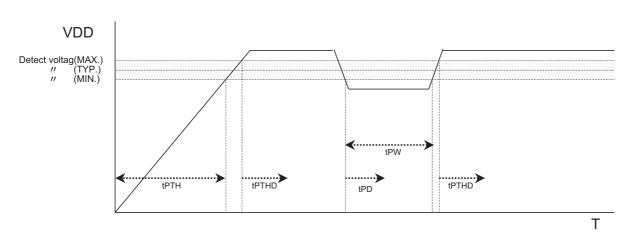
2.8 A/D Converter

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7uF, VDD = EVDD = 3.5 to 5.5V, AVREF0 = 4.0 to 5.5V, VSS = EVSS = AVSS = 0V)

Parameter	Symbol	Conditions	MIN.	TYP.	M/ (A),(A1)	AX. (A2)	Unit
Resolution					1	0	bit
Overall error ^{Note1}		4.0V≤AVREF0<5.5V		±0.15	±0.3	±0.35	%FSR
Conversion time	tCONV		3.10		1	6	μs
Stabilization time	tSTA	After ADA0PS bit = 0 -> 1	2				μs
Recovery time for power down mode	tDPU		1				μs
Zero-scale error ^{Note1}	ZSE				±0.3	±0.35	%FSR
Full-scale error ^{Note1}	FSE				±0.3	±0.35	%FSR
Integral non-liniearity error ^{Note2}	INL				±ź	2.5	LSB
Differential non-liniearity error ^{Note2}	DNL				±´	1.5	LSB
Analog input voltage	VIAN		AVSS		AVF	REF0	V
Analog input equivalent circuit capacitance ^{Note3,4}	CINA				6.	19	pF
Analog input equivalent circuit resistance ^{Note3}	RINA				2.	55	kΩ
AVREF0 current	IAREF0	A/D operating		4		7	mA
	IAREFU	A/D operation stop		1	1	0	μA
Conversion rusult when using		AVREF0 conversion	3FC		3	FF	HEX
Diagnostic function		AVSS conversion	000		0	03	HEX

Notes: 1. Overall error excluding quantization error (±0.05%FSE). It is indicated as a ratio to the fullscale value.

- Excluding quantization error (±1/2 LSB)
 Reference value. Not tested in production.
- 4. Does not include input/output capacitance CIO

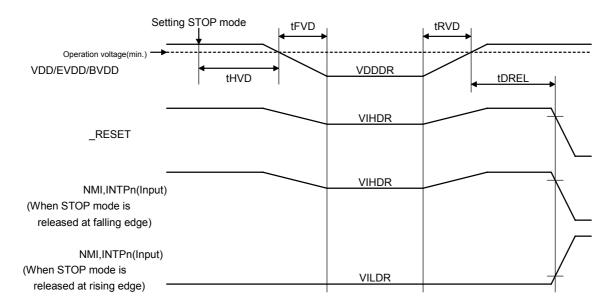

2.9 POC

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7uF, VDD = EVDD, VSS = EVSS = AVSS = 0V)

• III al , 100 2100, 100	2100 /1100	•••				
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detect voltage	VPOC0		3.3	3.5	3.7	V
Supply voltage rise time	tPTH	From VDD=0V to VDD=3.3V	0.002			ms
Response time1 Note1	tPTHD	In case of power on. After VDD reaches 3.7V.			2.0	ms
Response time2 Note2	tPD	In case of power off. After VDD drop 3.3V.		0.2	1.0	ms
VDD minimum width	tPW		0.2			ms

Notes: 1. From detect voltage to release reset signal

2. From detect voltage to occurrence of reset signal


Note: POC is available only in M2 devices. Refer to 'Ordering information' in the V850ES/Fx3-L User'sManual.

2.12 Data Retention Characteristics

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7uF, VDD = EVDD = 1.9 to 5.5V, VSS = EVSS = AVSS = 0V) (

	,					
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention power supply voltage	VDDDR	STOP mode (All function is stopped)	1.9		5.5	V
Data retention power supply current	IDDDR	VDDDR=2.0V(All function is stopped)		6.5	70	μA
Supply voltage rise time	tRVD		1			μs
Supply voltage fall time	tFVD		1			μs
Supply voltage hold time	tHVD	After STOP mode	0			ms
STOP release signal input time	tDREL	After VDD reaches operat- ing voltage range MIN. 3.3V	0			ms
Data retention high-level input voltage	VIHDR	All input port	0.9-VDDDR		VDDDR	V
Data retention low-level input voltage	VILDR	All input port	0		0.1.VDDDR	V

Remark: When STOP mode is entered/released operation voltage range must be controlled.

2.13 Flash Memory Programming Characteristics

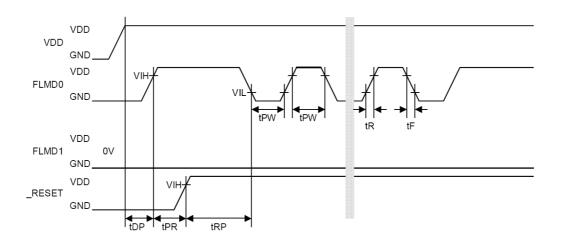
(a) Basic Characteristics

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7uF, VDD = EVDD, AVREF0 = 3.5 to 5.5V, VSS = EVSS = AVSS = 0V)

Parameter	Symbol	Conditions	MIN.	TYP.	(A)	MAX. (A) (A1) (A		Unit
Operation frequency	fCPU		4		(~)	(A) (A1) (A2) 20		MHz
Supply voltage	VDD		3.3		5.5			V
Number of rewrites	CWRT	Code Flash			1000		count	
High level input voltage	VIH	FLMD0	0.8-EVDD		EVDD		V	
Low level input voltage	VIL	FLMD0	EVSS		0.2.EVDD		V	
Programming temperature	tPRG		-40		+85	+110	+125	°C
Data retention		Code Flash	15					year

Remark: The initial write when the product is shipped, any erase \rightarrow write set of operations, or any programming operation is counted as one rewrite.

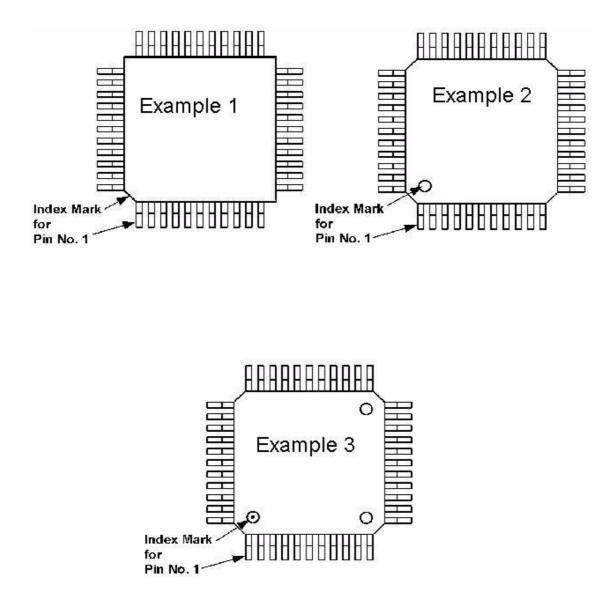
Example: P: Program(write) E: Erase


Product is shipped $\rightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P$: Rewrite count: 3 Product is chipped $\rightarrow E \rightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P$: Rewrite count: 3

Product is shipped \rightarrow E \rightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P : Rewrite count: 3

(b) Serial Writing Operation Characteristics

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7uF, VDD = EVDD, AVREF0 = 3.5 to 5.5V, VSS = EVSS = AVSS = 0V, CL=50pF)


-4.741,700 - 2700,771(210 - 0.010,700 - 2700 - 7700 - 01,02 - 00,01)							
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
FLMD0 setup time (from VDD)	tDP		1			ms	
RESET release (from FLMD0)	tPR		2			ms	
FLMD0 pulse input start (from raise edge of _RESET)	tRP		800			μs	
FLMD0 high level width / low level width	tPW		10		100	μs	
FLMD0 raise time	tR				50	ns	
FLMD0 fall time	tF				50	ns	

3.2 Product Marking

3.2.1 Marking of pin 1 at a QFP (Quad Flat Package)

Example 1: The index mark for pin 1 is the beveled edge of the package

- Example 2: The index mark for pin 1 is a round notch at one of the 4 edges. In this case, the shape of all edges is identical (usually beveled).
- Example 3: For production reasons, two or more similar notches may be located at the top of the package. In such a case the index marker for pin 1 is a round notch with an additional mark in it.
- **Note:** RoHS compliant devices have an additional dot at the top side. Do not mix it up with the marking for pin 1. For details see 3.2.2 "Identification of Lead-Free Products" on page 34.

4. Change History

Version	Chapter	Comment
V1.0		Initial release

NEC

Facsimile Message

FAX

Although NEC has taken all possible steps to ensure that the documentation supplied to our customers is complete, bug free and up-to-date, we readily accept that errors may occur. Despite all the care and precautions we've taken, you may encounter problems in the documentation. Please complete this form whenever you'd like to report errors or suggest improvements to us.

Address

Tel.

From:

Name

Company

Thank you for your kind support.

North America NEC Electronics America Inc. Corporate Communications Dept. Fax: 1-800-729-9288 1-408-588-6130	Hong Kong, Philippines, Oceania NEC Electronics Hong Kong Ltd. Fax: +852-2886-9022/9044	Asian Nations except Philippines NEC Electronics Singapore Pte. Ltd. Fax: +65-6250-3583
Europe NEC Electronics (Europe) GmbH Market Communication Dept. Fax: +49(0)-211-6503-1344	Korea NEC Electronics Hong Kong Ltd. Seoul Branch Fax: 02-528-4411	Japan NEC Semiconductor Technical Hotline Fax: +81- 44-435-9608
	Taiwan NEC Electronics Taiwan Ltd. Fax: 02-2719-5951	

I would like to report the following error/make the following suggestion:

Document title: ___

Document number: ____

_____ Page number: _____

If possible, please fax the referenced page or drawing.

Document Rating	Excellent	Good	Acceptable	Poor
Clarity				
Technical Accuracy				
Organization				