

Welcome to **E-XFL.COM** 

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

| Details                    |                                                                                         |
|----------------------------|-----------------------------------------------------------------------------------------|
| Product Status             | Obsolete                                                                                |
| Core Processor             | -                                                                                       |
| Core Size                  | -                                                                                       |
| Speed                      | -                                                                                       |
| Connectivity               |                                                                                         |
| Peripherals                | -                                                                                       |
| Number of I/O              | -                                                                                       |
| Program Memory Size        | -                                                                                       |
| Program Memory Type        | -                                                                                       |
| EEPROM Size                | -                                                                                       |
| RAM Size                   | -                                                                                       |
| Voltage - Supply (Vcc/Vdd) | -                                                                                       |
| Data Converters            | -                                                                                       |
| Oscillator Type            | -                                                                                       |
| Operating Temperature      | -                                                                                       |
| Mounting Type              | -                                                                                       |
| Package / Case             | -                                                                                       |
| Supplier Device Package    | -                                                                                       |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/upd70f3619m1gka-gak-ax |
|                            |                                                                                         |



## **Legal Notes**

- The information in this document is current as of January 2007. The information is subject to change
  without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or
  data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products
  and/or types are available in every country. Please check with an NEC sales representative for
  availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior
  written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that
  may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other
  intellectual property rights of third parties by or arising from the use of NEC Electronics products
  listed in this document or any other liability arising from the use of such NEC Electronics products.
  No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual
  property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics
  products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated
  entirely. To minimize risks of damage to property or injury (including death) to persons arising from
  defects in NEC Electronics products, customers must incorporate sufficient safety measures in their
  design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

"Standard": Computers, office equipment, communications equipment, test and

measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control

systems, anti-disaster systems, anti-crime systems, safety equipment and

medical equipment (not specifically designed for life support).

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control

systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact NEC Electronics sales representative in advance to determine NEC Electronics's willingness to support a given application.

- **Notes: 1.** "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
  - 2. "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).
  - **3.** SuperFlash<sup>®</sup> is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan. This product uses SuperFlash<sup>®</sup> technology licensed from Silicon Storage Technology, Inc.



## **Table of Contents**

| 1.         | Pin Group Information                                            | 6  |
|------------|------------------------------------------------------------------|----|
| 1.1        | Device package information                                       | 6  |
| 1.2        | Pin Groups 1x: Pins supplied by EVDD                             |    |
| 1.3        | Pin Groups 2x: Pins supplied by EVDD                             |    |
| 1.4        | Pin Groups 3x: Pins supplied by BVDD                             |    |
| 1.5        | Pin Groups 4: Pins supplied by AVREF0                            |    |
| 1.6        | Pin Groups 6: Pins supplied by EVDD                              |    |
| 1.7        | Pin Groups 7: Pins supplied by VRO                               |    |
|            |                                                                  |    |
| 2.         | Electrical Specifications                                        |    |
| 2.1        | Absolute Maximum Ratings                                         |    |
| 2.2        | Capacities                                                       |    |
| 2.3        | Operating condition                                              |    |
| 2.4        | Voltage Regulator Characteristics                                |    |
| 2.5        | Clock Generator Circuit                                          |    |
| 2.5.1      | Main System Clock Oscillation Circuit Characteristics            |    |
| 2.5.2      | Sub System Clock Oscillation Circuit Characteristics             |    |
| 2.5.3      | Internal-OSC Characteristics                                     |    |
| 2.5.4      | PLL Characteristics                                              | 13 |
| 2.6        | DC Characteristics                                               | 14 |
| 2.6.1      | Input/Output Level                                               |    |
| 2.6.2      | PIN leakage current                                              |    |
| 2.6.3      | Power supply current                                             |    |
| 2.6.3.1    | FF3-L μPD70F3615, μPD70F3616, μPD70F3617, μPD70F3618, μPD70F3619 |    |
| 2.7        | AC Characteristics                                               |    |
| 2.7.1      | CLKOUT Output Timing                                             |    |
| 2.7.2      | RESET, Interrupt, ADTRG Timing                                   |    |
| 2.7.3      | Key Return Timing                                                |    |
| 2.7.4      | Timer Timing                                                     |    |
| 2.7.5      | CSI Timing                                                       |    |
| 2.7.6      | UART Timing                                                      |    |
| 2.7.7      | IIC Timing                                                       |    |
| 2.7.8      | CAN Timing                                                       |    |
| 2.8        | A/D Converter                                                    |    |
| 2.9        | POC                                                              |    |
| 2.10       | LVI                                                              |    |
| 2.11       | RAM Retention Flag                                               |    |
| 2.12       | Data Retention Characteristics                                   |    |
| 2.13       | Flash Memory Programming Characteristics                         | 31 |
| 3.         | Package                                                          | 32 |
| 3.1        | Package Dimension                                                |    |
| 3.1<br>3.2 | Product Marking                                                  |    |
| 3.2.1      | Marking of pin 1 at a QFP (Quad Flat Package)                    |    |
| 3.2.2      | Identification of Lead-Free Products                             |    |
| ~· <b></b> |                                                                  |    |
| 4.         | Change History                                                   | 35 |

V850ES/FF3-L NEC

## 1. Pin Group Information

## 1.1 Device package information

The V850ES/Fx3-L device series comprises several members. An overview with the pin and package information is given in the following table:

| Series Member | # Pins | Device package information |
|---------------|--------|----------------------------|
| μPD70F3610    |        |                            |
| μPD70F3611    |        |                            |
| μPD70F3612    | 64     | FE3-L                      |
| μPD70F3613    |        |                            |
| μPD70F3614    |        |                            |
| μPD70F3615    |        |                            |
| μPD70F3616    |        |                            |
| μPD70F3617    | 80     | FF3-L                      |
| μPD70F3618    |        |                            |
| μPD70F3619    |        |                            |
| μPD70F3620    |        |                            |
| μPD70F3621    | 100    | FG3-L                      |
| μPD70F3622    |        |                            |

This document describes the specification for the V850ES/FF3-L.

#### 1.2 Pin Groups 1x: Pins supplied by EVDD

1B: (SHMT1)

- P04, P30-31, P34; P40, P91, P913-915 (FE3-L)
- P04, P30-31, P34; P38-39, P40, P91, P913-915 (FF3-L)
- P04, P30-31, P34; P36-39, P40, P91, P911, P913-915 (FG3-L)

1D: (SHMT3)

- P00-03, P05-P06, P32-33, P35, P41-42, P50-55, P90, P96-99 (FE3-L)
- P00-03, P05-P06, P32-33, P35, P41-42, P50-55, P90, P96-99 (FF3-L)
- P00-03, P05-P06, P10-11, P32-33, P35, P41-42, P50-55, P90, P92-910, P912 (FG3-L)

#### 1.3 Pin Groups 2x: Pins supplied by EVDD

2A: (CMOS)

- PCM0-1 (FE3-L)
- PCM0-3, PCS0-1, PCT0-1, PCT4, PCT6 (FF3-L)

2D: (SHMT3)

- PDL0-7 (FE3-L)
- PDL0-11 (FF3-L)



## 2. Electrical Specifications

This product has to be used only under the conditions of VDD=EVDD. Operation is not ensured at the time of using this product except this condition.

The operating ambient temperature of each quality grade is as follows:

(A)-Grade:  $Ta = -40 \text{ to } +85^{\circ}\text{C}$ (A1)-Grade:  $Ta = -40 \text{ to } +110^{\circ}\text{C}$ (A2)-Grade:  $Ta = -40 \text{ to } +125^{\circ}\text{C}$ 

## 2.1 Absolute Maximum Ratings

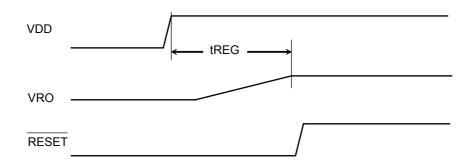
Absolute Maximum Ratings (Ta=25°C)

|                      | , , , , , | ,                    |              |                       |                             |      |  |
|----------------------|-----------|----------------------|--------------|-----------------------|-----------------------------|------|--|
| Parameter            | Symbol    | Conditions           |              |                       | Rating                      | Unit |  |
|                      | VDD       | VDD=EV               | DD,          |                       | -0.5 to +6.5                |      |  |
|                      | EVDD      | VDD=EV               | 'DD          |                       | -0.5 to +6.5                |      |  |
| Supply voltage       | AVREF0    |                      |              |                       | -0.5 to +6.5                | V    |  |
| Supply Vollage       | VSS       | VSS=EVSS             | -0.5 to +0.5 | V                     |                             |      |  |
|                      | EVSS      | VSS=EVSS             | -0.5 to +0.5 |                       |                             |      |  |
|                      | AVSS      | VSS=EVSS=AVSS        |              |                       | -0.5 to +0.5                |      |  |
| Input voltage        | VI1       | Pin Group 1          | x, 2x, 6     |                       | -0.5 to EVDD+0.5<br>Note1   | V    |  |
|                      | VI3       | Pin Grou             | p 7          |                       | -0.5 to VRO+0.5<br>Note1    | V    |  |
| Analog input voltage | VIAN      | Pin Grou             | p 4          |                       | -0.5 to AVREF0+0.5<br>Note1 | V    |  |
|                      |           |                      |              | 1 pin                 | -4                          |      |  |
|                      |           | Din Croup 1v 2v      |              | (A)                   | -50                         |      |  |
| High level           |           | Pin Group 1x, 2x     | Total        | (A1)                  | -20                         | mA   |  |
|                      |           |                      |              | (A2)                  | -20                         |      |  |
| output current       | IOH       |                      |              | 1 pin                 | -4                          |      |  |
|                      |           | Pin Group 4          |              | (A) <sup>Note2</sup>  | -20                         |      |  |
|                      |           |                      | Total        | (A1) <sup>Note2</sup> | -10                         |      |  |
|                      |           |                      |              | (A2) <sup>Note3</sup> | -10                         |      |  |
|                      |           |                      |              | 1 pin                 | 4                           |      |  |
|                      |           | Pin Group 1x, 2x     |              | (A)                   | 50                          |      |  |
|                      |           | Fill Gloup 1x, 2x    | Total        | (A1)                  | 20                          |      |  |
| Low level            |           |                      |              | (A2)                  | 20                          |      |  |
| output current       | IOL       |                      |              | 1 pin                 | 4                           | mA   |  |
|                      |           | Dia Onessa 4         |              | (A) <sup>Note2</sup>  | 20                          |      |  |
|                      |           | Pin Group 4          | Total        | (A1) <sup>Note2</sup> | 10                          |      |  |
|                      |           |                      |              | (A2) <sup>Note3</sup> | 10                          |      |  |
|                      |           | Normal operating mod |              | (A)                   | -40 to +85                  |      |  |
|                      |           | Flash programming mo |              | (A)                   | -40 10 100                  |      |  |
| Operating ambient    | Та        | Normal operating mod |              | (A1)                  | -40 to +110                 | °C   |  |
| temperature          | l la      | Flash programming mo |              | (A1)                  | -40 10 1110                 |      |  |
|                      |           | Normal operating mod |              | (A2)                  | -40 to +125                 |      |  |
|                      |           | Flash programming mo | ode          | (AZ)                  |                             |      |  |
| Storage temperature  | Tstg      |                      |              |                       | -40 to +125                 | °C   |  |

**Remarks: 1.** The characteristics of the dual-function pins are the same as those of the port pins unless otherwise specified

Notes: 1. Be sure not to exceed the absolute maximum ratings (Max. value) of each supply voltage.

- **2.** Excluding ADC IAREF0 current.
- 3. Including ADC IAREF0 current.




## 2.4 Voltage Regulator Characteristics

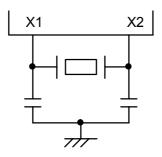
(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7 $\mu$ F, VDD = EVDD, VSS = EVSS = AVSS = 0V))

| Parameter          | Symbol | Conditions                                     | MIN. | TYP. | MAX. | Unit |
|--------------------|--------|------------------------------------------------|------|------|------|------|
| Input voltage      | VDD    |                                                | 3.5  |      | 5.5  | V    |
| Input voltage      | VDD    | Limited function see '2.3 Operating condition' | 3.3  |      |      | V    |
| Output voltage     | VRO    |                                                |      | 2.5  |      | V    |
| Output voltage     | ₊ Note | After VDD reaches voltage range min. 3.3V      |      |      | 1    | ms   |
| stabilization time | REG    | To connect C=4.7uF on REGC terminal            |      |      | '    | 1115 |

**Note:** In case of non-POC device, be sure to start VDD in the <u>state of RESET</u>=VSS=0V. For POC devices there is no need to control external RESET terminal. For decives with POC function the internal RESET signal will automatically controlled until VRO is stable.



#### 2.5 Clock Generator Circuit


## 2.5.1 Main System Clock Oscillation Circuit Characteristics

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7 $\mu$ F, VDD = EVDD = 3.3 to 5.5 $\nu$ F, AVREF0 = 3.3 to 5.5 $\nu$ F, VSS = EVSS = AVSS = 0 $\nu$ F

| Resonator              | Recommended Circuit   | Parameter                                       | Conditions       | MIN.                | TYP.  | MAX. | Unit |
|------------------------|-----------------------|-------------------------------------------------|------------------|---------------------|-------|------|------|
| Crystal /              |                       | Oscillator fre-<br>quency (fx) <sup>Note1</sup> |                  | 4                   |       | 16   | MHz  |
| Ceramic resona-<br>tor | Refer to figure below | Oscillation stabili-                            | After STOP mode  | 54 <sup>Note4</sup> | Note3 |      | μs   |
| tor                    |                       | zation time Note2                               | After IDLE2 mode | 54 <sup>Note4</sup> | Note3 |      | μs   |

**Notes: 1.** Indicates only oscillation circuit characteristics. Refer to '2.7 AC Characteristics' for CPU operation clock.

- 2. Time required to stabilize oscillation after VDD reaches oscillator voltage range MIN. 3.3V
- **3.** Depends on the setting of the oscillation stabilization time select register (OSTS)
- **4.** Minimum time required to stabilize flash. Time has to be secured by setting the oscillation stabilization time select register (OSTS)





#### 2.5.2 Sub System Clock Oscillation Circuit Characteristics

(Ta = -40 to +85°C, C=4.7uF, VDD = EVDD = 3.3 to 5.5V, AVREF0 = 3.3 to 5.5V, VSS = EVSS = AVSS = 0V)

| Resonator | Recommended Circuit | Parameter                                        | Conditions | MIN. | TYP.   | MAX. | Unit |
|-----------|---------------------|--------------------------------------------------|------------|------|--------|------|------|
| Crystal   | Pofor to Figure 1   | Oscillator fre-<br>quency (fxt) <sup>Note1</sup> |            | 32   | 32.768 | 35   | kHz  |
| resonator | Refer to Figure 1   | Oscillation stabilization time Note2             |            |      |        | 10   | s    |

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7uF, VDD=EVDD=3.3 to 5.5V, AVREF0=3.3 to 5.5V, VSS=EVSS=AVSS=0V)

| Resonator | Recommended Circuit | Parameter                                  | Conditions                             | MIN. | TYP. | MAX. | Unit |
|-----------|---------------------|--------------------------------------------|----------------------------------------|------|------|------|------|
| RC        | Refer to Figure 2   | Oscillator<br>frequency <sup>Note1,4</sup> | R=390KΩ ±5% Note3,<br>C=47pF±10% Note3 | 25   | 40   | 55   | kHz  |
| resonator | Relei to Figure 2   | Oscillation stabiliza-<br>tion time Note2  |                                        |      |      | 100  | μs   |

- **Notes: 1.** Indicates only oscillation circuit characteristics. Refer to "AC Characteristic" for cpu operation clock.
  - 2. Time required to stabilize oscillation after VDD reaches oscillator voltage range min. 3.3V
  - **3.** In order to avoid the influence of wiring capacity, shorten wiring as much as possible.
  - **4.** RC Oscillation frequency is typ. 40kHz. This clock is divided (1/2) internally. In case of RC Oscillator, internal system clock frequency (fxt) is min. 12.5kHz, typ. 20kHz, max. 27.5kHz.



#### 2.5.3 Internal-OSC Characteristics

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7uF, VDD = EVDD = 3.3 to 5.5V, AVREF0 = 3.3 to 5.5V, VSS = EVSS = AVSS = 0V)

| Parameter          | Symbol          | Conditions          | MIN. | TYP. | MAX. | Unit |
|--------------------|-----------------|---------------------|------|------|------|------|
| Output             | f <sub>RL</sub> | 240kHz Internal-OSC | 204  | 240  | 276  | kHz  |
| frequency          | f <sub>RH</sub> | 8MHz Internal-OSC   | 7.2  | 8.0  | 8.8  | MHz  |
| Oscillation        |                 | 240kHz Internal-OSC |      | 10   | 36   | μs   |
| stabilization time |                 | 8MHz Internal-OSC   | 51   | 92   | 256  | μs   |



#### 2.5.4 PLL Characteristics

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7 $\mu$ F, VDD = EVDD = 3.3 to 5.5V, AVREF0 = 3.3 to 5.5V, VSS = EVSS = AVSS = 0V)

| Parameter                     | Symbol     | Conditions                                | MIN. | TYP. | MAX. | Unit |
|-------------------------------|------------|-------------------------------------------|------|------|------|------|
| lancet from second            | fx         |                                           | 4    |      | 16   | MHz  |
| Input frequency               | $f_{PLLI}$ | Note1                                     | 3    |      | 6    | MHz  |
| Output frequency              | fxx        |                                           | 10   |      | 20   | MHz  |
| Lock time                     | tPLL       | After VDD reaches voltage range min. 3.3V |      |      | 800  | μs   |
| Output period jitter<br>Note2 | tpj        | Peak to peak                              |      |      | 2.0  | ns   |

**Notes: 1.** The input of the PLL  $(f_{PLLI})$  can be set to  $f_X$ ,  $f_X/2$ , or  $f_X/4$ . The divider is set through an option byte in the code flash memory.

2. Not tested in production.

| Mode                  | Symbol         |                                                 | Co                                               | ondition                                         |                                                 | TYP. |      | MAX. |      | Unit  |
|-----------------------|----------------|-------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-------------------------------------------------|------|------|------|------|-------|
| IVIOGC                | Cyrribor       |                                                 |                                                  |                                                  |                                                 | 111. | (A)  | (A1) | (A2) | Offic |
|                       |                |                                                 |                                                  |                                                  | f <sub>xx</sub> =5MHz<br>f <sub>x</sub> =5MHz   | 1.4  | 2.2  | 2.5  | 2.8  | mA    |
|                       |                | Peripheral (TAA, UARTD) run-<br>ning            | PLL: OFF<br>4MHz≤f <sub>xx</sub> ≤16MHz<br>Note7 | f <sub>xx</sub> =12MHz<br>f <sub>x</sub> =12MHz  | 2.0                                             | 3.1  | 3.4  | 3.7  | mA   |       |
|                       |                | 11                                              | iiig                                             | NOIE/                                            | f <sub>xx</sub> =16MHz<br>f <sub>x</sub> =16MHz | 2.4  | 3.6  | 3.9  | 4.2  | mA    |
| IDLE1                 | IDD0           |                                                 |                                                  | fxx=8MHz, 8MHz In                                | ternal-OSC <sup>Note3</sup>                     | 1.5  | 2.3  | 2.6  | 2.9  | mA    |
| mode                  | IDD3           |                                                 |                                                  |                                                  | f <sub>xx</sub> =5MHz<br>f <sub>x</sub> =5MHz   | 1.2  |      |      |      | mA    |
|                       |                | All periphe                                     | rals stopped                                     | PLL: OFF<br>4MHz≤f <sub>xx</sub> ≤16MHz<br>Note7 | f <sub>xx</sub> =12MHz<br>f <sub>x</sub> =12MHz | 1.4  |      | _    |      | mA    |
|                       | f <sub>x</sub> | f <sub>xx</sub> =16MHz<br>f <sub>x</sub> =16MHz | 1.6                                              |                                                  |                                                 | mA   |      |      |      |       |
|                       |                |                                                 | fxx=8MHz, 8MHz Ir                                |                                                  |                                                 | 1.1  |      |      |      | mA    |
|                       |                |                                                 |                                                  | f <sub>xx</sub> =5MHz<br>f <sub>x</sub> =5MHz    |                                                 |      | 0.7  | 0.9  | 1.1  | mA    |
| IDLE2                 | IDD4           | PLL: OFF<br>4MHz≤f <sub>xx</sub> ≤16MI          |                                                  | Hz                                               | f <sub>xx</sub> =12MHz<br>f <sub>x</sub> =12MHz | 0.7  | 1.0  | 1.2  | 1.5  | mA    |
| mode                  |                | Note7                                           |                                                  | f <sub>xx</sub> =16MHz<br>f <sub>x</sub> =16MHz  | 0.8                                             | 1.2  | 1.4  | 1.7  | mA   |       |
|                       |                |                                                 | fxx=8MHz, 8MH                                    | z Internal-OSC Note3                             |                                                 | 0.2  | 0.5  | 0.7  | 1.0  | mA    |
| SUB                   |                |                                                 |                                                  | or (fxt = 32,768kHz)                             |                                                 | 80   | 400  | -    | -    | μΑ    |
| operating             | IDD5           |                                                 | RC resonator                                     | (fxt=20kHz) Note6                                |                                                 | 80   | 400  | 600  | 850  | μA    |
| mode <sup>Note5</sup> |                | 2                                               |                                                  | SC (SubOSC stoppe                                | d)                                              | 220  | 1000 | 1200 | 1450 | μA    |
| SubIDLE               |                |                                                 | Crystal resonate                                 | or (fxt = 32,768kHz)                             |                                                 | 20   | 190  | -    | -    | μA    |
| mode                  | IDD6           |                                                 | RC resonator                                     | (fxt=20kHz) Note6                                |                                                 | 40   | 220  | 420  | 670  | μΑ    |
| Note3,5               |                | 2                                               |                                                  | SC (SubOSC stopped                               | 1)                                              | 25   | 180  | 380  | 630  | μΑ    |
| OTOR                  |                | POC stop                                        | 24                                               | 0kHz Internal-OSC st                             | ор                                              | 7.5  | 80   | 280  | 530  | μΑ    |
| STOP<br>mode          | IDD7           | 1ºOC Stop                                       |                                                  |                                                  | Hz Internal-OSC working                         |      | 95   | 295  | 545  | μΑ    |
| Note3,4               | 1001           | POC work                                        |                                                  | kHz Internal-OSC stop                            |                                                 | 10.5 | 85   | 285  | 535  | μΑ    |
| ,                     |                | . OO WOIK                                       | 240k                                             | Hz Internal-OSC wor                              | king                                            | 18.5 | 100  | 300  | 550  | μΑ    |

V850ES/FF3-L NEC

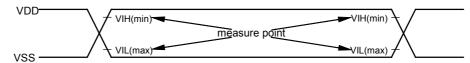
**Notes: 1.** VDD and EVDD total current. (Ports are stopped).

AVREF0 current, port buffer current (including a current flowing in the on-chip pull-up/pull-down resistor) are not included.

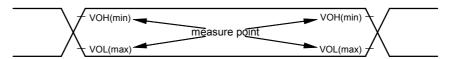
2. The code flash is in read mode.

When the device is in programming mode (Self-programming mode) the current value (MAX. value) adds by the following value:

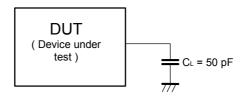
• Self-programming mode:


+ In case of PLL OFF: 7-(0.33\*fxx+0.1) [mA] + In case of PLL ON: 7-(0.18\*fxx+3.0) [mA]

- **3.** Main OSC is stopped.
- **4.** Do not use SubOSC.
- 5. POC is working. 240kHz Internal-OSC is working. 8MHz Internal-OSC is stopped.
- **6.** RC Oscillation frequency is typ.40kHz. This clock is divided by 1/2 internally.
- 7. 8MHz Internal-OSC is stopped
- **8.** The formulas are for reference only. Not all possible values for  $f_{XX}$  are tested in the outgoing device inspection.




#### 2.7 AC Characteristics


AC test Input measurement points (VDD, AVREF0, EVDD)

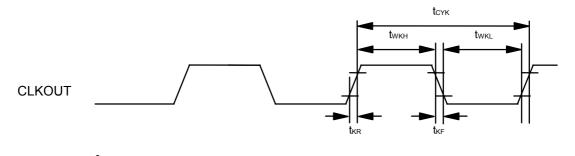


AC test output measurement points



Load conditions




Caution: If the load capacitance exceeds 50pF due to the circuit configuration, reduce the load capacitance of the device to 50pF or less by inserting a buffer or by some other means.

## 2.7.1 CLKOUT Output Timing

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, VDD = EVDD = 3.5 to 5.5V, AVREF0 = 3.5 to 5.5V, VSS = EVSS = AVSS = 0V, CL=50pF)

| Parameter          | Symbol | Conditions               | MIN.      | MAX. | Unit                |
|--------------------|--------|--------------------------|-----------|------|---------------------|
| Output cycle       | tCYK   |                          | 50ns      | 80μs |                     |
| High level width   | tWKH   | VDD = EVDD = 4.0V ~ 5.5V | tCYK/2-13 |      | no                  |
| nigii level widiii | LVVKII | VDD = EVDD = 3.5V ~ 5.5V | tCYK/2-15 |      | 115                 |
| Low level width    | tWKL   | VDD = EVDD = 4.0V ~ 5.5V | tCYK/2-13 |      | 200                 |
| Low level width    | LVVKL  | VDD = EVDD = 3.5V ~ 5.5V | tCYK/2-15 |      | - ns - ns - ns - ns |
| Rise time          | tKR    | VDD = EVDD = 4.0V ~ 5.5V |           | 13   | 200                 |
| Rise time          | unn    | VDD = EVDD = 3.5V ~ 5.5V |           | 15   | 115                 |
| Fall time          | tKF    | VDD = EVDD = 4.0V ~ 5.5V |           | 13   | no                  |
| Fall time          | IKF    | VDD = EVDD = 3.5V ~ 5.5V |           | 15   | 115                 |

#### **CLKOUT** output timing



Datasheet U19191EE1V0DS00

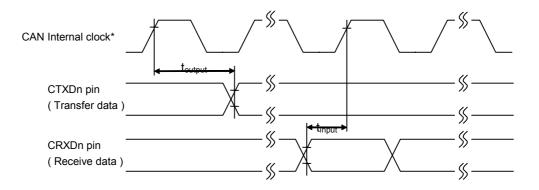


#### 2.7.7 IIC Timing

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, VDD = EVDD = 3.5 to 5.5V, AVREF0 = 3.5 to 5.5V, VSS = EVSS = AVSS = 0V, CL=0DF)

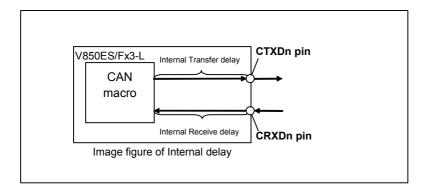
|                                                    |                            | 0       |                    | Normal mode |                      | High-speed mode      |      |  |
|----------------------------------------------------|----------------------------|---------|--------------------|-------------|----------------------|----------------------|------|--|
|                                                    | Parameter                  | Symbol  | min.               | max.        | min.                 | max.                 | Unit |  |
| SCL00 clock                                        | frequency                  | fCLK    | 0                  | 100         | 0                    | 400                  | kHz  |  |
| Bus-free time tions)                               | (between stop/start condi- | tBUF    | 4.7                |             | 1.3                  |                      | μs   |  |
| Hold time <sup>Note</sup>                          | 1                          | tHD:STA | 4.0                |             | 0.6                  |                      | μs   |  |
| SCL00 clock                                        | low-level width            | tLOW    | 4.7                |             | 1.3                  |                      | μs   |  |
| SCL00 clock                                        | high-level width           | tHIGH   | 4.0                |             | 0.6                  |                      | μs   |  |
| Setup time for                                     | r start/restart conditions | tSU:STA | 4.7                |             | 0.6                  |                      | μs   |  |
| Data hold                                          | CBUS compatible master     | HID.DAT | 5.0                |             |                      |                      | μs   |  |
| time                                               | IIC mode                   | tHD:DAT | 0 <sup>Note2</sup> |             | 0 <sup>Note2</sup>   | 0.9 <sup>Note3</sup> | μs   |  |
| Data setup tin                                     | ne                         | tSU:DAT | 250                |             | 100 <sup>Note4</sup> |                      | ns   |  |
| SDA00 and S                                        | CL00 signal rise time      | tR      |                    | 1000        | 20+0.1Cb             | 300                  | ns   |  |
| SDA00 and SCL00 signal fall time                   |                            | tF      |                    | 300         | 20+0.1Cb             | 300                  | ns   |  |
| Stop condition setup time                          |                            | tSU:STO | 4.0                |             | 0.6                  |                      | μs   |  |
| Pilse width with spike supporessed by input filter |                            | tSP     |                    |             | 0                    | 50                   | ns   |  |
| Capacitance I                                      | oad of each bus line       | Cb      |                    | 400         |                      | 400                  | pF   |  |

Notes: 1. At the start condition, the first clock pulse is generated after the hold time


- 2. The system requires a minimum of 300ns hold time Internally for the SDA signal ( at VIHmin. of SCL00 signal )
  - In order to occupy the undefined area at the falling edge of SCL00.
- **3.** If the system does not extend the SCL00 signal low hold time ( tlow ), only the maximum data hold time (tHD:DAT ) needs to be satisfied.
- **4.** The high-speed-mode IIC bus can be used In a normal-mode IIC bus system. In this case, set the high-speed-mode IIC bus so that It meets the following conditions.
  - If the system does not extend the SCL00 signal's low state hold time: SU:DAT?250ns
  - If the system extends the SCL00 signal's low state hold time: Transmit the following data bit to the SDA00 line prior to releasing the SCL00 line (tRmax.+tSU:DAT=1000+250=1250ns: Normal mode IIC bus specification).
- **5.** Cb: Total capacitance of one bus line (unit: pF)



#### 2.7.8 CAN Timing


(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, VDD = EVDD = 3.5 to 5.5V, AVREF0 = 3.5 to 5.5V, VSS = EVSS = AVSS = 0V, CL=0DF)

| Parameter           | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
|---------------------|--------|------------|------|------|------|------|
| Transfer rate       |        |            |      |      | 1    | Mbps |
| Internal delay time |        |            |      |      | 100  | ns   |



Internal delay time (tNODE)= Internal Transfer Delay(t<sub>output</sub>) + Internal Receive Delay(t<sub>input</sub>)

\*) CAN Internal clock (f<sub>CAN</sub>) :CAN baud rate clock





## 2.8 A/D Converter

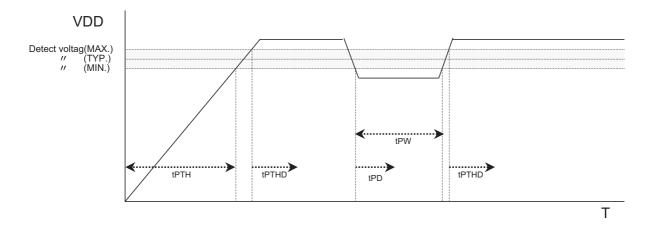
(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7 $\mu$ F, VDD = EVDD = 3.5 to 5.5 $\nu$ F, AVREF0 = 4.0 to 5.5 $\nu$ F, VSS = EVSS = AVSS = 0 $\nu$ F)

| Parameter                                           | Symbol | Conditions                | MIN. | TYP.  | (A),(A1) | AX.<br>(A2) | Unit |
|-----------------------------------------------------|--------|---------------------------|------|-------|----------|-------------|------|
| Resolution                                          |        |                           |      |       | 1        | 0           | bit  |
| Overall error <sup>Note1</sup>                      |        | 4.0V≤AVREF0<5.5V          |      | ±0.15 | ±0.3     | ±0.35       | %FSR |
| Conversion time                                     | tCONV  |                           | 3.10 |       | 1        | 6           | μs   |
| Stabilization time                                  | tSTA   | After ADA0PS bit = 0 -> 1 | 2    |       |          |             | μs   |
| Recovery time for power down mode                   | tDPU   |                           | 1    |       |          |             | μs   |
| Zero-scale error <sup>Note1</sup>                   | ZSE    |                           |      |       | ±0.3     | ±0.35       | %FSR |
| Full-scale error <sup>Note1</sup>                   | FSE    |                           |      |       | ±0.3     | ±0.35       | %FSR |
| Integral non-liniearity error Note2                 | INL    |                           |      |       | ±2.5     |             | LSB  |
| Differential non-liniearity error Note2             | DNL    |                           |      |       | ±1       | 1.5         | LSB  |
| Analog input voltage                                | VIAN   |                           | AVSS |       | AVF      | REF0        | V    |
| Analog input equivalent circuit capacitance Note3,4 | CINA   |                           |      |       | 6.       | 19          | pF   |
| Analog input equivalent circuit resistance Note3    | RINA   |                           |      |       | 2.55     |             | kΩ   |
| AVREF0 current                                      | IAREF0 | A/D operating             |      | 4     | •        | 7           | mA   |
| AVNEFO CUITEIIL                                     | IAREFU | A/D operation stop        |      | 1     | 1        | 0           | μΑ   |
| Conversion rusult when using                        |        | AVREF0 conversion         | 3FC  |       | 31       | FF          | HEX  |
| Diagnostic function                                 |        | AVSS conversion           | 000  |       | 00       | 03          | HEX  |

**Notes: 1.** Overall error excluding quantization error (±0.05%FSE). It is indicated as a ratio to the full-scale value.

- **2.** Excluding quantization error (±1/2 LSB)
- **3.** Reference value. Not tested in production.
- 4. Does not include input/output capacitance CIO




#### 2.9 POC

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7uF, VDD = EVDD, VSS = EVSS = AVSS = 0V)

| - ,                      |        | - ,                                          |       |      |      |      |
|--------------------------|--------|----------------------------------------------|-------|------|------|------|
| Parameter                | Symbol | Conditions                                   | MIN.  | TYP. | MAX. | Unit |
| Detect voltage           | VPOC0  |                                              | 3.3   | 3.5  | 3.7  | V    |
| Supply voltage rise time | tPTH   | From VDD=0V to<br>VDD=3.3V                   | 0.002 |      |      | ms   |
| Response time1 Note1     | tPTHD  | In case of power on. After VDD reaches 3.7V. |       |      | 2.0  | ms   |
| Response time2 Note2     | tPD    | In case of power off. After VDD drop 3.3V.   |       | 0.2  | 1.0  | ms   |
| VDD minimum width        | tPW    |                                              | 0.2   |      |      | ms   |

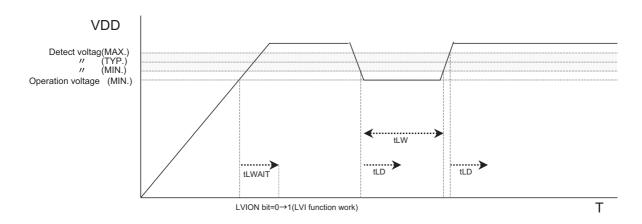
Notes: 1. From detect voltage to release reset signal

2. From detect voltage to occurrence of reset signal



**Note:** POC is available only in M2 devices. Refer to 'Ordering information' in the V850ES/Fx3-L User'sManual.



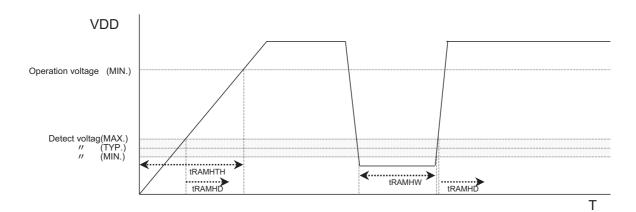

#### 2.10 LVI

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7uF, VDD = EVDD = 3.3 to 5.5V, AVREF0 = 3.3 to 5.5V, VSS = EVSS = AVSS = 0V)

| Parameter                                       | Symbol | Conditions                                                    | MIN. | TYP. | MAX. | Unit |
|-------------------------------------------------|--------|---------------------------------------------------------------|------|------|------|------|
| Detect voltage                                  | VLVI0  |                                                               | 3.8  | 4.0  | 4.2  | V    |
| Detect voltage                                  | VLVI1  |                                                               | 3.5  | 3.7  | 3.9  | V    |
| Response time Note1                             | tLD    | After VDD reaches VLVI0/1(max). After VDD drop VLVI0/1(min).  |      | 0.2  | 2.0  | ms   |
| VDD minimum width                               | tLW    |                                                               | 0.2  |      |      | ms   |
| Reference voltage stabilization wait time Note2 | tLWAIT | After VDD reaches 3.3V.<br>After LVION bit (LVIM.bit7) = 0->1 |      | 0.1  | 0.2  | ms   |

Notes: 1. From detect voltage to occurrence interrupt/reset signal

**2.** If POC functionality is available, the wait time is not needed.




#### 2.11 RAM Retention Flag

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7 $\mu$ F, VDD = EVDD = 1.9 to 5.5 $\nu$ F, VSS = EVSS = AVSS = 0 $\nu$ F

| Parameter                | Symbol  | Conditions              | MIN.  | TYP. | MAX. | Unit |
|--------------------------|---------|-------------------------|-------|------|------|------|
| Detect voltage           | VRAMH   |                         | 1.9   | 2.0  | 2.1  | V    |
| Supply voltage rise time | tRAMHTH | From VDD=0V to VDD=3.3V | 0.002 |      | 1800 | ms   |
| Response time Note1      | tRAMHD  | After VDD reaches 2.1V. |       | 0.2  | 2.0  | ms   |
| VDD minimum width        | tRAMHW  |                         | 0.2   |      |      | ms   |

Notes: 1. From detect voltage to set RAMFbit (RAMS.bit0)





#### 2.13 Flash Memory Programming Characteristics

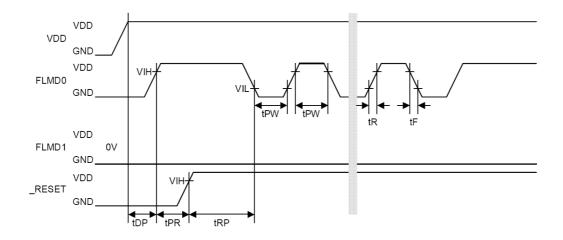
#### (a) Basic Characteristics

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7 $\mu$ F, VDD = EVDD, AVREF0 = 3.5 to 5.5 $\nu$ F, VSS = EVSS = AVSS = 0 $\nu$ F)

| Parameter                | Symbol | Conditions | MIN.     | TYP. | (A)      | MAX. | (A2) | Unit  |
|--------------------------|--------|------------|----------|------|----------|------|------|-------|
| Operation frequency      | fCPU   | 4          |          | 20   |          | MHz  |      |       |
| Supply voltage           | VDD    |            | 3.3      |      | 5.5      |      |      | V     |
| Number of rewrites       | CWRT   | Code Flash |          |      | 1000     |      |      | count |
| High level input voltage | VIH    | FLMD0      | 0.8-EVDD |      | EVDD     |      |      | V     |
| Low level input voltage  | VIL    | FLMD0      | EVSS     |      | 0.2-EVDD |      | D    | V     |
| Programming temperature  | tPRG   |            | -40      |      | +85      | +110 | +125 | °C    |
| Data retention           |        | Code Flash | 15       |      |          |      |      | year  |

**Remark:** The initial write when the product is shipped, any erase → write set of operations, or any programming operation is counted as one rewrite.

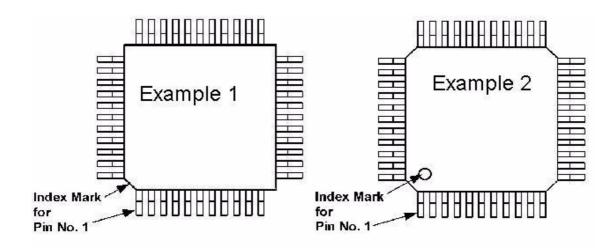
Example: P: Program(write) E: Erase

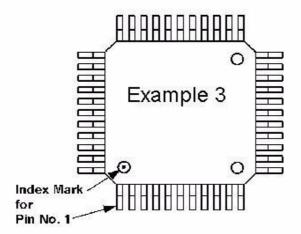

Product is shipped  $\rightarrow$  P  $\rightarrow$  E  $\rightarrow$  P  $\rightarrow$  E  $\rightarrow$  P : Rewrite count: 3 Product is shipped  $\rightarrow$  E  $\rightarrow$  P  $\rightarrow$  E  $\rightarrow$  P  $\rightarrow$  E  $\rightarrow$  P : Rewrite count: 3

## (b) Serial Writing Operation Characteristics

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade,

C=4.7uF, VDD = EVDD, AVREF0 = 3.5 to 5.5V, VSS = EVSS = AVSS = 0V, CL=50pF)


| Parameter                                           | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
|-----------------------------------------------------|--------|------------|------|------|------|------|
| FLMD0 setup time (from VDD)                         | tDP    |            | 1    |      |      | ms   |
| RESET release (from FLMD0)                          | tPR    |            | 2    |      |      | ms   |
| FLMD0 pulse input start (from raise edge of _RESET) | tRP    |            | 800  |      |      | μs   |
| FLMD0 high level width / low level width            | tPW    |            | 10   |      | 100  | μs   |
| FLMD0 raise time                                    | tR     |            |      |      | 50   | ns   |
| FLMD0 fall time                                     | tF     |            |      |      | 50   | ns   |






#### 3.2 Product Marking

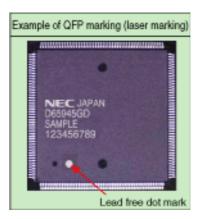
#### 3.2.1 Marking of pin 1 at a QFP (Quad Flat Package)





Example 1: The index mark for pin 1 is the beveled edge of the package

Example 2: The index mark for pin 1 is a round notch at one of the 4 edges. In this case, the shape of all edges is identical (usually beveled).


Example 3: For production reasons, two or more similar notches may be located at the top of the package. In such a case the index marker for pin 1 is a round notch with an additional mark in it.

**Note:** RoHS compliant devices have an additional dot at the top side. Do not mix it up with the marking for pin 1. For details see 3.2.2 "Identification of Lead-Free Products" on page 34.

V850ES/FF3-L

#### 3.2.2 Identification of Lead-Free Products

Lead-Free products are marked with a dot "•". The marking methods are the paint or the laser (It doesn't sink in). The shape of lead-free marks is a circle. Example:





Although NEC has taken all possible steps to ensure that the documentation supplied

# Facsimile Message

| From:                                                                                                       | to our customers is complete, bug free<br>and up-to-date, we readily accept that<br>errors may occur. Despite all the care and<br>precautions we've taken, you may<br>encounter problems in the documentation.<br>Please complete this form whenever |                 |                                                                      |                   |  |  |
|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------|-------------------|--|--|
| Name                                                                                                        |                                                                                                                                                                                                                                                      |                 |                                                                      |                   |  |  |
| Company                                                                                                     | you'd like to report errors or sugges improvements to us.                                                                                                                                                                                            |                 |                                                                      |                   |  |  |
| Tel.                                                                                                        | FAX                                                                                                                                                                                                                                                  |                 |                                                                      |                   |  |  |
| Address                                                                                                     |                                                                                                                                                                                                                                                      |                 | Th                                                                   |                   |  |  |
|                                                                                                             |                                                                                                                                                                                                                                                      |                 | Thank you for yo                                                     | our kind support. |  |  |
| North America NEC Electronics America Inc. Corporate Communications Depi Fax: 1-800-729-9288 1-408-588-6130 | NEC Electronics I                                                                                                                                                                                                                                    | •               | Asian Nations except<br>NEC Electronics Singap<br>Fax: +65-6250-3583 |                   |  |  |
| Europe NEC Electronics (Europe) GmbH Market Communication Dept. Fax: +49(0)-211-6503-1344                   | Korea  NEC Electronics I Seoul Branch Fax: 02-528-441                                                                                                                                                                                                |                 | Japan<br>NEC Semiconductor Te<br>Fax: +81- 44-435-9608               |                   |  |  |
|                                                                                                             | Taiwan NEC Electronics Teax: 02-2719-598                                                                                                                                                                                                             |                 |                                                                      |                   |  |  |
| I would like to report the follo                                                                            | owing error/make                                                                                                                                                                                                                                     | the following s | uggestion:                                                           |                   |  |  |
| Document title:                                                                                             |                                                                                                                                                                                                                                                      |                 |                                                                      |                   |  |  |
| Document number:                                                                                            |                                                                                                                                                                                                                                                      |                 | Page number: _                                                       |                   |  |  |
|                                                                                                             |                                                                                                                                                                                                                                                      |                 |                                                                      |                   |  |  |
| If possible, please fax the re                                                                              | ferenced page or                                                                                                                                                                                                                                     | drawing.        |                                                                      |                   |  |  |
| Document Rating                                                                                             | Excellent                                                                                                                                                                                                                                            | Good            | Acceptable                                                           | Poor              |  |  |
| Clarity                                                                                                     |                                                                                                                                                                                                                                                      |                 |                                                                      |                   |  |  |
| Technical Accuracy                                                                                          |                                                                                                                                                                                                                                                      |                 |                                                                      |                   |  |  |
| Organization                                                                                                |                                                                                                                                                                                                                                                      |                 |                                                                      |                   |  |  |

[MEMO]