

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	-
Core Size	-
Speed	-
Connectivity	-
Peripherals	-
Number of I/O	-
Program Memory Size	-
Program Memory Type	-
EEPROM Size	-
RAM Size	-
Voltage - Supply (Vcc/Vdd)	-
Data Converters	-
Oscillator Type	-
Operating Temperature	-
Mounting Type	· · · · · · · · · · · · · · · · · · ·
Package / Case	-
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd70f3620m2gca2-ueu-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notes for CMOS Devices

1. Precaution against ESD for semiconductors

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

2. Handling of unused input pins for CMOS

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

3. Status before initialization of MOS devices

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Table of Contents

1.	Pin Group Information	6
1.1	Device package information	
1.2	Pin Groups 1x: Pins supplied by EVDD	
1.3	Pin Groups 2x: Pins supplied by EVDD	
1.4	Pin Groups 3x: Pins supplied by BVDD.	
1.5	Pin Groups 4: Pins supplied by AVREF0.	
1.6	Pin Groups 6: Pins supplied by EVDD.	
1.7	Pin Groups 7: Pins supplied by VRO	
2.	Electrical Specifications	9
2.1	Absolute Maximum Ratings	. 9
2.2	Capacities	10
2.3	Operating condition	10
2.4	Voltage Regulator Characteristics	11
2.5	Clock Generator Circuit.	11
2.5.1	Main System Clock Oscillation Circuit Characteristics	11
2.5.2	Sub System Clock Oscillation Circuit Characteristics	
2.5.3	Internal-OSC Characteristics	
2.5.4	PLL Characteristics	13
2.6	DC Characteristics	14
2.6.1	Input/Output Level	14
2.6.2	PIN leakage current	15
2.6.3	Power supply current	16
2.6.3.1	FF3-L μPD70F3615, μPD70F3616, μPD70F3617, μPD70F3618, μPD70F3619	16
2.7	AC Characteristics	
2.7.1	CLKOUT Output Timing	21
2.7.2	RESET, Interrupt, ADTRG Timing.	22
2.7.3	Key Return Timing	
2.7.4	Timer Timing	22
2.7.5	CSI Timing	23
2.7.6	UART Timing	23
2.7.7	IIC Timing	24
2.7.8	CAN Timing	26
2.8	A/D Converter	27
2.9	POC	28
2.10	LVI	29
2.11	RAM Retention Flag.	29
2.12	Data Retention Characteristics.	
2.13	Flash Memory Programming Characteristics	
3.	Package	32
3.1	Package Dimension	
3.2	Product Marking	
3.2.1	Marking of pin 1 at a QFP (Quad Flat Package)	
3.2.2	Identification of Lead-Free Products	34
4.	Change History	35

2. Electrical Specifications

This product has to be used only under the conditions of VDD=EVDD. Operation is not ensured at the time of using this product except this condition.

The operating ambient temperature of each quality grade is as follows:

(A)-Grade: $Ta = -40 \text{ to } +85^{\circ}\text{C}$ (A1)-Grade: $Ta = -40 \text{ to } +110^{\circ}\text{C}$ (A2)-Grade: $Ta = -40 \text{ to } +125^{\circ}\text{C}$

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings (Ta=25°C)

	· · /					
Parameter	Symbol	Conditions		Rating	Unit	
	VDD	VDD=EV			-0.5 to +6.5	
	EVDD	VDD=EVDD			-0.5 to +6.5	
Supply voltage	AVREF0				-0.5 to +6.5	v
Supply voltage	VSS	VSS=EVSS			-0.5 to +0.5	v
	EVSS	VSS=EVSS			-0.5 to +0.5	
	AVSS	VSS=EVSS	=AVSS		-0.5 to +0.5	
Input voltage	VI1	Pin Group 1	x, 2x, 6		-0.5 to EVDD+0.5 Note1	V
	VI3	Pin Grou	ıp 7		-0.5 to VRO+0.5 Note1	v
Analog input voltage	VIAN	Pin Grou	ıp 4		-0.5 to AVREF0+0.5 Note1	V
				1 pin	-4	
		Din Crown 1x 2x		(A)	-50	
High level		Pin Group 1x, 2x	Total	(A1)	-20	
				(A2)	-20	
output current	IOH			1 pin	-4	mA
		Pin Group 4	Total	(A) ^{Note2}	-20	
				(A1) ^{Note2}	-10	
				(A2) ^{Note3}	-10	
				1 pin	4	
		Din Crown 1x 2x		(A)	50	
		Pin Group 1x, 2x	Total	(A1)	20	
Low level					20	
output current	IOL			1 pin	4	mA
output outront		Dia Oraura 4		(A) ^{Note2}	20	
		Pin Group 4	Total	(A1) ^{Note2}	10	
				(A2) ^{Note3}	10	
		Normal operating mo		(A)	-40 to +85	
			Flash programming mode			
Operating ambient	Та	Normal operating mo		(A1)	-40 to +110	°C
temperature		Flash programming mo		(,)	10 10 1110	Ŭ
		Normal operating mo		(A2) -40 to +125		
		Flash programming mo	ode	(/)_/		
Storage temperature	Tstg				-40 to +125	°C

Remarks: 1. The characteristics of the dual-function pins are the same as those of the port pins unless otherwise specified

Notes: 1. Be sure not to exceed the absolute maximum ratings (Max. value) of each supply voltage.

- **2.** Excluding ADC IAREF0 current.
- 3. Including ADC IAREF0 current.

2.2 Capacities

(Ta - 25°C		N.
(la = 25 C	C, VDD = EVDD = AVREF0 = VSS = EVSS = AVSS = 0	¥)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input/output capacitance	CIO	f=1MHz, Not measured pins is 0V.			10	рF

2.3 Operating condition

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7uF, VDD = EVDD = 3.3 to 5.5V, AVREF0 = 3.3 to 5.5V, VSS = EVSS = AVSS = 0V)

Internal System clock frequency (f _{VBCLK})	Supply voltage	Operating Condition
	3.5V≤VDD≤5.5V ^{Note1}	Operation of functions is enabled
4.0≤f _{xx} ≤20MHz Note1	3.3V≤VDD<3.5V	The following functions are operable: CPU Flash (including programming RAM IO Buffer Port WT WDT INT CLM POC LVI
	3.3V≤AVRF0≤5.5V	 A/D Converter stop ADC for AVREF0 < 4.0V (ADA0CE bit =0) Refer to chapter '2.8 A/D Converter' for details.
32kHz≤f _{XT} ≤35kHz (Crystal)	3.3V≤VDD<5.5V	
12.5kHz⊴f _{XT} ≤27.5kHz ^{Note2} (RC)	Note1	-
f _{RL} (240kHz Internal-OSC)	3.3V≤VDD<5.5V ^{Note1}	-

Notes: 1. VDD = EVDD

2. RC Oscillation frequency is min. 25kHz max. 55kHz. This clock is divided by 2 internally.

2.4 Voltage Regulator Characteristics

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7 μ F. VDD = EVDD. VSS = EVSS = AVSS = 0V))

-4.741, $700 - 2700$, $700 - 2700 - 7700$							
Parameter	Symbol	Conditions		TYP.	MAX.	Unit	
Input voltage	VDD		3.5		5.5	V	
Input voltage	VDD	Limited function see '2.3 Operating condition'	3.3			V	
Output voltage	VRO			2.5		V	
Output voltage	t _{REG} Note	After VDD reaches voltage range min. 3.3V			1	ms	
stabilization time	'REG	To connect C=4.7uF on REGC terminal				1113	

Note: In case of non-POC device, be sure to start VDD in the state of RESET=VSS=0V. For POC devices there is no need to control external RESET terminal. For decives with POC function the internal RESET signal will automatically controlled until VRO is stable.

2.5 Clock Generator Circuit

2.5.1 Main System Clock Oscillation Circuit Characteristics

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade,
C=4.7uF, VDD = EVDD = 3.3 to 5.5V, AVREF0 = 3.3 to 5.5V, VSS = EVSS = AVSS = 0V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal /		Oscillator fre- quency (fx) ^{Note1}		4		16	MHz
Ceramic resona- tor	Refer to figure below	Oscillation stabili-	After STOP mode	54 ^{Note4}	Note3		μs
101		zation time Note2	After IDLE2 mode	54 ^{Note4}	Note3		μs

Notes: 1. Indicates only oscillation circuit characteristics. Refer to '2.7 AC Characteristics' for CPU operation clock.

- 2. Time required to stabilize oscillation after VDD reaches oscillator voltage range MIN. 3.3V
- 3. Depends on the setting of the oscillation stabilization time select register (OSTS)
- **4.** Minimum time required to stabilize flash. Time has to be secured by setting the oscillation stabilization time select register (OSTS)

2.5.2 Sub System Clock Oscillation Circuit Characteristics

(1a = -40 to +o	$[1a = -40 \ 10 + 85 \ C, C = 4.7 \ ur, vDD = EvDD = 3.3 \ 10 5.5 \ v, AVREF0 = 3.3 \ 10 5.5 \ v, v3S = EVSS = AVSS = 0 \ v)$									
Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit			
Crystal	Crystal Defente Finner 4	Oscillator fre- quency (fxt) ^{Note1}		32	32.768	35	kHz			
resonator	Refer to Figure 1	Oscillation stabiliza- tion time Note2				10	s			

(Ta = -40 to +85°C, C=4.7uF, VDD = EVDD = 3.3 to 5.5V, AVREF0 = 3.3 to 5.5V, VSS = EVSS = AVSS = 0V)

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7uF, VDD = EVDD = 3.3 to 5.5V, AVREF0 = 3.3 to 5.5V, VSS = EVSS = AVSS = 0V)

0 4.1 al , 100	-4.7 di , $VDD = 2VDD = 0.0$ to 0.00 , Attel $0 = 0.0$ to 0.00 , $VOO = 2VOO = AVOO = 00$							
Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit	
RC	Refer to Figure 2	Oscillator frequency ^{Note1,4}	R=390KΩ ±5% ^{Note3} , C=47pF±10% ^{Note3}	25	40	55	kHz	
resonator		Oscillation stabiliza- tion time Note2				100	μs	

Notes: 1. Indicates only oscillation circuit characteristics. Refer to "AC Characteristic" for cpu operation clock.

- 2. Time required to stabilize oscillation after VDD reaches oscillator voltage range min. 3.3V
- 3. In order to avoid the influence of wiring capacity, shorten wiring as much as possible.
- 4. RC Oscillation frequency is typ. 40kHz. This clock is divided (1/2) internally. In case of RC Oscillator, internal system clock frequency (fxt) is min. 12.5kHz, typ. 20kHz, max. 27.5kHz.

2.5.3 Internal-OSC Characteristics

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7uF, VDD = EVDD = 3.3 to 5.5V, AVREF0 = 3.3 to 5.5V, VSS = EVSS = AVSS = 0V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Output	f _{RL}	240kHz Internal-OSC	204	240	276	kHz
frequency	f _{RH}	8MHz Internal-OSC	7.2	8.0	8.8	MHz
Oscillation		240kHz Internal-OSC		10	36	μs
stabilization time		8MHz Internal-OSC	51	92	256	μs

2.5.4 PLL Characteristics

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade,

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input froguopov	fx		4		16	MHz
Input frequency	f _{PLLI}	Note1	3		6	MHz
Output frequency	fxx		10		20	MHz
Lock time	tPLL	After VDD reaches voltage range min. 3.3V			800	μs
Output period jitter Note2	tpj	Peak to peak			2.0	ns

Notes: 1. The input of the PLL (f_{PLLI}) can be set to f_X , $f_X/2$, or $f_X/4$. The divider is set through an option byte in the code flash memory.2. Not tested in production.

2.6.2 PIN leakage current

(C=4.7uF, VDD = EVDD = 3.3 to 5.5V, AVREF0 = 3.3 to 5.5V, VSS = EVSS = AVSS = 0V)

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.			Unit
Faiametei	Symbol	0	nullions	IVIIIN.	ITF.	(A)	(A1)	(A2)	Onit
High level input leak-	ILIH1	VI=VDD	Analog pins			0.2	0.4	0.5	
age current			Other pins Note1			0.5	0.8	1.0	
Low level input	ILIL1	VI=0V	Analog pins			-0.2	-0.4	-0.5	
leakage current		VI=0V	Other pins Note1			-0.5	-0.8	-1.0	
High level output	ILOH1	VO=VDD	Analog pins			0.2	0.4	0.5	μA
leakage current	ILUHI	VO=VDD	Other pins			0.5	0.8	1.0	
Low level output	ILOL1	VO=0V	Analog pins			-0.2	-0.4	-0.5	
leakage current	ILULI	v0-0v	Other pins			-0.5	-0.8	-1.0	

Notes: 1. The input leakage current of FLMD0 is as follows:

High level input leakage current :

- (A)-Grade 2.0µA
- (A1)-Grade 4.0µA
- (A2)-Grade $5.0 \mu A$

Low level input leakage current:

- (A)-Grade -2.0µA
- (A1)-Grade -4.0µA
- (A2)-Grade 5.0µA

⇒ 2.6.3 Power supply current

2.6.3.1 FF3-L µPD70F3615, µPD70F3616, µPD70F3617, µPD70F3618, µPD70F3619

(a) Absolute values

 $(Ta = -40 \text{ to } +85^{\circ}\text{C} \text{ for (A)-Grade}, Ta = -40 \text{ to } +110^{\circ}\text{C} \text{ for (A1)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Gra$

C=4.7uF, VDD = EVDD = 3.3 to 5.5V, AVREF0 = 3.3 to 5.5V, VSS = EVSS = AVSS = 0V^{Note1})

Mode	Symbol		Co	,	TYP.		MAX.		Unit	
woue	Symbol			ndition		LTF.	(A)	(A1)	(A2)	Unit
				PLL: ON	f _{xx} =10MHz f _x =5MHz	16	24			mA
		Doriphoral: f	16MHz≤f _{xx} ≤20MHz	f _{xx} =20MHz f _x =10MHz	25		35		mA	
	All peripherals running	Peripheral: f _{xx} PRSI option: 0	PLL: OFF 4MHz≤f _{xx} ≤16MHz	f _{xx} =8MHz 8MHz Internal- OSC ^{Note3}	12		19		mA	
					f _{xx} =16MHz f _x =16MHz	20		28		mA
Operating		IDD1	Peripheral: f _{xx} /2 PRSI option: 1	PLL: ON 10MHz≤f _{xx} ≤20MHz	f _{xx} =20MHz f _x =10MHz	22		32		mA
mode Note2		All peripherals stopped		PLL: ON 16MHz≤f _{xx} ≤20MHz	f _{xx} =10MHz f _x =5MHz	13				mA
					f _{xx} =20MHz f _x =10MHz	21				mA
			stopped	PLL: OFF 4MHz≤f _{xx} ≤16MHz	f _{xx} =8MHz 8MHz Internal- OSC ^{Note3}	11		-		mA
				f _{xx} =16MHz f _x =16MHz	18				mA	
		Peripheral: f _{xx} /2 PRSI option: 1	PLL: ON 10MHz≤f _{xx} ≤20MHz	f _{xx} =20MHz f _x =10MHz	21			mA		

Mode	Symbol			ondition		TYP.		MAX.		Unit
wode	Symbol			nation		TTP.	(A)	(A1)	(A2)	Unit
				PLL: ON	f _{xx} =10MHz f _x =5MHz	10	15		mA	
	All peripher running		Dorinhoroly f	16MHz≤f _{xx} ≤20MHz	f _{xx} =20MHz f _x =10MHz	17		25		mA
		All peripherals running	Peripheral: f _{xx} PRSI option: 0	PLL: OFF	f _{xx} =8MHz 8MHz Internal- OSC ^{Note3}	7		11		mA
			4MHz≤f _{xx} ≤16MHz –	f _{xx} =16MHz f _x =16MHz	12		18		mA	
HALT	נחחו		Peripheral: f _{xx} /2 PRSI option: 1	PLL: ON 10MHz≤f _{xx} ≤20MHz	f _{xx} =20MHz f _x =10MHz	14		21		mA
mode	IDD2	All peripherals stopped	Peripheral: f _{xx} PRSI option: 0	PLL: ON 16MHz≤f _{xx} ≤20MHz	f _{xx} =10MHz f _x =5MHz	7				mA
					f _{xx} =20MHz f _x =10MHz	12				mA
				PLL: OFF	f _{xx} =8MHz 8MHz Internal- OSC ^{Note3}	5		-		mA
				4MHz≤f _{xx} ≤16MHz	f _{xx} =16MHz f _x =16MHz	9				mA
		Peripheral: f _{xx} /2 PRSI option: 1	PLL: ON 10MHz≤f _{xx} ≤20MHz	f _{xx} =20MHz f _x =10MHz	11				mA	

(b) Calculation formulas

$(Ta = -40 \text{ to } +85^{\circ}C \text{ for } (A)-Grade, Ta = -40 \text{ to } +110^{\circ}C \text{ for } (A1)-Grade, Ta = -40 \text{ to } +125^{\circ}C \text{ for } (A2)-Grade, C=4.7uF, VDD = EVDD = 3.3 \text{ to } 5.5V, AVREF0 = 3.3 \text{ to } 5.5V, VSS = EVSS = AVSS = 0V^{Note1})$

Mode	Symbol		Condition		TYP. Note8		MAX. Note8		Unit
Mode	Symbol		Condition		TTP. Noted	(A)	(A1)	(A2)	Onic
			Peripheral: f _{xx}	PLL: ON 16MHz≤f _{xx} ≤20MHz	0.93·f _{xx} +6.3		1.12·f _{xx} +12.6		mA
		All peripherals running	PRSI option: 0	PLL: OFF 4MHz≤f _{xx} ≤16MHz	0.93·f _{xx} +4.7		1.12·f _{xx} +9.7		mA
Operating			Peripheral: f _{xx} /2 PRSI option: 1	PLL: ON 10MHz≤f _{xx} ≤20MHz	0.85·f _{xx} +5.2		1.03·f _{xx} +11.3		mA
mode Note2	IDD1		Peripheral: ff _{xx-}	PLL: ON 16MHz≤f _{xx} ≤20MHz	0.78·f _{xx} +5.4				mA
	All peripherals stopped	PRSI option: 0	PLL: OFF 4MHz≤f _{xx} ≤16MHz	0.80·f _{xx} +4.9		-		mA	
			Peripheral: f _{xx} /2 PRSI option: 1	PLL: ON 10MHz≤f _{xx} ≤20MHz	0.76·f _{xx} +5.4			mA	
			Peripheral: ff _{xx-}	PLL: ON 16MHz≤f _{xx} ≤20MHz	0.70·f _{xx} +3.0	0.97*f _{xx} +5.2			mA
		All peripherals running	PRSI option: 0	PLL: OFF 4MHz≤f _{xx} ≤16MHz	0.65·f _{xx} +1.9		0.90*f _{xx} +3.6		mA
HALT	IDD2		Peripheral: f _{xx} /2 PRSI option: 1	PLL: ON 10MHz≤f _{xx} ≤20MHz	0.54·f _{xx} +2.8		0.63*f _{xx} +8.60		mA
mode	IDD2		Peripheral: f _{xx}	PLL: ON 16MHz≤f _{xx} ≤20MHz	0.46·f _{xx} +2.8				mA
		All peripherals stopped	PRSI option: 0	PLL: OFF 4MHz≤f _{xx} ≤16MHz	0.44·f _{xx} +1.6		-		mA
			Peripheral: f _{xx} /2 PRSI option: 1	PLL: ON 10MHz≤f _{xx} ≤20MHz	0.46·f _{xx} +1.8				mA
IDLE1 mode	IDD3		A, UARTD) run- ing	PLL: OFF 4MHz≤f _{xx} ≤16MHz	0.092·f _{xx} +0.90	0.128·f _{xx} + 1.52	0.128·f _{xx} + 1.82	0.128·f _{xx} + 2.12	mA
		All periphe	rals stopped		0.035·f _{xx} +1.01	-			mA
IDLE2 mode	IDD4		PLL: OFF 4MHz ≤f _{xx} ≤16MHz	Note7	0.037·f _{xx} +0.21	0.049·f _{xx} + 0.43	0.049·f _{xx} + 0.63	0.049·f _{xx} + 0.88	mA

- **Notes: 1.** VDD and EVDD total current. (Ports are stopped). AVREF0 current, port buffer current (including a current flowing in the on-chip pull-up/pulldown resistor) are not included.
 - The code flash is in read mode. When the device is in programming mode (Self-programming mode) the current value (MAX. value) adds by the following value:
 - Self-programming mode:
 + In case of PLL OFF: 7-(0.33*fxx+0.1) [mA]
 + In case of PLL ON: 7-(0.18*fxx+3.0) [mA]
 - **3.** Main OSC is stopped.
 - 4. Do not use SubOSC.
 - 5. POC is working. 240kHz Internal-OSC is working. 8MHz Internal-OSC is stopped.
 - 6. RC Oscillation frequency is typ.40kHz. This clock is divided by 1/2 internally.
 - 7. 8MHz Internal-OSC is stopped
 - **8.** The formulas are for reference only. Not all possible values for f_{xx} are tested in the outgoing device inspection.

2.7.2 RESET, Interrupt, ADTRG Timing

 $(Ta = -40 \text{ to } +85^{\circ}\text{C} \text{ for (A})-\text{Grade}, Ta = -40 \text{ to } +110^{\circ}\text{C} \text{ for (A1)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, VDD = EVDD = 3.3 \text{ to } 5.5\text{V}, AVREF0 = 3.3 \text{ to } 5.5\text{V}, VSS = EVSS = AVSS = 0\text{V}, CL=50\text{pF})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit				
_RESET input low level width	tWRSL	analog filter	250			ns				
NMI input high level width	tWNIH	analog filter	250			ns				
NMI input low level width	tWNIL	analog filter	250			ns				
INTPn ^{Note1} input high level width	tWITH	analog filter ,n=0-8	250			ns				
		digital filter ,n=3	Note2			ns				
INTPn Note1 input low level width	tWITL	analog filter ,n=0-8	250			ns				
IN PH New Input low level width		digital filter ,n=3	Note2			ns				

Notes: 1. ADTRG is same spec (P03/INTP0/ADTRG). DRST is same spec (P05/INTP2/DRST)
2. 2Tsamp+20 or 3Tsamp+20 ("Tsamp" is Noise reject sampling clock (NF macro))

- **Remarks: 1.** The above minimum values show pulse widths that are surely detected as an effective edge. An effective may also be detected even if the input pulse width is less than the above minimum specification.
 - 2. RESET, NMI, INTPn, ADTRG and DRST have analog noise filter. The typical filter time is typ=60ns.

2.7.3 Key Return Timing

 $(Ta = -40 \text{ to } +85^{\circ}\text{C} \text{ for (A})-\text{Grade}, Ta = -40 \text{ to } +110^{\circ}\text{C} \text{ for (A1)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, VDD = EVDD = 3.3 \text{ to } 5.5V, AVREF0 = 3.3 \text{ to } 5.5V, VSS = EVSS = AVSS = 0V, CL=50\text{pF})$

VDD = LVDD = 0.0 (0 0.0 V, AVI(L) 0 =	VDD = 2 VDD = 5.5 to 5.5 4 , AVNEL V = 5.5 to 5.5 4 , V OO = 2 V OO = AVOO = V4 , O E=50 p ()											
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit						
KRn input high level width	tWKRH	analog filter ,n=0-7	250			ns						
KRn input low level width	tWKRL	analog filter ,n=0-7	250			ns						

Remarks: 1. The above minimum values show pulse widths that are surely detected as an effective edge. An effective may also be detected even if the input pulse width is less than the above minimum specification.

2. KRn inputs have analog noise filter. The typical filter time is typ=60ns.

2.7.4 Timer Timing

 $(Ta = -40 \text{ to } +85^{\circ}\text{C} \text{ for (A})-\text{Grade}, Ta = -40 \text{ to } +110^{\circ}\text{C} \text{ for (A1)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, VDD = EVDD = 3.5 \text{ to } 5.5\text{V}, AVREF0 = 3.5 \text{ to } 5.5\text{V}, VSS = EVSS = AVSS = 0\text{V}, CL=50\text{pF})$

VDD = EVDD = 3.5 10	VDD = EVDD = 5.5 (0.5.50, AVREPU = 5.5 (0.5.50, V35 = EV35 = AV35 = 00, CE=50pF)										
Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit				
TI input high level width	tTIH	TIAA00-01,10-11,20-21,30-31,40-41 Note1		250			ns				
TI input low level width	tTIL	TIAA00-01,10-11,20-21,30-31,40-41 Note1		250			ns				
TO output cycle	tTCYK	TIAA00-01,10-11,20-21,30-31, 4	40-41 Note1			10	MHz				

Notes: 1. Except for the external trigger and external event function.

- **Remarks: 1.** The above minimum values show pulse widths that are surely detected as an effective edge. An effective may also be detected even if the input pulse width is less than the above minimum specification.
 - 2. TIAAn inputs have analog noise filter. The typical filter time is typ=60ns.

2.7.5 CSI Timing

(a) Master mode

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, VDD = EVDD = 3.5 to 5.5V, AVREF0 = 3.5 to 5.5V, VSS = EVSS = AVSS = 0V, CL=50pF)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCKBn cycle time	tKCY1		125		ns
SCKBn high level width	tKH1		tKCY1/2-15		ns
SCKBn low level width	tKL1		tKCY1/2-15		ns
SIBn setup time (to SCKBn)	tSIK1		30		ns
SIBn hold time (from SCKBn)	tKSI1		25		ns
Delay time from SCKBn to SOBn	tKSO1			25	ns

(b) Slave mode

 $(Ta = -40 \text{ to } +85^{\circ}\text{C} \text{ for (A})-\text{Grade}, Ta = -40 \text{ to } +110^{\circ}\text{C} \text{ for (A1)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, VDD = EVDD = 3.5 \text{ to } 5.5V, AVREF0 = 3.5 \text{ to } 5.5V, VSS = EVSS = AVSS = 0V, CL=50\text{pF})$

vDD = EvDD = 3.5 (0.5.0, AVREPU = 5.5 (0.5.0, V35 = EV35 = AV35 = 0.0, CE=50pP)										
Parameter	Symbol	Conditions	MIN.	MAX.	Unit					
SCKBn cycle time	tKCY1		200		ns					
SCKBn high level width	tKH1		90		ns					
SCKBn low level width	tKL1		90		ns					
SIBn setup time (to SCKBn)	tSIK1		50		ns					
SIBn hold time (from SCKBn)	tKSI1		50		ns					
Delay time from SCKBn to SOBn	tKSO1			50	ns					

2.7.6 UART Timing

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, VDD = EVDD = 3.5 to 5.5V, AVREF0 = 3.5 to 5.5V, VSS = EVSS = AVSS = 0V, CL=50pF)

,		· · · · · · · · · · · · · · · · · · ·	,,			
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					1.5	Mbps
ASCK0 frequency					10	MHz

2.10 LVI

$(Ta = -40 \text{ to } +85^{\circ}\text{C} \text{ for (A})-\text{Grade}, Ta = -40 \text{ to } +110^{\circ}\text{C} \text{ for (A1)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C} \text{ for (A2)-Grade}, C=4.745^{\circ}\text{C} \text{ for (A2)-Grade}, C=4.755^{\circ}\text{C} \text{ for (A2)-Grad}, C=4.755^{\circ}\text{C} \text{ for (A2)-Grade}, C=4.755^{\circ}\text{C} \text{ fo$

C=4.7uF, $VDD = EVDD = 3.3 to 5.5V$, $AVREF0 = 3.3 to 5.5V$, $VSS = EVSS = AVSS = 0V$)								
Parameter	Symbol Conditions I			TYP.	MAX.	Unit		
Detect voltage	VLVI0		3.8	4.0	4.2	V		
Delect vollage	VLVI1		3.5	3.7	3.9	V		
Response time Note1	tLD	After VDD reaches VLVI0/1(max). After VDD drop VLVI0/1(min).		0.2	2.0	ms		
VDD minimum width	tLW		0.2			ms		
Reference voltage stabilization wait time Note2	tLWAIT	After VDD reaches 3.3V. After LVION bit (LVIM.bit7) = 0->1		0.1	0.2	ms		

Notes: 1. From detect voltage to occurrence interrupt/reset signal

2. If POC functionality is available, the wait time is not needed.

2.11 RAM Retention Flag

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7uF, VDD = EVDD = 1.9 to 5.5V, VSS = EVSS = AVSS = 0V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detect voltage	VRAMH		1.9	2.0	2.1	V
Supply voltage rise time	tRAMHTH	From VDD=0V to VDD=3.3V	0.002		1800	ms
Response time Note1	tRAMHD	After VDD reaches 2.1V.		0.2	2.0	ms
VDD minimum width	tRAMHW		0.2			ms

Notes: 1.	From detect voltage to set RAMFbit (RAMS.bit0)
-----------	--

2.12 Data Retention Characteristics

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7uF, VDD = EVDD = 1.9 to 5.5V, VSS = EVSS = AVSS = 0V) (

	,					
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention power supply voltage	VDDDR	STOP mode (All function is stopped)	1.9		5.5	V
Data retention power supply current	IDDDR	VDDDR=2.0V(All function is stopped)		6.5	70	μA
Supply voltage rise time	tRVD		1			μs
Supply voltage fall time	tFVD		1			μs
Supply voltage hold time	tHVD	After STOP mode	0			ms
STOP release signal input time	tDREL	After VDD reaches operat- ing voltage range MIN. 3.3V	0			ms
Data retention high-level input voltage	VIHDR	All input port	0.9-VDDDR		VDDDR	V
Data retention low-level input voltage	VILDR	All input port	0		0.1.VDDDR	V

Remark: When STOP mode is entered/released operation voltage range must be controlled.

2.13 Flash Memory Programming Characteristics

(a) Basic Characteristics

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7uF, VDD = EVDD, AVREF0 = 3.5 to 5.5V, VSS = EVSS = AVSS = 0V)

Parameter	Symbol	Conditions	MIN. TYP.		(A)	Unit		
Operation frequency	fCPU		A		(A) (A1) (A2) 20			MHz
Supply voltage	VDD		3.3			5.5		V
Number of rewrites	CWRT	Code Flash 1000			count			
High level input voltage	VIH	FLMD0 0.8-EVDD EVDD			V			
Low level input voltage	VIL	FLMD0 EVSS 0.2-EVDD		D	V			
Programming temperature	tPRG	-40 +85		+85	+110	+125	°C	
Data retention		Code Flash	15					year

Remark: The initial write when the product is shipped, any erase \rightarrow write set of operations, or any programming operation is counted as one rewrite.

Example: P: Program(write) E: Erase

Product is shipped $\rightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P$: Rewrite count: 3 Product is chipped $\rightarrow E \rightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P$: Rewrite count: 3

Product is shipped \rightarrow E \rightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P : Rewrite count: 3

(b) Serial Writing Operation Characteristics

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7uF, VDD = EVDD, AVREF0 = 3.5 to 5.5V, VSS = EVSS = AVSS = 0V, CL=50pF)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
FLMD0 setup time (from VDD)	tDP		1			ms	
RESET release (from FLMD0)	tPR		2			ms	
FLMD0 pulse input start (from raise edge of _RESET)	tRP		800			μs	
FLMD0 high level width / low level width	tPW		10		100	μs	
FLMD0 raise time	tR				50	ns	
FLMD0 fall time	tF				50	ns	

3.2 Product Marking

3.2.1 Marking of pin 1 at a QFP (Quad Flat Package)

Example 1: The index mark for pin 1 is the beveled edge of the package

- Example 2: The index mark for pin 1 is a round notch at one of the 4 edges. In this case, the shape of all edges is identical (usually beveled).
- Example 3: For production reasons, two or more similar notches may be located at the top of the package. In such a case the index marker for pin 1 is a round notch with an additional mark in it.
- **Note:** RoHS compliant devices have an additional dot at the top side. Do not mix it up with the marking for pin 1. For details see 3.2.2 "Identification of Lead-Free Products" on page 34.

4. Change History

Version	Chapter	Comment
V1.0		Initial release

[MEMO]