

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	-
Core Size	-
Speed	-
Connectivity	-
Peripherals	-
Number of I/O	-
Program Memory Size	-
Program Memory Type	-
EEPROM Size	-
RAM Size	-
Voltage - Supply (Vcc/Vdd)	-
Data Converters	-
Oscillator Type	-
Operating Temperature	-
Mounting Type	-
Package / Case	-
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd70f3622m2gca-ueu-ax

V850ES/FF3-L NEC

Notes for CMOS Devices

1. Precaution against ESD for semiconductors

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

2. Handling of unused input pins for CMOS

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

3. Status before initialization of MOS devices

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Legal Notes

- The information in this document is current as of January 2007. The information is subject to change
 without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or
 data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products
 and/or types are available in every country. Please check with an NEC sales representative for
 availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior
 written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that
 may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other
 intellectual property rights of third parties by or arising from the use of NEC Electronics products
 listed in this document or any other liability arising from the use of such NEC Electronics products.
 No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual
 property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics
 products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated
 entirely. To minimize risks of damage to property or injury (including death) to persons arising from
 defects in NEC Electronics products, customers must incorporate sufficient safety measures in their
 design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

"Standard": Computers, office equipment, communications equipment, test and

measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control

systems, anti-disaster systems, anti-crime systems, safety equipment and

medical equipment (not specifically designed for life support).

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control

systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact NEC Electronics sales representative in advance to determine NEC Electronics's willingness to support a given application.

- **Notes: 1.** "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
 - 2. "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).
 - **3.** SuperFlash[®] is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan. This product uses SuperFlash[®] technology licensed from Silicon Storage Technology, Inc.

V850ES/FF3-L NEC

1. Pin Group Information

1.1 Device package information

The V850ES/Fx3-L device series comprises several members. An overview with the pin and package information is given in the following table:

Series Member	# Pins	Device package information
μPD70F3610		
μPD70F3611		
μPD70F3612	64	FE3-L
μPD70F3613		
μPD70F3614		
μPD70F3615		
μPD70F3616		
μPD70F3617	80	FF3-L
μPD70F3618		
μPD70F3619		
μPD70F3620		
μPD70F3621	100	FG3-L
μPD70F3622		

This document describes the specification for the V850ES/FF3-L.

1.2 Pin Groups 1x: Pins supplied by EVDD

1B: (SHMT1)

- P04, P30-31, P34; P40, P91, P913-915 (FE3-L)
- P04, P30-31, P34; P38-39, P40, P91, P913-915 (FF3-L)
- P04, P30-31, P34; P36-39, P40, P91, P911, P913-915 (FG3-L)

1D: (SHMT3)

- P00-03, P05-P06, P32-33, P35, P41-42, P50-55, P90, P96-99 (FE3-L)
- P00-03, P05-P06, P32-33, P35, P41-42, P50-55, P90, P96-99 (FF3-L)
- P00-03, P05-P06, P10-11, P32-33, P35, P41-42, P50-55, P90, P92-910, P912 (FG3-L)

1.3 Pin Groups 2x: Pins supplied by EVDD

2A: (CMOS)

- PCM0-1 (FE3-L)
- PCM0-3, PCS0-1, PCT0-1, PCT4, PCT6 (FF3-L)

2D: (SHMT3)

- PDL0-7 (FE3-L)
- PDL0-11 (FF3-L)

V850ES/FF3-L

2. Electrical Specifications

This product has to be used only under the conditions of VDD=EVDD. Operation is not ensured at the time of using this product except this condition.

The operating ambient temperature of each quality grade is as follows:

(A)-Grade: $Ta = -40 \text{ to } +85^{\circ}\text{C}$ (A1)-Grade: $Ta = -40 \text{ to } +110^{\circ}\text{C}$ (A2)-Grade: $Ta = -40 \text{ to } +125^{\circ}\text{C}$

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings (Ta=25°C)

	, , , , ,	,					
Parameter	Symbol	Condition	ns		Rating	Unit	
	VDD	VDD=EV	DD,		-0.5 to +6.5		
	EVDD	VDD=EV	'DD		-0.5 to +6.5		
Supply voltage	AVREF0				-0.5 to +6.5	V	
Supply Vollage	VSS	VSS=EVSS	=AVSS		-0.5 to +0.5	v	
	EVSS	VSS=EVSS	=AVSS		-0.5 to +0.5		
	AVSS	VSS=EVSS	=AVSS		-0.5 to +0.5		
Input voltage	VI1	Pin Group 1	x, 2x, 6		-0.5 to EVDD+0.5 Note1	V	
	VI3	Pin Grou	p 7		-0.5 to VRO+0.5 Note1	V	
Analog input voltage	VIAN	Pin Grou	p 4		-0.5 to AVREF0+0.5 Note1	٧	
				1 pin	-4		
		Din Croup 1v 2v		(A)	-50		
		Pin Group 1x, 2x	Total	(A1)	-20		
High level				(A2)	-20		
output current	IOH			1 pin	-4	mA	
		Pin Group 4		(A) ^{Note2}	-20		
			Total	(A1) ^{Note2}	-10		
				(A2) ^{Note3}	-10		
				1 pin	4		
		Pin Group 1x, 2x		(A)	50		
		Fill Gloup 1x, 2x	Total	(A1)	20		
Low level				(A2)	20		
output current	IOL			1 pin	4	mA	
		Dia Onessa 4		(A) ^{Note2}	20		
		Pin Group 4	Total	(A1) ^{Note2}	10		
				(A2) ^{Note3}	10		
		Normal operating mod		(A)	-40 to +85		
		Flash programming mo		(A)	-40 (0 100		
Operating ambient	Та	Normal operating mod	(A1)	-40 to +110	°C		
temperature	l la	Flash programming mo		(A1)	-40 10 1110		
		Normal operating mod		(A2)	-40 to +125		
		Flash programming mode (A2					
Storage temperature	Tstg				-40 to +125	°C	

Remarks: 1. The characteristics of the dual-function pins are the same as those of the port pins unless otherwise specified

Notes: 1. Be sure not to exceed the absolute maximum ratings (Max. value) of each supply voltage.

- **2.** Excluding ADC IAREF0 current.
- 3. Including ADC IAREF0 current.

2.2 Capacities

(Ta = 25°C, VDD = EVDD = AVREF0 = VSS = EVSS = AVSS = 0V)

Parameter	Symbol	Conditions		TYP.	MAX.	Unit
Input/output capacitance	CIO	f=1MHz, Not measured pins is 0V.			10	pF

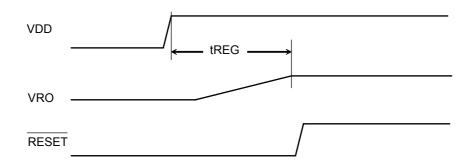
2.3 Operating condition

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7uF, VDD = EVDD = 3.3 to 5.5V, AVREF0 = 3.3 to 5.5V, VSS = EVSS = AVSS = 0V)

Internal System clock frequency (f _{VBCLK})	Supply voltage	Operating Condition
	3.5V≤VDD≤5.5V ^{Note1}	Operation of functions is enabled
4.0≤f _{xx} ≤20MHz Note1	3.3V≤VDD<3.5V	The following functions are operable: CPU Flash (including programming RAM IO Buffer Port WT WDT INT CLM POC
	3.3V≤AVRF0≤5.5V	 A/D Converter stop ADC for AVREF0 < 4.0V (ADA0CE bit =0) Refer to chapter '2.8 A/D Converter' for details.
32kHz≤f _{XT} ≤35kHz (Crystal)	3.3V≤VDD<5.5V	
12.5kHz≤f _{XT} ≤27.5kHz ^{Note2} (RC)	Note1	-
f _{RL} (240kHz Internal-OSC)	3.3V≤VDD<5.5V ^{Note1}	-

Notes: 1. VDD = EVDD

2. RC Oscillation frequency is min. 25kHz max. 55kHz. This clock is divided by 2 internally.



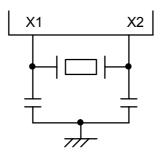
2.4 Voltage Regulator Characteristics

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7 μ F, VDD = EVDD, VSS = EVSS = AVSS = 0V))

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage	VDD		3.5		5.5	V
Input voltage	VDD	Limited function see '2.3 Operating condition'	3.3			V
Output voltage	VRO			2.5		V
Output voltage	₊ Note	After VDD reaches voltage range min. 3.3V			1	ms
stabilization time	REG	To connect C=4.7uF on REGC terminal			'	1115

Note: In case of non-POC device, be sure to start VDD in the <u>state of RESET</u>=VSS=0V. For POC devices there is no need to control external RESET terminal. For decives with POC function the internal RESET signal will automatically controlled until VRO is stable.

2.5 Clock Generator Circuit


2.5.1 Main System Clock Oscillation Circuit Characteristics

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7 μ F, VDD = EVDD = 3.3 to 5.5 ν F, AVREF0 = 3.3 to 5.5 ν F, VSS = EVSS = AVSS = 0 ν F

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal / Ceramic resona- tor	Refer to figure below	Oscillator fre- quency (fx) ^{Note1}		4		16	MHz
		Oscillation stabili-	After STOP mode	54 ^{Note4}	Note3		μs
		zation time Note2	After IDLE2 mode	54 ^{Note4}	Note3		μs

Notes: 1. Indicates only oscillation circuit characteristics. Refer to '2.7 AC Characteristics' for CPU operation clock.

- 2. Time required to stabilize oscillation after VDD reaches oscillator voltage range MIN. 3.3V
- **3.** Depends on the setting of the oscillation stabilization time select register (OSTS)
- **4.** Minimum time required to stabilize flash. Time has to be secured by setting the oscillation stabilization time select register (OSTS)

2.5.2 Sub System Clock Oscillation Circuit Characteristics

(Ta = -40 to +85°C, C=4.7uF, VDD = EVDD = 3.3 to 5.5V, AVREF0 = 3.3 to 5.5V, VSS = EVSS = AVSS = 0V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator Refer to Figure 1	Oscillator fre- quency (fxt) ^{Note1}		32	32.768	35	kHz	
	Refer to Figure 1	Oscillation stabilization time Note2				10	s

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7uF, VDD=EVDD=3.3 to 5.5V, AVREF0=3.3 to 5.5V, VSS=EVSS=AVSS=0V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
RC	RC Refer to Figure 2	Oscillator frequency ^{Note1,4}	R=390KΩ ±5% Note3, C=47pF±10% Note3	25	40	55	kHz
resonator	Relei to Figure 2	Oscillation stabiliza- tion time Note2				100	μs

- **Notes: 1.** Indicates only oscillation circuit characteristics. Refer to "AC Characteristic" for cpu operation clock.
 - 2. Time required to stabilize oscillation after VDD reaches oscillator voltage range min. 3.3V
 - **3.** In order to avoid the influence of wiring capacity, shorten wiring as much as possible.
 - **4.** RC Oscillation frequency is typ. 40kHz. This clock is divided (1/2) internally. In case of RC Oscillator, internal system clock frequency (fxt) is min. 12.5kHz, typ. 20kHz, max. 27.5kHz.

2.5.3 Internal-OSC Characteristics

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7uF, VDD = EVDD = 3.3 to 5.5V, AVREF0 = 3.3 to 5.5V, VSS = EVSS = AVSS = 0V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Output	f _{RL}	240kHz Internal-OSC	204	240	276	kHz
frequency	f _{RH}	8MHz Internal-OSC	7.2	8.0	8.8	MHz
Oscillation		240kHz Internal-OSC		10	36	μs
stabilization time		8MHz Internal-OSC	51	92	256	μs

2.6.2 PIN leakage current

(C=4.7uF, VDD = EVDD = 3.3 to 5.5V, AVREF0 = 3.3 to 5.5V, VSS = EVSS = AVSS = 0V)

(0 a., 100 _ 100					,	,			
Parameter	Symbol	Conditions		MIN.	TYP.		Unit		
Farameter	Symbol	Co	Hullions	IVIIIN.	IIF.	(A)	(A1)	(A2)	Offic
High level input leak-	ILIH1	VI=VDD	Analog pins			0.2	0.4	0.5	
age current	ILIHI	VI-VDD	Other pins Note1			0.5	8.0	1.0	
Low level input	ILIL1	\/I=0\/	Analog pins			-0.2	-0.4	-0.5	
leakage current	ILILI	VI=0V	Other pins Note1			-0.5	-0.8	-1.0	μA
High level output	ILOH1	VO=VDD	Analog pins			0.2	0.4	0.5	μΛ
leakage current	ILOHI	VO=VDD	Other pins			0.5	0.8	1.0	
Low level output	ILOL1	VO=0V	Analog pins			-0.2	-0.4	-0.5	
leakage current	ILOLI	VO-0V	Other pins			-0.5	-0.8	-1.0	

Notes: 1. The input leakage current of FLMD0 is as follows:

High level input leakage current :

- (A)-Grade $2.0\mu A$
- (A1)-Grade 4.0μA
- (A2)-Grade 5.0μA

Low level input leakage current:

- (A)-Grade -2.0μA
- (A1)-Grade -4.0μA
- (A2)-Grade $5.0\mu A$

Mode	Symbol	Condition					MAX.			Unit	
Wood	Cymbol			maition	1	TYP.	(A)	(A1)	(A2)	Offic	
				PLL: ON	f _{xx} =10MHz f _x =5MHz	10		15		mA	
			Peripheral: f _{xx} PRSI option: 0	16MHz≤f _{xx} ≤20MHz	f _{xx} =20MHz f _x =10MHz	17		25		mA	
		All peripherals running		PLL: OFF 4MHz≤f _{xx} ≤16MHz	f _{xx} =8MHz 8MHz Internal- OSC ^{Note3}	7		11		mA	
		DD2			f _{xx} =16MHz f _x =16MHz	12		18		mA	
HALT	IDD3			Peripheral: f _{xx} /2 PRSI option: 1	PLL: ON 10MHz≤f _{xx} ≤20MHz	f _{xx} =20MHz f _x =10MHz	14		21		mA
mode	IDD2		Peripheral: f _{xx} - PRSI option: 0 stopped	PLL: ON 16MHz≤f _{xx} ≤20MHz	f _{xx} =10MHz f _x =5MHz	7				mA	
					f _{xx} =20MHz f _x =10MHz	12				mA	
		All peripherals stopped		PLL: OFF 4MHz≤f _{xx} ≤16MHz	f _{xx} =8MHz 8MHz Internal- OSC ^{Note3}	5		-		mA	
					f _{xx} =16MHz f _x =16MHz	9				mA	
			Peripheral: f _{xx} /2 PRSI option: 1	PLL: ON 10MHz≤f _{xx} ≤20MHz	f _{xx} =20MHz f _x =10MHz	11				mA	

(b) Calculation formulas

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7uF, VDD = EVDD = 3.3 to 5.5V, AVREF0 = 3.3 to 5.5V, VSS = EVSS = AVSS = 0V^{Note1}))

Mode	Symbol		Condition		TYP. Note8		MAX. Note8		Unit
Mode	Symbol		Condition		TYPe.ee	(A)	(A1)	(A2)	Oili
			Peripheral: f _{xx}	PLL: ON 16MHz≤f _{xx} ≤20MHz	0.93·f _{xx} +6.3		1.12·f _{xx} +12.6		mA
		All peripherals running	PRSI option: 0	PLL: OFF 4MHz≤f _{xx} ≤16MHz	0.93·f _{xx} +4.7		1.12·f _{xx} +9.7		mA
Operating	IDD1		Peripheral: f _{xx} /2 PRSI option: 1	PLL: ON 10MHz≤f _{xx} ≤20MHz	0.85·f _{xx} +5.2		1.03·f _{xx} +11.3		mA
mode Note2	וטטו		Peripheral: ff _{xx-}	PLL: ON 16MHz≤f _{xx} ≤20MHz	0.78·f _{xx} +5.4				mA
		All peripherals stopped	PRSI option: 0	PLL: OFF 4MHz≤f _{xx} ≤16MHz	0.80·f _{xx} +4.9		-		mA
			Peripheral: f _{xx} /2 PRSI option: 1	PLL: ON 10MHz≤f _{xx} ≤20MHz	0.76·f _{xx} +5.4				mA
			Peripheral: ff _{xx-}	PLL: ON 16MHz≤f _{xx} ≤20MHz	0.70·f _{xx} +3.0	0.97*f _{xx} +5.2			mA
		All peripherals running	PRSI option: 0	PLL: OFF 4MHz≤f _{xx} ≤16MHz	0.65·f _{xx} +1.9	0.90*f _{xx} +3.6			mA
HALT	IDD2		Peripheral: f _{xx} /2 PRSI option: 1	PLL: ON 10MHz≤f _{xx} ≤20MHz	0.54·f _{xx} +2.8		0.63*f _{xx} +8.60		mA
mode	IDD2		Peripheral: f _{xx}	PLL: ON 16MHz≤f _{xx} ≤20MHz	0.46·f _{xx} +2.8				mA
		All peripherals stopped	PRSI option: 0	PLL: OFF 4MHz≤f _{xx} ≤16MHz	0.44·f _{xx} +1.6		-		mA
			Peripheral: f _{xx} /2 PRSI option: 1	PLL: ON 10MHz≤f _{xx} ≤20MHz	0.46·f _{xx} +1.8				mA
IDLE1 mode	IDD3	. ,	A, UARTD) run- ing	PLL: OFF 4MHz≤f _{xx} ≤16MHz	0.092·f _{xx} +0.90	0.128·f _{xx} + 1.52	0.128·f _{xx} + 1.82	0.128·f _{xx} + 2.12	mA
		All periphe	rals stopped		0.035·f _{xx} +1.01		-		mA
IDLE2 mode	IDD4		PLL: OFF 4MHz ≤f _{xx} ≤16MHz	Note7	0.037·f _{xx} +0.21	0.049·f _{xx} + 0.43	0.049·f _{xx} + 0.63	0.049·f _{xx} + 0.88	mA

Datasheet U19191EE1V0DS00

V850ES/FF3-L NEC

Notes: 1. VDD and EVDD total current. (Ports are stopped).

AVREF0 current, port buffer current (including a current flowing in the on-chip pull-up/pull-down resistor) are not included.

2. The code flash is in read mode.

When the device is in programming mode (Self-programming mode) the current value (MAX. value) adds by the following value:

• Self-programming mode:

+ In case of PLL OFF: 7-(0.33*fxx+0.1) [mA] + In case of PLL ON: 7-(0.18*fxx+3.0) [mA]

- **3.** Main OSC is stopped.
- **4.** Do not use SubOSC.
- 5. POC is working. 240kHz Internal-OSC is working. 8MHz Internal-OSC is stopped.
- **6.** RC Oscillation frequency is typ.40kHz. This clock is divided by 1/2 internally.
- 7. 8MHz Internal-OSC is stopped
- **8.** The formulas are for reference only. Not all possible values for f_{XX} are tested in the outgoing device inspection.

2.7.2 RESET, Interrupt, ADTRG Timing

 $(Ta = -40 \text{ to } +85^{\circ}\text{C for (A)-Grade}, Ta = -40 \text{ to } +110^{\circ}\text{C for (A1)-Grade}, Ta = -40 \text{ to } +125^{\circ}\text{C for (A2)-Grade}, VDD = EVDD = 3.3 \text{ to } 5.5\text{V}, AVREF0 = 3.3 \text{ to } 5.5\text{V}, VSS = EVSS = AVSS = 0V, CL=50pF)}$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
_RESET input low level width	tWRSL	analog filter	250			ns
NMI input high level width	tWNIH	analog filter	250			ns
NMI input low level width	tWNIL	analog filter	250			ns
INTPnNote1 input high level width	tWITH	analog filter ,n=0-8	250			ns
INTERPOSE INPUT HIGH TEVER WIGHT	LVVIIII	digital filter ,n=3	Note2			ns
INTPn Note1 input low level width	tWITL	analog filter ,n=0-8	250			ns
in triti input low level width	LVVIIL	digital filter ,n=3	Note2			ns

Notes: 1. ADTRG is same spec (P03/INTP0/ADTRG). DRST is same spec (P05/INTP2/DRST)

2. 2Tsamp+20 or 3Tsamp+20 ("Tsamp" is Noise reject sampling clock (NF macro))

Remarks: 1. The above minimum values show pulse widths that are surely detected as an effective edge. An effective may also be detected even if the input pulse width is less than the above minimum specification.

2. RESET, NMI, INTPn, ADTRG and DRST have analog noise filter. The typical filter time is typ=60ns.

2.7.3 Key Return Timing

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, VDD = EVDD = 3.3 to 5.5V, AVREF0 = 3.3 to 5.5V, VSS = EVSS = AVSS = 0V, CL=50pF)

ſ	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Ī	KRn input high level width	tWKRH	analog filter ,n=0-7	250			ns
Ī	KRn input low level width	tWKRL	analog filter ,n=0-7	250			ns

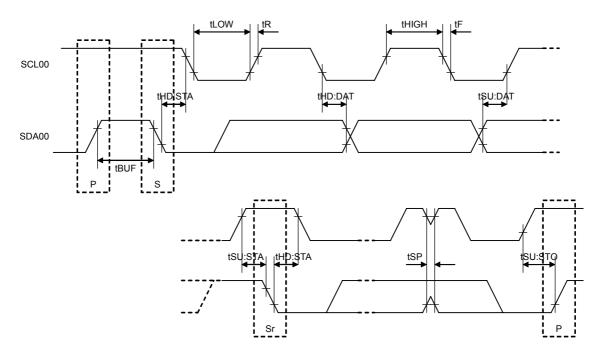
Remarks: 1. The above minimum values show pulse widths that are surely detected as an effective edge. An effective may also be detected even if the input pulse width is less than the above minimum specification.

2. KRn inputs have analog noise filter. The typical filter time is typ=60ns.

2.7.4 Timer Timing

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, VDD = EVDD = 3.5 to 5.5V, AVREF0 = 3.5 to 5.5V, VSS = EVSS = AVSS = 0V, CL=50pF)

122 2122 0.0 .0	J. J		oo oo, o= oop.,				
Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
TI input high level width	tTIH	TIAA00-01,10-11,20-21,30-31,4	0-41 Note1	250			ns
TI input low level width	tTIL	TIAA00-01,10-11,20-21,30-31,4	0-41 Note1	250			ns
TO output cycle	tTCYK	TIAA00-01,10-11,20-21,30-31, 4	40-41 Note1			10	MHz

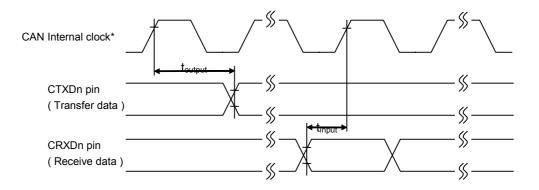

Notes: 1. Except for the external trigger and external event function.

Remarks: 1. The above minimum values show pulse widths that are surely detected as an effective edge. An effective may also be detected even if the input pulse width is less than the above minimum specification.

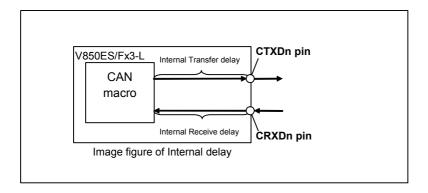
2. TIAAn inputs have analog noise filter. The typical filter time is typ=60ns.

IIC bus interface timing

Remark: P: Stop condition S: Start condition


Sr: Restart condition

2.7.8 CAN Timing


(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, VDD = EVDD = 3.5 to 5.5V, AVREF0 = 3.5 to 5.5V, VSS = EVSS = AVSS = 0V, CL=0DF)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					1	Mbps
Internal delay time					100	ns

Internal delay time (tNODE)= Internal Transfer Delay(t_{output}) + Internal Receive Delay(t_{input})

*) CAN Internal clock (f_{CAN}) :CAN baud rate clock

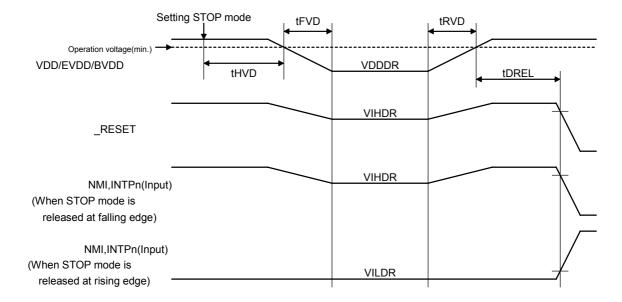
2.8 A/D Converter

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7 μ F, VDD = EVDD = 3.5 to 5.5 ν F, AVREF0 = 4.0 to 5.5 ν F, VSS = EVSS = AVSS = 0 ν F)

Parameter	Symbol	Conditions	MIN.	TYP.	(A),(A1)	AX. (A2)	Unit
Resolution					1	0	bit
Overall error ^{Note1}		4.0V≤AVREF0<5.5V		±0.15	±0.3	±0.35	%FSR
Conversion time	tCONV		3.10		1	6	μs
Stabilization time	tSTA	After ADA0PS bit = 0 -> 1	2				μs
Recovery time for power down mode	tDPU		1				μs
Zero-scale error ^{Note1}	ZSE				±0.3	±0.35	%FSR
Full-scale error ^{Note1}	FSE				±0.3	±0.35	%FSR
Integral non-liniearity error Note2	INL				±2	2.5	LSB
Differential non-liniearity error Note2	DNL				±1	1.5	LSB
Analog input voltage	VIAN		AVSS		AVF	REF0	V
Analog input equivalent circuit capacitance Note3,4	CINA				6.	19	pF
Analog input equivalent circuit resistance Note3	RINA				2.	55	kΩ
AVREF0 current	IAREF0	A/D operating		4	•	7	mA
AVNEFO CUITEIIL	IAREFU	A/D operation stop		1	1	0	μΑ
Conversion rusult when using		AVREF0 conversion	3FC		31	FF	HEX
Diagnostic function		AVSS conversion	000		00	03	HEX

Notes: 1. Overall error excluding quantization error (±0.05%FSE). It is indicated as a ratio to the full-scale value.

- **2.** Excluding quantization error (±1/2 LSB)
- **3.** Reference value. Not tested in production.
- 4. Does not include input/output capacitance CIO



2.12 Data Retention Characteristics

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7uF, VDD = EVDD = 1.9 to 5.5V, VSS = EVSS = AVSS = 0V) (

0 4.1 df , VDD 2100 1.0 to 0.00, VOO 2100 A100 0V) (
Parameter	Symbol	Conditions	MIN. TYF		MAX.	Unit	
Data retention power supply voltage	VDDDR	STOP mode (All function is stopped)	1.9		5.5	٧	
Data retention power supply current	IDDDR	VDDDR=2.0V(All function is stopped)		6.5	70	μΑ	
Supply voltage rise time	tRVD		1			μs	
Supply voltage fall time	tFVD		1			μs	
Supply voltage hold time	tHVD	After STOP mode	0			ms	
STOP release signal input time	tDREL	After VDD reaches operating voltage range MIN. 3.3V	0			ms	
Data retention high-level input voltage	VIHDR	All input port	0.9-VDDDR		VDDDR	٧	
Data retention low-level input voltage	VILDR	All input port	0		0.1-VDDDR	V	

Remark: When STOP mode is entered/released operation voltage range must be controlled.

2.13 Flash Memory Programming Characteristics

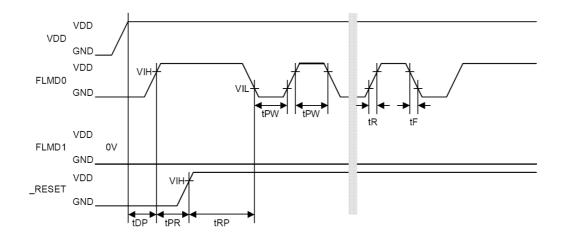
(a) Basic Characteristics

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade, C=4.7 μ F, VDD = EVDD, AVREF0 = 3.5 to 5.5 ν F, VSS = EVSS = AVSS = 0 ν F)

Parameter	Symbol	Conditions	MIN.	TYP.	(A)	MAX.	(A2)	Unit
Operation frequency	fCPU		4			20		MHz
Supply voltage	VDD		3.3			5.5		V
Number of rewrites	CWRT	Code Flash			1000			count
High level input voltage	VIH	FLMD0	0.8-EVDD			EVDD		V
Low level input voltage	VIL	FLMD0	EVSS		0	.2·EVD	D	V
Programming temperature	tPRG		-40		+85	+110	+125	°C
Data retention		Code Flash	15					year

Remark: The initial write when the product is shipped, any erase → write set of operations, or any programming operation is counted as one rewrite.

Example: P: Program(write) E: Erase

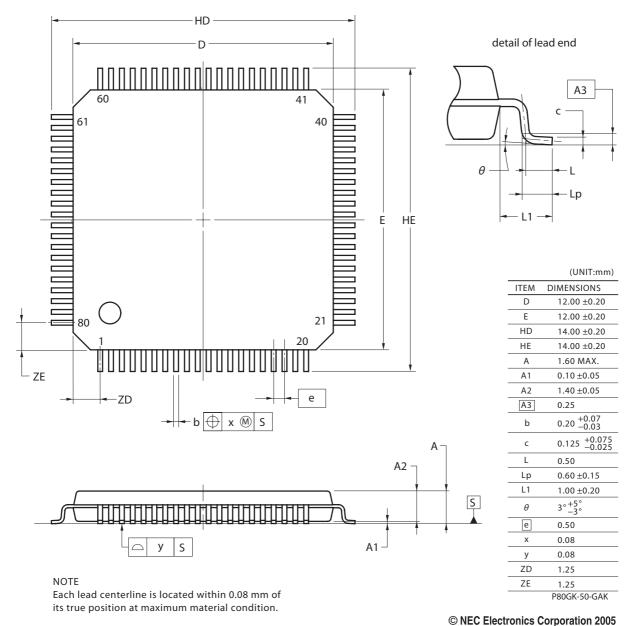

Product is shipped \rightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P : Rewrite count: 3 Product is shipped \rightarrow E \rightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P : Rewrite count: 3

(b) Serial Writing Operation Characteristics

(Ta = -40 to +85°C for (A)-Grade, Ta = -40 to +110°C for (A1)-Grade, Ta = -40 to +125°C for (A2)-Grade,

C=4.7uF, VDD = EVDD, AVREF0 = 3.5 to 5.5V, VSS = EVSS = AVSS = 0V, CL=50pF)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
FLMD0 setup time (from VDD)	tDP		1			ms
RESET release (from FLMD0)	tPR		2			ms
FLMD0 pulse input start (from raise edge of _RESET)	tRP		800			μs
FLMD0 high level width / low level width	tPW		10		100	μs
FLMD0 raise time	tR				50	ns
FLMD0 fall time	tF				50	ns



3. **Package**

3.1 Package Dimension

80-PIN PLASTIC LQFP (FINE PITCH) (12x12)

Although NEC has taken all possible steps to ensure that the documentation supplied

Facsimile Message

From:	to our customers is complete, bug free and up-to-date, we readily accept tha errors may occur. Despite all the care and precautions we've taken, you may							
Name			encounter problems in the documentation Please complete this form wheneve					
Company			you'd like to repor improvements to us					
Tel.	FAX							
Address			Th					
			Thank you for yo	our kind support.				
North America NEC Electronics America Inc. Corporate Communications Depi Fax: 1-800-729-9288 1-408-588-6130	NEC Electronics I	•	Asian Nations except NEC Electronics Singap Fax: +65-6250-3583					
Europe NEC Electronics (Europe) GmbH Market Communication Dept. Fax: +49(0)-211-6503-1344	Korea NEC Electronics I Seoul Branch Fax: 02-528-441		Japan NEC Semiconductor Te Fax: +81- 44-435-9608					
	Taiwan NEC Electronics Teax: 02-2719-598							
I would like to report the follo	owing error/make	the following s	uggestion:					
Document title:								
Document number:			Page number: _					
If possible, please fax the re	ferenced page or	drawing.						
Document Rating	Excellent	Good	Acceptable	Poor				
Clarity								
Technical Accuracy								
Organization								