

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.98V ~ 3.8V
Data Converters	A/D 8x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32gg842f512g-e-qfp64r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Ordering Information

Table 1.1 (p. 2) shows the available EFM32GG842 devices.

Table 1.1. Ordering Information

Ordering Code	Flash (kB)	RAM (kB)	Max Speed (MHz)	Supply Voltage (V)	Temperature (⁰C)	Package
EFM32GG842F512G-E-QFP64	512	128	48	1.98 - 3.8	-40 - 85	TQFP64
EFM32GG842F1024G-E-QFP64	1024	128	48	1.98 - 3.8	-40 - 85	TQFP64

Adding the suffix 'R' to the part number (e.g. EFM32GG842F512G-E-QFP64R) denotes tape and reel.

Visit www.silabs.com for information on global distributors and representatives.

2 System Summary

2.1 System Introduction

The EFM32 MCUs are the world's most energy friendly microcontrollers. With a unique combination of the powerful 32-bit ARM Cortex-M3, innovative low energy techniques, short wake-up time from energy saving modes, and a wide selection of peripherals, the EFM32GG microcontroller is well suited for any battery operated application as well as other systems requiring high performance and low-energy consumption. This section gives a short introduction to each of the modules in general terms and also shows a summary of the configuration for the EFM32GG842 devices. For a complete feature set and in-depth information on the modules, the reader is referred to the *EFM32GG Reference Manual*.

A block diagram of the EFM32GG842 is shown in Figure 2.1 (p. 3) .

Figure 2.1. Block Diagram

2.1.1 ARM Cortex-M3 Core

The ARM Cortex-M3 includes a 32-bit RISC processor which can achieve as much as 1.25 Dhrystone MIPS/MHz. A Memory Protection Unit with support for up to 8 memory segments is included, as well as a Wake-up Interrupt Controller handling interrupts triggered while the CPU is asleep. The EFM32 implementation of the Cortex-M3 is described in detail in *EFM32 Cortex-M3 Reference Manual*.

2.1.2 Debug Interface (DBG)

This device includes hardware debug support through a 2-pin serial-wire debug interface and an Embedded Trace Module (ETM) for data/instruction tracing. In addition there is also a 1-wire Serial Wire Viewer pin which can be used to output profiling information, data trace and software-generated messages.

Module	Configuration	Pin Connections
TIMER0	Full configuration with DTI	TIM0_CC[2:0], TIM0_CDTI[2:0]
TIMER1	Full configuration	TIM1_CC[2:0]
TIMER2	Full configuration	TIM2_CC[2:0]
TIMER3	Full configuration	TIM3_CC[2:0]
RTC	Full configuration	NA
BURTC	Full configuration	NA
LETIMER0	Full configuration	LET0_O[1:0]
PCNT0	Full configuration, 16-bit count register	PCNT0_S[1:0]
PCNT1	Full configuration, 8-bit count register	PCNT1_S[1:0]
PCNT2	Full configuration, 8-bit count register	PCNT2_S[1:0]
ACMP0	Full configuration	ACMP0_CH[7:0], ACMP0_O
ACMP1	Full configuration	ACMP1_CH[7:0], ACMP1_O
VCMP	Full configuration	NA
ADC0	Full configuration	ADC0_CH[7:0]
DAC0	Full configuration	DAC0_OUT[1:0], DAC0_OUTxALT
OPAMP		
AES	Full configuration	NA
GPIO	53 pins	Available pins are shown in Table 4.3 (p. 59)
LCD	Full configuration	LCD_SEG[17:0], LCD_COM[7:0], LCD_BCAP_P, LCD_BCAP_N, LCD_BEXT

2.3 Memory Map

The *EFM32GG842* memory map is shown in Figure 2.2 (p. 9), with RAM and Flash sizes for the largest memory configuration.

Figure 3.9. Typical High-Level Output Current, 3.8V Supply Voltage

GPIO_Px_CTRL DRIVEMODE = STANDARD

GPIO_Px_CTRL DRIVEMODE = HIGH

3.9.3 LFRCO

Table 3.10. LFRCO

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{LFRCO}	Oscillation frequen- cy , V_{DD} = 3.0 V, T_{AMB} =25°C		31.29	32.768	34.28	kHz
t _{LFRCO}	Startup time not in- cluding software calibration			150		μs
I _{LFRCO}	Current consump- tion			300	900	nA
TUNESTEP _L . FRCO	Frequency step for LSB change in TUNING value			1.5		%

Figure 3.10. Calibrated LFRCO Frequency vs Temperature and Supply Voltage

3.9.4 HFRCO

Table 3.11. HFRCO

Symbol	Parameter	Condition	Min	Тур	Max	Unit
fhfrco		28 MHz frequency band	27.5	28.0	28.5	MHz
		21 MHz frequency band	20.6	21.0	21.4	MHz
	Oscillation frequen-	14 MHz frequency band	13.7	14.0	14.3	MHz
	Cy, v _{DD} = 3.0 v, T _{AMB} =25°C	11 MHz frequency band	10.8	11.0	11.2	MHz
		7 MHz frequency band	6.48 ¹	6.60 ¹	6.72 ¹	MHz
		1 MHz frequency band	1.15 ²	1.20 ²	1.25 ²	MHz
t _{HFRCO_settling}	Settling time after start-up	f _{HFRCO} = 14 MHz		0.6		Cycles
	Settling time after band switch			25		Cycles

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		f _{HFRCO} = 28 MHz		165	190	μA
		f _{HFRCO} = 21 MHz		134	155	μA
	Current consump-	f _{HFRCO} = 14 MHz		106	120	μA
IHFRCO	condition = 14MHz)	f _{HFRCO} = 11 MHz		94	110	μA
		f _{HFRCO} = 6.6 MHz		77	90	μA
		f _{HFRCO} = 1.2 MHz		25	32	μA
TUNESTEP _{H-} FRCO	Frequency step for LSB change in TUNING value			0.3 ³		%

¹For devices with prod. rev. < 19, Typ = 7MHz and Min/Max values not applicable.

 2 For devices with prod. rev. < 19, Typ = 1MHz and Min/Max values not applicable.

³The TUNING field in the CMU_HFRCOCTRL register may be used to adjust the HFRCO frequency. There is enough adjustment range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and temperature. By using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and the frequency band to maintain the HFRCO frequency at any arbitrary value between 7 MHz and 28 MHz across operating conditions.

Figure 3.11. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature

Figure 3.12. Calibrated HFRCO 7 MHz Band Frequency vs Supply Voltage and Temperature

EFM[®]32

Symbol	Parameter	Condition	Тур	Max	Unit	
C _{ADCIN}	Input capacitance			2		pF
R _{ADCIN}	Input ON resistance		1			MOhm
R _{ADCFILT}	Input RC filter resis- tance			10		kOhm
C _{ADCFILT}	Input RC filter/de- coupling capaci- tance			fF		
f _{ADCCLK}	ADC Clock Fre- quency				13	MHz
		6 bit	7			ADC- CLK Cycles
t _{ADCCONV}	Conversion time	8 bit	11			ADC- CLK Cycles
		12 bit	13			ADC- CLK Cycles
t _{ADCACQ}	Acquisition time	uisition time Programmable 1				
t _{ADCACQVDD3}	Required acquisi- tion time for VDD/3 reference		2			μs
	Startup time of ref- erence generator and ADC core in NORMAL mode			5		μs
tadcstart	Startup time of ref- erence generator and ADC core in KEEPADCWARM mode			1		μs
		1 MSamples/s, 12 bit, single ended, internal 1.25V refer- ence		59		dB
		1 MSamples/s, 12 bit, single ended, internal 2.5V reference		63		dB
		1 MSamples/s, 12 bit, single ended, V _{DD} reference		65		dB
SNRADC	Signal to Noise Ra-	1 MSamples/s, 12 bit, differen- tial, internal 1.25V reference		60		dB
	10 (JNK)	1 MSamples/s, 12 bit, differen- tial, internal 2.5V reference		65		dB
		1 MSamples/s, 12 bit, differen- tial, 5V reference		54		dB
		1 MSamples/s, 12 bit, differential, V_{DD} reference		67		dB
		1 MSamples/s, 12 bit, differential, $2xV_{DD}$ reference		69		dB

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		200 kSamples/s, 12 bit, sin- gle ended, internal 1.25V refer- ence		62		dB
		200 kSamples/s, 12 bit, single ended, internal 2.5V reference		63		dB
		200 kSamples/s, 12 bit, single ended, V _{DD} reference		67		dB
		200 kSamples/s, 12 bit, differ- ential, internal 1.25V reference		63		dB
		200 kSamples/s, 12 bit, differ- ential, internal 2.5V reference		66		dB
		200 kSamples/s, 12 bit, differ- ential, 5V reference		66		dB
		200 kSamples/s, 12 bit, differ- ential, V _{DD} reference	63	66		dB
		200 kSamples/s, 12 bit, differ- ential, 2xV _{DD} reference		70		dB
		1 MSamples/s, 12 bit, single ended, internal 1.25V refer- ence		58		dB
		1 MSamples/s, 12 bit, single ended, internal 2.5V reference		62		dB
		1 MSamples/s, 12 bit, single ended, V _{DD} reference		64		dB
		1 MSamples/s, 12 bit, differen- tial, internal 1.25V reference		60		dB
		1 MSamples/s, 12 bit, differen- tial, internal 2.5V reference		64		dB
		1 MSamples/s, 12 bit, differen- tial, 5V reference		54		dB
		1 MSamples/s, 12 bit, differential, V_{DD} reference		66		dB
SINAD _{ADC}	SIgnal-to-Noise And Distortion-ratio (SINAD)	1 MSamples/s, 12 bit, differen- tial, 2xV _{DD} reference		68		dB
		200 kSamples/s, 12 bit, sin- gle ended, internal 1.25V refer- ence		61		dB
		200 kSamples/s, 12 bit, single ended, internal 2.5V reference		65		dB
		200 kSamples/s, 12 bit, single ended, V_{DD} reference		66		dB
		200 kSamples/s, 12 bit, differ- ential, internal 1.25V reference		63		dB
		200 kSamples/s, 12 bit, differ- ential, internal 2.5V reference		66		dB
		200 kSamples/s, 12 bit, differ- ential, 5V reference		66		dB
		200 kSamples/s, 12 bit, differential, V_{DD} reference	62	65		dB

Figure 3.18. Differential Non-Linearity (DNL)

EFM[®]32

Figure 3.28. OPAMP Voltage Noise Spectral Density (Unity Gain) Vout=1V

Figure 3.29. OPAMP Voltage Noise Spectral Density (Non-Unity Gain)

Figure 3.30. ACMP Characteristics, Vdd = 3V, Temp = 25°C, FULLBIAS = 0, HALFBIAS = 1

Response time

3.14 Voltage Comparator (VCMP)

Table 3.18. VCMP

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
V _{VCMPIN}	Input voltage range			V _{DD}		V
V _{VCMPCM}	VCMP Common Mode voltage range			V _{DD}		V
h	Active current	BIASPROG=0b0000 and HALFBIAS=1 in VCMPn_CTRL register		0.3	0.6	μA
I _{VCMP} Active current		BIASPROG=0b1111 and HALFBIAS=0 in VCMPn_CTRL register. LPREF=0.		22	30	μA
t _{VCMPREF}	Startup time refer- ence generator	NORMAL		10		μs
V	Offset voltage	Single ended	-230	-40	190	mV
V _{VCMPOFFSET} Offset voltage		Differential		10		mV
V _{VCMPHYST}	VCMP hysteresis			40		mV
t _{VCMPSTART}	Startup time				10	μs

The V_{DD} trigger level can be configured by setting the TRIGLEVEL field of the VCMP_CTRL register in accordance with the following equation:

VCMP Trigger Level as a Function of Level Setting

V_{DD Trigger Level}=1.667V+0.034 ×TRIGLEVEL

(3.2)

3.15 LCD

Table 3.19. LCD

Symbol	Parameter	Condition	Min	Тур	Max	Unit	
f _{LCDFR}	Frame rate		30		200	Hz	
NUM _{SEG}	Number of seg- ments supported						
V _{LCD}	LCD supply voltage range	Internal boost circuit enabled	Internal boost circuit enabled 2.0				
ILCD		Display disconnected, stat- ic mode, framerate 32 Hz, all segments on.		250		nA	
	Steady state current consumption.	Display disconnected, quadru- plex mode, framerate 32 Hz, all segments on, bias mode to ONETHIRD in LCD_DISPCTRL register.		550		nA	
	Steady state Cur- rent contribution of internal boost.	Internal voltage boost off		0		μA	
ILCDBOOST		Internal voltage boost on, boosting from 2.2 V to 3.0 V.		8.4		μA	
		VBLEV of LCD_DISPCTRL register to LEVEL0		3.02		V	
		VBLEV of LCD_DISPCTRL register to LEVEL1		3.15		V	
		VBLEV of LCD_DISPCTRL register to LEVEL2		3.28		V	
N	Roost Voltago	VBLEV of LCD_DISPCTRL register to LEVEL3		3.41		V	
VBOOST	boost voltage	VBLEV of LCD_DISPCTRL register to LEVEL4		3.54		V	
		VBLEV of LCD_DISPCTRL register to LEVEL5		3.67		V	
		VBLEV of LCD_DISPCTRL register to LEVEL6		3.73		V	
		VBLEV of LCD_DISPCTRL register to LEVEL7		3.74		V	

The total LCD current is given by Equation 3.3 (p. 46). I_{LCDBOOST} is zero if internal boost is off.

Total LCD Current Based on Operational Mode and Internal Boost

 $I_{LCDTOTAL} = I_{LCD} + I_{LCDBOOST}$

(3.3)

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
I _{PCNT}	PCNT current	PCNT idle current, clock en- abled		54		nA
I _{RTC}	RTC current	RTC idle current, clock enabled		54		nA
I _{LCD}	LCD current	LCD idle current, clock enabled		68		nA
I _{AES}	AES current	AES idle current, clock enabled		3.2		μΑ/ MHz
I _{GPIO}	GPIO current	GPIO idle current, clock en- abled		3.7		μΑ/ MHz
I _{PRS}	PRS current	PRS idle current		3.5		μΑ/ MHz
I _{DMA}	DMA current	Clock enable		11.0		μΑ/ MHz

...the world's most energy friendly microcontrollers

Alternate			L	ΟΟΑΤΙΟ	N			
Functionality	0	1	2	3	4	5	6	Description
LCD_BCAP_N	PA13							LCD voltage booster (optional), boost capacitor, negative pin. If using the LCD voltage booster, connect a 22 nF capacitor between LCD_BCAP_N and LCD_BCAP_P.
LCD_BCAP_P	PA12							LCD voltage booster (optional), boost capacitor, positive pin. If using the LCD voltage booster, connect a 22 nF capacitor between LCD_BCAP_N and LCD_BCAP_P.
								LCD voltage booster (optional), boost output. If using the LCD voltage booster, connect a 1 uF capacitor between this pin and VSS.
LCD_BEXT	PA14							An external LCD voltage may also be applied to this pin if the booster is not enabled.
								If AVDD is used directly as the LCD supply voltage, this pin may be left unconnected or used as a GPIO.
LCD_COM0	PE4							LCD driver common line number 0.
LCD_COM1	PE5							LCD driver common line number 1.
LCD_COM2	PE6							LCD driver common line number 2.
LCD_COM3	PE7							LCD driver common line number 3.
LCD_SEG0	PF2							LCD segment line 0. Segments 0, 1, 2 and 3 are controlled by SEGEN0.
LCD_SEG1	PF3							LCD segment line 1. Segments 0, 1, 2 and 3 are controlled by SEGEN0.
LCD_SEG2	PF4							LCD segment line 2. Segments 0, 1, 2 and 3 are controlled by SEGEN0.
LCD_SEG3	PF5							LCD segment line 3. Segments 0, 1, 2 and 3 are controlled by SEGEN0.
LCD_SEG4	PE8							LCD segment line 4. Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG5	PE9							LCD segment line 5. Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG6	PE10							LCD segment line 6. Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG7	PE11							LCD segment line 7. Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG8	PE12							LCD segment line 8. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG9	PE13							LCD segment line 9. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG10	PE14							LCD segment line 10. Segments 8, 9, 10 and 11 are con- trolled by SEGEN2.
LCD_SEG11	PE15							LCD segment line 11. Segments 8, 9, 10 and 11 are con- trolled by SEGEN2.
LCD_SEG13	PA0							LCD segment line 13. Segments 12, 13, 14 and 15 are con- trolled by SEGEN3.
LCD_SEG14	PA1							LCD segment line 14. Segments 12, 13, 14 and 15 are con- trolled by SEGEN3.
LCD_SEG15	PA2							LCD segment line 15. Segments 12, 13, 14 and 15 are con- trolled by SEGEN3.
LCD_SEG16	PA3							LCD segment line 16. Segments 16, 17, 18 and 19 are con- trolled by SEGEN4.
LCD_SEG17	PA4							LCD segment line 17. Segments 16, 17, 18 and 19 are con- trolled by SEGEN4.
LCD_SEG18	PA5							LCD segment line 18. Segments 16, 17, 18 and 19 are con- trolled by SEGEN4.
LCD_SEG20/ LCD_COM4	PB3							LCD segment line 20. Segments 20, 21, 22 and 23 are con- trolled by SEGEN5. This pin may also be used as LCD COM line 4

EFM[®]32

...the world's most energy friendly microcontrollers

Alternate	LOCATION								
Functionality	0	1	2	3	4	5	6	Description	
TIM0_CC0	PA0	PA0		PD1	PA0	PF0		Timer 0 Capture Compare input / output channel 0.	
TIM0_CC1	PA1	PA1		PD2		PF1		Timer 0 Capture Compare input / output channel 1.	
TIM0_CC2	PA2	PA2		PD3		PF2		Timer 0 Capture Compare input / output channel 2.	
TIM0_CDTI0	PA3	PC13	PF3	PC13		PF3		Timer 0 Complimentary Deat Time Insertion channel 0.	
TIM0_CDTI1	PA4	PC14	PF4	PC14		PF4		Timer 0 Complimentary Deat Time Insertion channel 1.	
TIM0_CDTI2	PA5	PC15	PF5	PC15	PC4	PF5		Timer 0 Complimentary Deat Time Insertion channel 2.	
TIM1_CC0	PC13	PE10		PB7	PD6			Timer 1 Capture Compare input / output channel 0.	
TIM1_CC1	PC14	PE11		PB8	PD7			Timer 1 Capture Compare input / output channel 1.	
TIM1_CC2	PC15	PE12		PB11	PC13			Timer 1 Capture Compare input / output channel 2.	
TIM2_CC0		PA12						Timer 2 Capture Compare input / output channel 0.	
TIM2_CC1		PA13						Timer 2 Capture Compare input / output channel 1.	
TIM2_CC2		PA14						Timer 2 Capture Compare input / output channel 2.	
TIM3_CC0	PE14							Timer 3 Capture Compare input / output channel 0.	
TIM3_CC1	PE15							Timer 3 Capture Compare input / output channel 1.	
US0_CLK	PE12	PE5		PC15	PB13	PB13		USART0 clock input / output.	
US0_CS	PE13	PE4		PC14	PB14	PB14		USART0 chip select input / output.	
								USART0 Asynchronous Receive.	
US0_RX	PE11	PE6		PE12	PB8			USART0 Synchronous mode Master Input / Slave Output (MISO).	
								USART0 Asynchronous Transmit.Also used as receive input in half duplex communication	
US0_TX	PE10	PE7		PE13	PB7			USART0 Synchronous mode Master Output / Slave Input (MOSI).	
US1_CLK	PB7	PD2	PF0					USART1 clock input / output.	
US1_CS	PB8	PD3	PF1					USART1 chip select input / output.	
								USART1 Asynchronous Receive.	
US1_RX		PD1	PD6					USART1 Synchronous mode Master Input / Slave Output (MISO).	
		PDO	PD7					USART1 Asynchronous Transmit.Also used as receive input in half duplex communication.	
								USART1 Synchronous mode Master Output / Slave Input (MOSI).	
US2_CLK	PC4	PB5						USART2 clock input / output.	
US2_CS	PC5	PB6						USART2 chip select input / output.	
								USART2 Asynchronous Receive.	
US2_RX		PB4						USART2 Synchronous mode Master Input / Slave Output (MISO).	
		DDC						USART2 Asynchronous Transmit.Also used as receive input in half duplex communication.	
032_17		rdj						USART2 Synchronous mode Master Output / Slave Input (MOSI).	

4.3 GPIO Pinout Overview

The specific GPIO pins available in *EFM32GG842* is shown in Table 4.3 (p. 59). Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.

4.5 TQFP64 Package

Figure 4.3. TQFP64

Note:

- 1. All dimensions & tolerancing confirm to ASME Y14.5M-1994.
- 2. The top package body size may be smaller than the bottom package body size.
- 3. Datum 'A,B', and 'B' to be determined at datum plane 'H'.
- 4. To be determined at seating place 'C'.
- 5. Dimension 'D1' and 'E1' do not include mold protrusions. Allowable protrusion is 0.25mm per side. 'D1' and 'E1' are maximum plastic body size dimension including mold mismatch. Dimension 'D1' and 'E1' shall be determined at datum plane 'H'.
- 6. Detail of Pin 1 indicatifier are option all but must be located within the zone indicated.
- 7. Dimension 'b' does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum 'b' dimension by more than 0.08 mm. Dambar can not be located on the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm
- 8. Exact shape of each corner is optional.
- 9. These dimension apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip. 10All dimensions are in millimeters.

DIM	MIN	NOM	MAX	DIM	MIN	NOM	MAX
A	-	1.10	1.20	L1		-	
A1	0.05	-	0.15	R1	0.08	-	-
A2	0.95	1.00	1.05	R2	0.08	-	0.20

Table 4.4. QFP64 (Dimensions in mm)

Figure 5.2. TQFP64 PCB Solder Mask

Table 5.2. QFP64 PCB Solder Mask Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
а	1.72
b	0.42
С	0.50
d	11.50
е	11.50

6 Chip Marking, Revision and Errata

6.1 Chip Marking

In the illustration below package fields and position are shown.

Figure 6.1. Example Chip Marking (top view)

6.2 Revision

The revision of a chip can be determined from the "Revision" field in Figure 6.1 (p. 65).

6.3 Errata

Please see the errata document for EFM32GG842 for description and resolution of device erratas. This document is available in Simplicity Studio and online at: http://www.silabs.com/support/pages/document-library.aspx?p=MCUs--32-bit

B Contact Information

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701

Please visit the Silicon Labs Technical Support web page: http://www.silabs.com/support/pages/contacttechnicalsupport.aspx and register to submit a technical support request.