

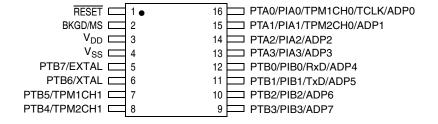
Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	40MHz
Connectivity	LINbus, SCI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	12
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	16-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/s9s08sc4e0ctgr


Chapter 1 Device Overview

Chapter 2 Pins and Connections

This section describes signals that connect to package pins. It includes pinout diagrams, recommended system connections, and detailed discussions of signals.

2.1 Device Pin Assignment

The following figure shows the pin assignments for the MC9S08SC4 device.

Table 2-1. Pin Function Priority

Pin	_		Priority		_
Number	Lowest				Highest
16-pin	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4
1					RESET
2				BKGD	MS
3					V_{DD}
4					V _{SS}
5	PTB7		EXTAL		
6	PTB6		XTAL		
7	PTB5	TPM1CH1			
8	PTB4	TPM2CH1			
9	PTB3	PIB3			ADP7
10	PTB2	PIB2			ADP6
11	PTB1	PIB1	TxD		ADP5

Chapter 2 Pins and Connections

Table 2-1. Pin Function Priority (continued)

Pin			Priority				
Number	Lowest				Highest		
16-pin	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4		
12	PTB0	PIB0	RxD		ADP4		
13	PTA3	PIA3			ADP3		
14	PTA2	PIA2			ADP2		
15	PTA1	PIA1	TPM2CH0		ADP1		
16	PTA0	PIA0	TPM1CH0	TCLK	ADP0		

Chapter 3 Electrical Characteristics

3.1 Introduction

This section contains electrical and timing specifications for the MC9S08SC4 Series of microcontrollers available at the time of publication.

3.2 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Table 3-1. Parameter Classifications

Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

3.3 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 3-2 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pull-up resistor associated with the pin is enabled.

- Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- ² Junction to Ambient Natural Convection

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_{I} = T_{\Delta} + (P_{D} \times \theta_{I\Delta})$$
 Eqn. 3-1

where:

 $T_A = Ambient temperature, °C$

 θ_{IA} = Package thermal resistance, junction-to-ambient, °C/W

$$P_D = P_{int} + P_{I/O}$$

 $P_{int} = I_{DD} \times V_{DD}$, Watts — chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins — user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_D = K \div (T_A + 273^{\circ}C)$$
 Eqn. 3-2

Solving Equation 3-1 and Equation 3-2 for K gives:

$$K = P_D \times (T_\Delta + 273^{\circ}C) + \theta_{.1\Delta} \times (P_D)^2$$
 Eqn. 3-3

where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 3-1 and Equation 3-2 iteratively for any value of T_A

3.5 ESD Protection and Latch-Up Immunity

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed for the human body model (HBM) and the charge device model (CDM).

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Model Description **Symbol** Value Unit Human Series resistance R1 1500 Ω Body Storage capacitance С 100 pF Number of pulses per pin 3 ٧ Minimum input voltage limit -2.5Latch-up Maximum input voltage limit 7.5 ٧

Table 3-4. ESD and Latch-up Test Conditions

MC9S08SC4 MCU Series Data Sheet, Rev. 4

Table 3-5. ESD and Latch-Up Protection Characteristics

No.	Rating ¹	Symbol	Min	Max	Unit
1	Human body model (HBM)	V_{HBM}	± 2000	_	V
2	Charge device model (CDM)	V _{CDM}	± 500	_	V
3	Latch-up current at T _A = 125°C	I _{LAT}	± 100	_	mA

Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted.

3.6 DC Characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Table 3-6. DC Characteristics

Num	С	Characteristic		Symbol	Condition	Min	Typ ¹	Max	Unit
4	—	Operating voltage		V_{DD}	_	4.5	_	5.5	V
	С	All I/	O pins,		5 V, $I_{Load} = -4 \text{ mA}$	V _{DD} – 1.5	_	_	
5	Р	Output high low-drive s	trength	V_{OH}	5 V, I _{Load} = –2 mA	V _{DD} – 0.8	_	_	V
	C	voltage All I/	O pins,		5 V, $I_{Load} = -20 \text{ mA}$	V _{DD} – 1.5	_	_	
	Р	high-drive s	trength		5 V, $I_{Load} = -10 \text{ mA}$	V _{DD} – 0.8	_	_	
6	С	Output high Max total current a	I _{OH} for all ports	I _{OHT}	V _{OUT} < V _{DD}	0	_	-100	mA
	С	All I	/O pins		5 V, I _{Load} = 4 mA	_	_	1.5	
7	Р	Output low low-drive s	trength	V_{OL}	5 V, I _{Load} = 2 mA	_	_	0.8	
'	C	voltage All I	/O pins		5 V, I _{Load} = 20 mA	_	_	1.5	V
	Р	high-drive s	trength		5 V, I _{Load} = 10 mA	_	_	0.8	
8	С	Output low Max total I _{OL} for a current	all ports	I _{OLT}	V _{OUT} > V _{SS}	0	_	100	mA
9	Р	Input high voltage; all digital input	s	V _{IH}	5V	0.65 x V _{DD}	_	_	V
10	Р	Input low voltage; all digital inputs	3	V _{IL}	5V	_	_	0.35 x V _{DD}	V
11	C	Input hysteresis		V_{hys}	_	0.06 x V _{DD}	_	_	V
12	Р	Input leakage current (per pin)		I _{In}	$V_{In} = V_{DD}$ or V_{SS}	_	0.1	1	μА
	Р	Hi-Z (off-state) leakage current	(per pin)						
13		input/output po	ort pins	$ I_{OZ} $	$V_{In} = V_{DD}$ or V_{SS} ,	_	0.1	1	μΑ
		PTB6/XTAL,	RESET		$V_{In} = V_{DD}$ or V_{SS}	_	0.2	2	μА
		Pull-up or Pull-down ² resistors; w enabled	hen						
14	Р	ı	/O pins	R_{PU}, R_{PD}	_	17	37	52	kΩ
	С	R	RESET ³	R_{PU}		17	37	52	kΩ

MC9S08SC4 MCU Series Data Sheet, Rev. 4

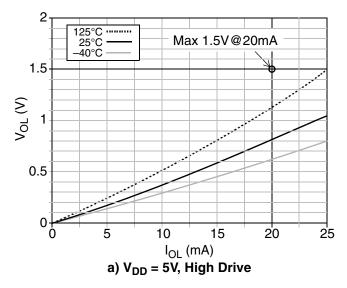


Figure 3-1. Typical V_{OL} vs I_{OL} , High Drive Strength

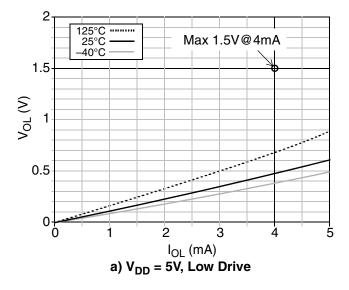


Figure 3-2. Typical $\rm V_{OL}$ vs $\rm I_{OL},$ Low Drive Strength

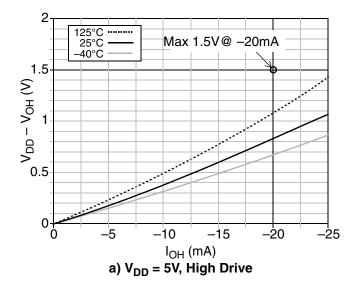


Figure 3-3. Typical $V_{DD} - V_{OH}$ vs I_{OH} , High Drive Strength

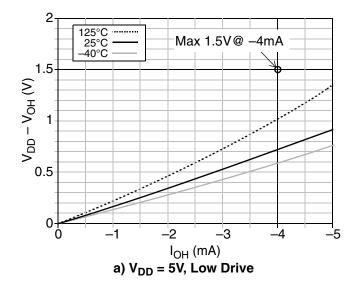


Figure 3-4. Typical $V_{DD} - V_{OH}$ vs I_{OH} , Low Drive Strength

3.7 Supply Current Characteristics

This section includes information about power supply current in various operating modes.

Table 3-7. Supply Current Characteristics

Num	С	Р	arameter	Symbol	V _{DD} (V)	Typ ¹	Max ²	Unit
1	С	Run supply curren (CPU clock = 4	nt ³ measured at MHz, f _{Bus} = 2 MHz)	RI _{DD}	5	1.9	2.4	mA
2	Р		Run supply current ³ measured at (CPU clock = 16 MHz, f _{Bus} = 8 MHz)			4.6	5.6	mA
3	С		Run supply current ⁴ measured at (CPU clock = 32 MHz, f _{Bus} = 16 MHz)			7.8	8.9	mA
	С		-40 °C (C & M suffix)			0.71	_	
	Р	Stop3 mode	25 °C (All parts)			0.93	_	
4	C ⁵	supply current	85 °C (C suffix only)	S3I _{DD}	5	4	11	μΑ
	C ⁵		105 °C (V suffix only)			9	30	
	P ⁵		125 °C (M suffix only)			28	60	
5	С		-40 °C (C & M suffix)			0.70	_	
	Р	Stop2 mode	25 °C (All parts)			0.89	_	
	C ⁵	supply current	85 °C (C suffix only)	S2I _{DD}	5	3	8	μΑ
	C ⁵		105 °C (V suffix only)			6	22	
	P ⁵		125 °C (M suffix only)			17	41	1
6	С	LVD adder to stop	S3I _{DDLVD}	5	110	165	μА	
7	С	Adder to stop3 for (EREFSTEN =1)	oscillator enabled ⁶	S3I _{DDOSC}	5	5	8	μА

Typical values are based on characterization data at 25 °C. See Figure 3-5 through Figure 3-7 for typical curves across voltage/temperature.

² Max values in this column apply for the full operating temperature range of the device unless otherwise noted.

³ All modules except ADC active, ICS configured for FBE, and does not include any dc loads on port pins.

⁴ All modules except ADC active, ICS configured for FEI, and does not include any dc loads on port pins.

⁵ Stop currents are tested in production for 25 °C on all parts. Tests at other temperatures depend upon the part number suffix and maturity of the product. Freescale may eliminate a test insertion at a particular temperature from the production test flow once sufficient data has been collected and is approved.

⁶ Values given under the following conditions: low range operation (RANGE = 0) with a 32.768 kHz crystal and low power mode (HGO = 0).

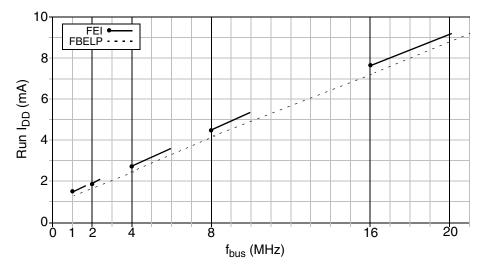
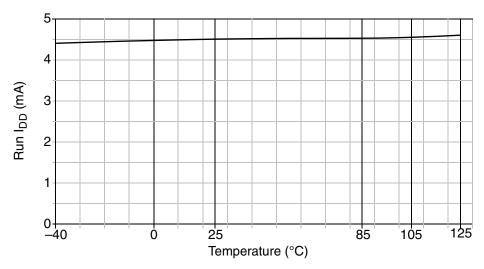



Figure 3-5. Typical Run I_{DD} vs. Bus Frequency ($V_{DD} = 5V$)

Note: ICS is configured to FEI.

Figure 3-6. Typical Run I_{DD} vs. Temperature (V_{DD} = 5V; f_{bus} = 8MHz)

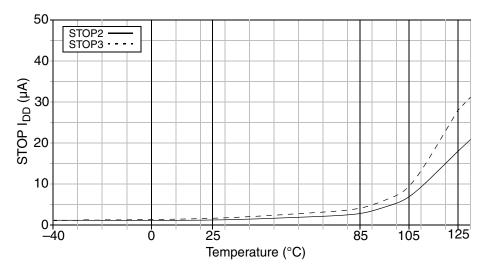


Figure 3-7. Typical Stop I_{DD} vs. Temperature ($V_{DD} = 5V$)

3.8 External Oscillator (XOSC) Characteristics

NOTE

The MC9S08SC4 series supports a narrower low frequency external reference range than the standard ICS specification. All references to range "31.25 kHz to 39.0625 kHz" in this section should be limited to " 32.0 kHz to 38.4 kHz".

Table 3-11. ADC Characteristics

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit	Comment
Quantization	10 bit mode	D	EQ	_	_	±0.5	LSB	_
Error	8 bit mode			_	_	±0.5		
Input Leakage	10 bit mode	D	E _{IL}	_	±0.2	±2.5	LSB	Pad leakage ²
Error	8 bit mode			_	±0.1	±1		* R _{AS}
Temp Sensor Slope	−40°C− 25°C	D	m	_	3.266	_		
	25°C– 125°C			_	3.638	_	mV/°C	_
Temp Sensor Voltage	25°C	D	V _{TEMP2}	_	1.396	_	V	_

Typical values assume $V_{DDA} = 5.0V$, Temp = 25C, $f_{ADCK} = 1.0MHz$ unless otherwise stated. Typical values are for reference only and are not tested in production.

3.11 AC Characteristics

This section describes AC timing characteristics for each peripheral system.

3.11.1 Control Timing

Table 3-12. Control Timing

Num	С	Rating	Symbol	Min	Typ ¹	Max	Unit
1	D	Bus frequency $(t_{cyc} = 1/f_{Bus})$	f _{Bus}	dc	_	20	MHz
2	Р	Internal low power oscillator period	t _{LPO}	700	975	1500	μS
3	D	External reset pulse width ²	t _{extrst}	100	_	_	ns
4	D	Reset low drive ³	t _{rstdrv}	66 x t _{cyc}	_	_	ns
5	D	Pin interrupt pulse width Asynchronous path ² Synchronous path ⁴	t _{ILIH} , t _{IHIL}	100 1.5 x t _{cyc}	_	_	ns
6	Port rise and fall time — Low output drive (PTxDS = 0) (load = 50 pF) ⁵ Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1)		t _{Rise} , t _{Fall}	_	40 75		ns
Ü		Port rise and fall time — High output drive (PTxDS = 1) (load = 50 pF) ⁶ Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1)	t _{Rise} , t _{Fall}		11 35	_ _	ns

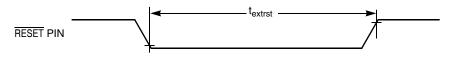
 $^{^{1}}$ Typical values are based on characterization data at $V_{DD} = 5.0 V$, $25^{\circ}C$ unless otherwise stated.

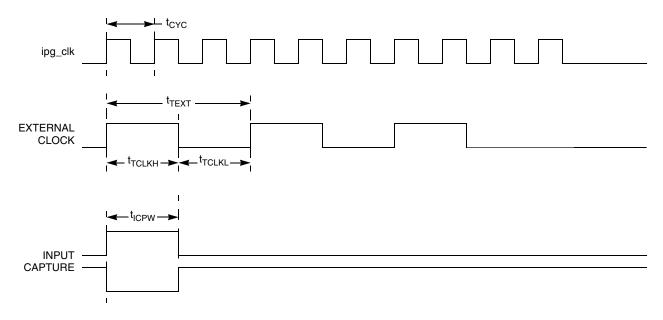
MC9S08SC4 MCU Series Data Sheet, Rev. 4

² Based on input pad leakage current. Refer to pad electricals.

Chapter 3 Electrical Characteristics

- ² This is the shortest pulse that is guaranteed to be recognized as a reset pin request. Shorter pulses are not guaranteed to override reset requests from internal sources. Refer to Figure 3-9.
- When any reset is initiated, internal circuitry drives the reset pin low for about 66 cycles of t_{cyc} . After POR reset the bus clock frequency changes to the untrimmed DCO frequency ($f_{reset} = (f_{dco_ut})/4$) because TRIM is reset to 0x80 and FTRIM is reset to 0, and there is an extra divide-by-two because BDIV is reset to 0:1. After other resets trim stays at the pre-reset value.
- ⁴ This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.
- 5 Timing is shown with respect to 20% $\rm V_{DD}$ and 80% $\rm V_{DD}$ levels. Temperature range –40°C to 125°C.




Figure 3-9. Reset Timing

3.11.2 TPM Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

Num	С	Rating	Symbol	Min	Max	Unit
1	_	External clock frequency	f _{TEXT}	dc	1/4 f _{op}	MHz
2	_	External clock period	t _{TEXT}	4	_	t _{CYC}
3	_	External clock high time	t _{TCLKH}	1.5	_	t _{CYC}
4	_	External clock low time	t _{TCLKL}	1.5	_	t _{CYC}
5	_	Input capture pulse width	f _{ICPW}	1.5	_	t _{CYC}

Table 3-13. TPM Input Timing

3.12 Flash Specifications

This section provides details about program/erase times and program-erase endurance for the FLASH memory.

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Memory section.

Num	С	Characteristic	Symbol	Min	Typical	Max	Unit
1	—	Supply voltage for program/erase	V _{prog/erase}	4.5	_	5.5	V
2	_	Supply voltage for read operation	V _{Read}	4.5	_	5.5	V
3	_	Internal FCLK frequency ¹	f _{FCLK}	150	_	200	kHz
4	_	Internal FCLK period (1/f _{FCLK})	t _{Fcyc}	5	_	6.67	μS
5	_	Byte program time (random location) ²	t _{prog}	9		t _{Fcyc}	
6	_	Byte program time (burst mode) ²	t _{Burst}	4			t _{Fcyc}
7	_	Page erase time ²	t _{Page}		4000		t _{Fcyc}
8	_	Mass erase time ²	t _{Mass}		20,000		t _{Fcyc}
9	С	Program/erase endurance ³ T_L to $T_H = -40$ °C to +125°C $T = 25$ °C	n _{FLPE}	10,000	— 100,000		cycles
10	С	Data retention ⁴	t _{D_ret}	15	100	_	years

Table 3-14. FLASH Characteristics

The frequency of this clock is controlled by a software setting.

These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase.

Typical endurance for FLASH is based on the intrinsic bit cell performance. For additional information on how Freescale defines typical endurance, please refer to Engineering Bulletin EB619/D, Typical Endurance for Nonvolatile Memory.

Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale defines typical data retention, please refer to Engineering Bulletin EB618/D, Typical Data Retention for Nonvolatile Memory.

3.13 EMC Performance

Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

3.13.1 Radiated Emissions

Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM Cell method in accordance with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed with the microcontroller installed on a custom EMC evaluation board while running specialized EMC test software. The radiated emissions from the microcontroller are measured in a TEM cell in two package orientations (North and East).

The maximum radiated RF emissions of the tested configuration in all orientations are less than or equal to the reported emissions levels.

Parameter	Symbol	Conditions	Frequency	f _{OSC} /f _{BUS}	Level ¹ (Max)	Unit
	V _{RE_TEM}	$V_{DD} = 5 V$	0.15 – 50 MHz	4 MHz crystal	- 7	dBμV
		T _A = +25°C package type 16-TSSOP	50 – 150 MHz	8 MHz bus	-11	
Radiated emissions,			150 – 500 MHz		-11	
electric field			500 – 1000 MHz		-10	
			IEC Level		N	_
			SAE Level		1	_

Table 3-15. Radiated Emissions, Electric Field

Data based on qualification test results.

Chapter 4 Ordering Information and Mechanical Drawings

4.1 Ordering Information

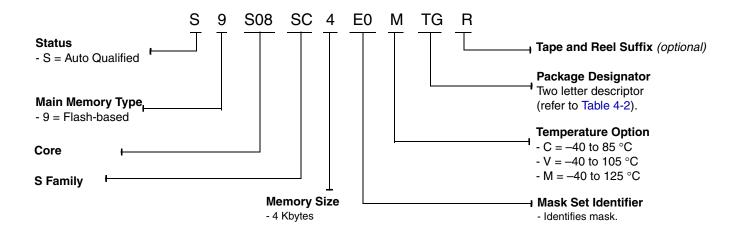

This section contains ordering information for MC9S08SC4 device.

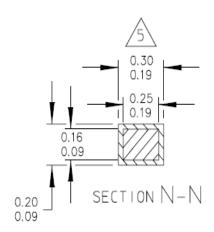
Table 4-1. Device Numbering System

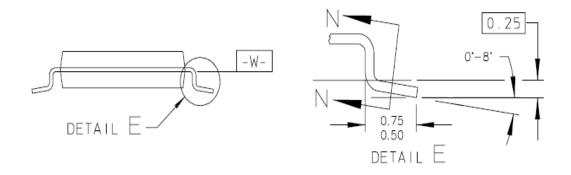
Device Number ¹	Memory		Available
	FLASH	RAM	Packages ²
S9S08SC4E0MTG	4K	256	16 TSSOP

See MC9S08SC4 Reference Manual for a complete description of modules. included on each device.

4.1.1 Device Numbering Scheme

4.2 Package Information


Table 4-2. Package Information


Pin Count	Туре	Designator	Case Number	Document No.
16	TSSOP	TG	948F-01	98ASH70247A

4.3 Mechanical Drawings

The following pages are mechanical drawings for the package described in Table 4-2.

² See Table 4-2 for package information.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE	
		DOCUMENT NO	: 98ASH70247A	REV: B
		CASE NUMBER	: 948F-01	19 MAY 2005
10 25 10001, 111011 0.	0011111	STANDARD: JE	DEC	

MC9S08SC4 MCU Series Data Sheet, Rev. 4

Chapter 5 Revision History

To provide the most up-to-date information, the version of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to: http://freescale.com/

The following revision history table summarizes changes contained in this document.

Revision Number	Revision Date	Description of Changes	
1	9/2008	Initial Release.	
2	7/2009	 Incorporated editing updates. Added C and V temperature ranges at page 1. Updated Section 3.10, "ADC Characteristics". Updated Table 3-3, Table 3-6, Table 3-7, Table 3-9, Table 3-12, Table 3-15 and Section 4.1.1, "Device Numbering Scheme". Added actual package mechanical drawings. Updated Figure 3-5, Figure 3-6. Removed Transient Susceptibilty Section. Updated disclaimer page. 	
3	3/2010	 Updated TSSOP-16 package diagram, clarified ICS deviation, SCI LIN features at page 1. Updated Table 3-6, Table 3-7, Table 3-9, Table 3-12, Table 4-1. Updated Figure 3-5 and Figure 3-7. 	
4	6/2010	 Document changed from Advance Information to Technical Data Updated footnotes in Table 3-7 Updated Figure 3-5 	

Chapter 5 Revision History

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH **Technical Information Center** Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application. Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners

© Freescale Semiconductor, Inc. 2010. All rights reserved.

MC9S08SC4 Rev.4 6/2010