

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	40MHz
Connectivity	LINbus, SCI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	12
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	16-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	16-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/s9s08sc4e0mtgr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Chapter 1 Device Overview

The MC9S08SC4 is a member of the low-cost, high-performance HCS08 Family of 8-bit microcontroller units (MCUs). The MC9S08SC4 uses the enhanced HCS08 core.

1.1 MCU Block Diagram

The block diagram in Figure 1-1 shows the structure of the MC9S08SC4 MCU.

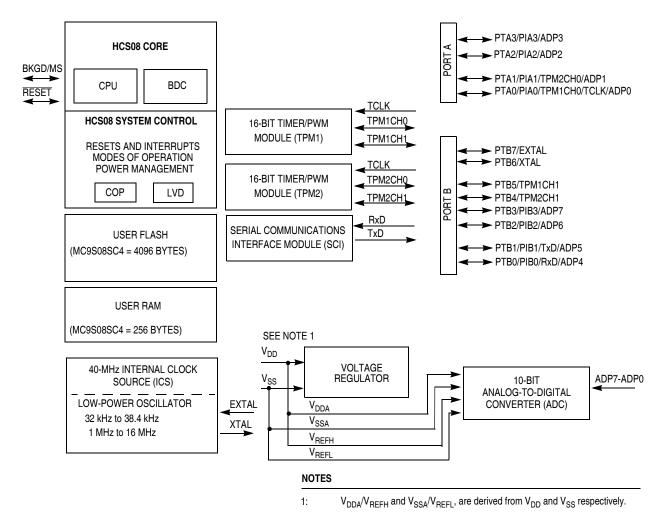
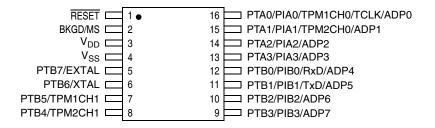


Figure 1-1. MC9S08SC4 Block Diagram

MC9S08SC4 MCU Series Data Sheet, Rev. 4


Chapter 1 Device Overview

Chapter 2 Pins and Connections

This section describes signals that connect to package pins. It includes pinout diagrams, recommended system connections, and detailed discussions of signals.

2.1 Device Pin Assignment

The following figure shows the pin assignments for the MC9S08SC4 device.

Pin	_		Priority		
Number	Lowest				Highest
16-pin	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4
1					RESET
2				BKGD	MS
3					V _{DD}
4					V _{SS}
5	PTB7		EXTAL		
6	PTB6		XTAL		
7	PTB5	TPM1CH1			
8	PTB4	TPM2CH1			
9	PTB3	PIB3			ADP7
10	PTB2	PIB2			ADP6
11	PTB1	PIB1	TxD		ADP5

Table 2-	1. Pin	Function	Priority

Chapter 3 Electrical Characteristics

3.1 Introduction

This section contains electrical and timing specifications for the MC9S08SC4 Series of microcontrollers available at the time of publication.

3.2 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

Table 3-1. Parameter Classifications

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

3.3 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 3-2 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pull-up resistor associated with the pin is enabled.

- ¹ Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- ² Junction to Ambient Natural Convection

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 3-1

where:

 T_A = Ambient temperature, °C

 θ_{IA} = Package thermal resistance, junction-to-ambient, °C/W

 $P_D = P_{int} + P_{I/O}$

 $P_{int} = I_{DD} \times V_{DD}$, Watts — chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins — user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C)$$
 Eqn. 3-2

Solving Equation 3-1 and Equation 3-2 for K gives:

$$K = P_D \times (T_A + 273^{\circ}C) + \theta_{JA} \times (P_D)^2 \qquad \qquad Eqn. 3-3$$

where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 3-1 and Equation 3-2 iteratively for any value of T_A

3.5 ESD Protection and Latch-Up Immunity

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed for the human body model (HBM) and the charge device model (CDM).

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Model	Description	Symbol	Value	Unit
Human	Series resistance	R1	1500	Ω
Body	Storage capacitance	С	100	pF
	Number of pulses per pin	—	3	_
Latch-up	Minimum input voltage limit	—	-2.5	V
	Maximum input voltage limit	—	7.5	V

Table 3-4. ESD and Latch-up Test Conditions

No.	Rating ¹	Symbol	Min	Max	Unit
1	Human body model (HBM)	V _{HBM}	±2000	—	V
2	Charge device model (CDM)	V _{CDM}	±500	_	V
3	Latch-up current at $T_A = 125^{\circ}C$	I _{LAT}	± 100		mA

Table 3-5. ESD and Latch-Up Protection Characteristics

¹ Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted.

3.6 DC Characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Num	С	Characteristic	Symbol	Condition	Min	Typ ¹	Max	Unit
4	_	Operating voltage	V _{DD}	_	4.5		5.5	V
	С	All I/O pins,		5 V, I _{Load} = -4 mA	V _{DD} – 1.5			
5	Ρ	Output high low-drive strength	V _{OH}	5 V, I _{Load} = -2 mA	V _{DD} – 0.8		—	V
5	С	voltage All I/O pins,		5 V, I _{Load} = -20 mA	V _{DD} – 1.5		—	
	Ρ	high-drive strength		5 V, I _{Load} = -10 mA	V _{DD} – 0.8		—	
6	С	Output high Max total I _{OH} for current all ports		V _{OUT} < V _{DD}	0	_	-100	mA
	С	All I/O pins		5 V, I _{Load} = 4 mA	—		1.5	
7	Ρ	Output low low-drive strength	V _{OL}	5 V, I _{Load} = 2 mA	—		0.8	
'	С	voltage All I/O pins		5 V, I _{Load} = 20 mA	—		1.5	V
	Ρ	high-drive strength		5 V, I _{Load} = 10 mA	—		0.8	
8	С	Output low Max total I _{OL} for all ports current	I _{OLT}	V _{OUT} > V _{SS}	0		100	mA
9	Ρ	Input high voltage; all digital inputs	V _{IH}	5V	$0.65 \times V_{DD}$		—	V
10	Ρ	Input low voltage; all digital inputs	V _{IL}	5V	—		$0.35 \times V_{DD}$	V
11	С	Input hysteresis	V _{hys}	—	$0.06 \times V_{DD}$		—	V
12	Ρ	Input leakage current (per pin)	I _{In}	$V_{In} = V_{DD} \text{ or } V_{SS}$	—	0.1	1	μA
	Ρ	Hi-Z (off-state) leakage current (per pin)						
13		input/output port pins	I _{oz}	$V_{In} = V_{DD} \text{ or } V_{SS},$	—	0.1	1	μA
		PTB6/XTAL,RESET	-	$V_{In} = V_{DD} \text{ or } V_{SS}$	—	0.2	2	μA
		Pull-up or Pull-down ² resistors; when enabled						
14	Р	I/O pins	R _{PU} , R _{PD}	—	17	37	52	kΩ
	С	RESET ³	R _{PU}		17	37	52	kΩ

Table 3-6. DC Characteristics

Num	С	Characteristic	Symbol	Condition	Min	Typ ¹	Max	Unit
	D	DC injection current ^{4, 5, 6, 7}						
		Single pin limit		$V_{IN} > V_{DD}$	0	_	2	mA
15			I _{IC}	$V_{IN} < V_{SS}$,	0	—	-0.2	mA
		Total MCU limit, includes		$V_{IN} > V_{DD}$	0	—	25	mA
		sum of all stressed pins		$V_{IN} < V_{SS}$,	0	—	-5	mA
16	D	Input Capacitance, all pins	C _{In}	_	—	—	8	pF
17	D	RAM retention voltage	V _{RAM}	_	—	0.6	1.0	V
18	D	POR re-arm voltage ⁸	V _{POR}	_	0.9	1.4	2.0	V
19	D	POR re-arm time ⁹	t _{POR}	_	10	—	_	μS
20	Ρ	Low-voltage detection threshold — high range V _{DD} falling V _{DD} rising	V _{LVD1}	_	3.85 3.95	4.0 4.1	4.15 4.25	v
21	Ρ	Low-voltage warning threshold — high range 1 V _{DD} falling V _{DD} rising	V _{LVW3}	_	4.45 4.55	4.6 4.7	4.75 4.85	v
22	Ρ	Low-voltage warning threshold — high range 0 V _{DD} falling V _{DD} rising	V _{LVW2}	_	4.15 4.25	4.3 4.4	4.45 4.55	v
23	Т	Low-voltage inhibit reset/recover hysteresis	V _{hys}	_	_	100	_	mV
24	Р	Bandgap Voltage Reference ¹⁰	V _{BG}		1.17	1.20	1.22	V

Table 3-6. DC Characteristics (continued)

¹ Typical values are measured at 25°C. Characterized, not tested.

² When a pin interrupt is configured to detect rising edges, pull-down resistors are used in place of pull-up resistors.

³ The specified resistor value is the actual value internal to the device. The pull-up value may measure higher when measured externally on the pin.

⁴ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption).

 $^5\,$ All functional non-supply pins are internally clamped to V_{SS} and V_{DD}

⁶ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.

 7 The $\overline{\text{RESET}}$ pin does not have a clamp diode to V_{DD} . Do not drive this pin above V_{DD} .

⁸ Maximum is highest voltage that POR will occur.

⁹ Simulated, not tested

 10 Factory trimmed at V_DD = 5.0 V, Temp = 25°C

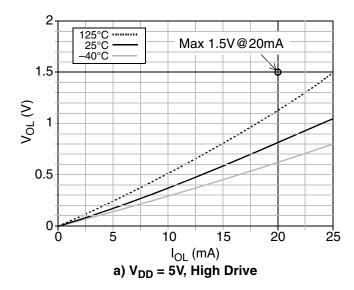


Figure 3-1. Typical V_{OL} vs I_{OL} , High Drive Strength

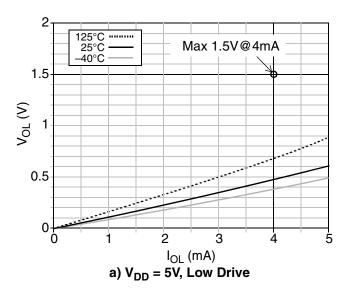


Figure 3-2. Typical $V_{OL} \mbox{ vs I}_{OL},$ Low Drive Strength

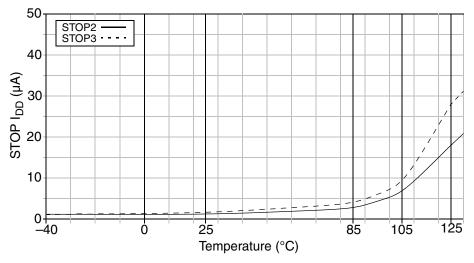


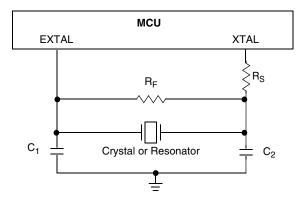
Figure 3-7. Typical Stop I_{DD} vs. Temperature ($V_{DD} = 5V$)

3.8 External Oscillator (XOSC) Characteristics

NOTE

The MC9S08SC4 series supports a narrower low frequency external reference range than the standard ICS specification. All references to range "31.25 kHz to 39.0625 kHz" in this section should be limited to " 32.0 kHz to 38.4 kHz".

Num	С	Rating	Symbol	Min	Typ ¹	Max	Unit
		Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1)					
		Low range (RANGE = 0)	f _{lo}	32	—	38.4	kHz
1	С	High range (RANGE = 1) FEE or FBE mode 2	f _{hi}	1	—	5	MHz
		High range (RANGE = 1, HGO = 1) FBELP mode	f _{hi-hgo}	1	—	16	MHz
		High range (RANGE = 1, HGO = 0) FBELP mode	f _{hi-lp}	1	—	8	MHz
2	_	Load capacitors	C _{1,} C ₂			r resonato	
		Feedback resistor					
3	—	Low range (32 kHz to 100 kHz)	R _F	—	10	—	MΩ
		High range (1 MHz to 16 MHz)		—	1	—	
		Series resistor					
		Low range, low gain (RANGE = 0, HGO = 0)		—	0	—	
		Low range, high gain (RANGE = 0, HGO = 1)		—	100	—	
4		High range, low gain (RANGE = 1, HGO = 0)	R _S	—	0	—	kΩ
-		High range, high gain (RANGE = 1, HGO = 1)	115				K22
		≥ 8 MHz		—	0	0	
		4 MHz		—	0	10	
		1 MHz		—	0	20	
		Crystal start-up time ³					
		Low range, low gain (RANGE = 0, HGO = 0)	t CSTL-LP	—	200	_	
5	т	Low range, high gain (RANGE = 0, HGO = 1)	t CSTL-HGO	—	400	_	ms
		High range, low gain (RANGE = 1, HGO = 0) ⁴	t CSTH-LP	—	5	_	
		High range, high gain (RANGE = 1, HGO = 1) ⁴	t CSTH-HGO	—	15	—	
		Square wave input clock frequency (EREFS = 0, ERCLKEN = 1)					
6	Т	FEE or FBE mode ²	f _{extal}	0.03125	—	5	MHz
		FBELP mode		0	—	40	MHz


Table 3-8. Oscillator Electrical S	Specifications (Temperatu	re Range = -40 to 12	5°C Ambient)
	pecifications (remperatu	1e nange – 4 0 to 12	

¹ Typical data was characterized at 5.0 V, 25°C or is recommended value.

 2 The input clock source must be divided using RDIV to within the range of 31.25 kHz to 39.0625 kHz.

³ This parameter is characterized and not tested on each device. Proper PC board layout procedures must be followed to achieve specifications. This data will vary based upon the crystal manufacturer and board design. The crystal should be characterized by the crystal manufacturer.

⁴ 4 MHz crystal.

3.9 Internal Clock Source (ICS) Characteristics

Num	С	Rating	Symbol	Min	Typical	Max	Unit
1	Ρ	Internal reference frequency - factory trimmed at $V_{DD} = 5 V$ and temperature = $25^{\circ}C$	f _{int_ft}	_	31.25	—	kHz
2	Т	Internal reference frequency - untrimmed ¹	f _{int_ut}	25	36	41.66	kHz
3	Ρ	Internal reference frequency - user trimmed	f _{int_t}	31.25	—	39.0625	kHz
4	Т	Internal reference startup time	t _{irefst}		—	6	μs
5	_	DCO output frequency range - untrimmed ¹ value provided for reference assumes: fdco_ut = 1024 x f _{int_ut}	f _{dco_ut}	25.6	36.86	42.66	MHz
6	D	DCO output frequency range - trimmed	f _{dco_t}	32	—	40	MHz
7	D	Resolution of trimmed DCO output frequency at fixed voltage and temperature (using FTRIM)	$\Delta f_{dco_res_t}$	_	± 0.1	± 0.2	%f _{dco}
8	D	Resolution of trimmed DCO output frequency at fixed voltage and temperature (not using FTRIM)	$\Delta f_{dco_res_t}$	_	± 0.2	±0.4	%f _{dco}
9	D	Total deviation from actual trimmed DCO output frequency over voltage and temperature	Δf_{dco_t}	_	+ 0.5 - 1.0	± 2.0	%f _{dco}
10	D	Total deviation of trimmed DCO output frequency over fixed voltage and temperature range of 0° C to 70 $^{\circ}$ C	Δf_{dco_t}	_	± 0.5	± 1	%f _{dco}
11	D	FLL acquisition time ²	t _{acquire}	_	—	1	ms
12	D	DCO output clock long term jitter (over 2mS interval) ³	C _{Jitter}	_	0.02	0.2	%f _{dco}

Table 3-9. ICS Frequency Specifications (Temperature Range = -40 to 125°C Ambient)

¹ TRIM register at default value (0x80) and FTRIM control bit at default value (0x0).

² This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

³ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{BUS}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit	Comment
Quantization	X	—	±0.5	LSB	—			
Error	8 bit mode			_	—	±0.5		
Input Leakage	10 bit mode	D	E _{IL}	_	±0.2	±2.5	LSB	Pad leakage ²
Error	8 bit mode			_	±0.1	±1		* R _{AS}
Temp Sensor Slope	-40°C− 25°C	D	m	_	3.266	_		
	25°C– 125°C			_	3.638	_	mV/°C	_
Temp Sensor Voltage	25°C	D	V _{TEMP2} 5	_	1.396	_	V	—

 Table 3-11. ADC Characteristics

¹ Typical values assume V_{DDA} = 5.0V, Temp = 25C, f_{ADCK}=1.0MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² Based on input pad leakage current. Refer to pad electricals.

3.11 AC Characteristics

This section describes AC timing characteristics for each peripheral system.

3.11.1 Control Timing

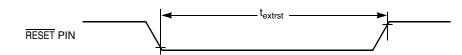
Table 3-12. Control Timing

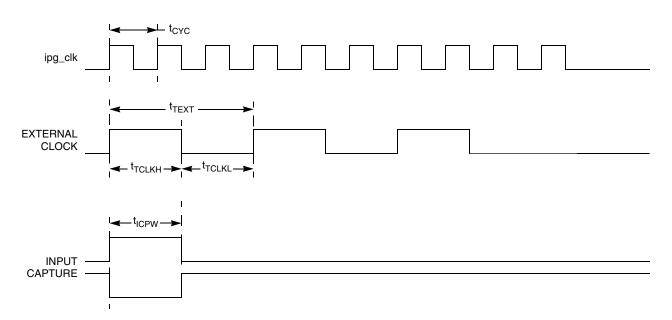
Num	С	Rating	Symbol	Min	Typ ¹	Max	Unit
1	D	Bus frequency (t _{cyc} = 1/f _{Bus})	f _{Bus}	dc	_	20	MHz
2	Р	Internal low power oscillator period	t _{LPO}	700	975	1500	μS
3	D	External reset pulse width ²	t _{extrst}	100	—	—	ns
4	D	Reset low drive ³	t _{rstdrv}	66 x t _{cyc}	—	—	ns
5	D	Pin interrupt pulse width Asynchronous path ² Synchronous path ⁴	t _{ILIH,} t _{IHIL}	100 1.5 x t _{cyc}	_	_	ns
6	6	Port rise and fall time — Low output drive (PTxDS = 0) (load = 50 pF) ⁵ Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1)	t _{Rise} , t _{Fall}		40 75		ns
6	С	Port rise and fall time — High output drive (PTxDS = 1) (load = 50 pF) ⁶ Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1)	t _{Rise} , t _{Fall}		11 35		ns

¹ Typical values are based on characterization data at V_{DD} = 5.0V, 25°C unless otherwise stated.

Chapter 3 Electrical Characteristics

- ² This is the shortest pulse that is guaranteed to be recognized as a reset pin request. Shorter pulses are not guaranteed to override reset requests from internal sources. Refer to Figure 3-9.
- ³ When any reset is initiated, internal circuitry drives the reset pin low for about 66 cycles of t_{cyc} . After POR reset the bus clock frequency changes to the untrimmed DCO frequency ($f_{reset} = (f_{dco_ut})/4$) because TRIM is reset to 0x80 and FTRIM is reset to 0, and there is an extra divide-by-two because BDIV is reset to 0:1. After other resets trim stays at the pre-reset value.
- ⁴ This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.
- $^5~$ Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range –40°C to 125°C.




Figure 3-9. Reset Timing

3.11.2 TPM Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

Num	С	Rating	Symbol	Min	Мах	Unit
1		External clock frequency	f _{TEXT}	dc	1/4 f _{op}	MHz
2	_	External clock period	t _{TEXT}	4	_	t _{CYC}
3	_	External clock high time	t _{TCLKH}	1.5	_	t _{CYC}
4	_	External clock low time	t _{TCLKL}	1.5	—	t _{CYC}
5	_	Input capture pulse width	f _{ICPW}	1.5		t _{CYC}

Table 3-13. TPM Input Timing

3.12 Flash Specifications

This section provides details about program/erase times and program-erase endurance for the FLASH memory.

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Memory section.

Num	С	Characteristic Symbol Min Typical Max		Max	Unit		
1	—	Supply voltage for program/erase	V _{prog/erase}	4.5	—	5.5	V
2	—	Supply voltage for read operation	V _{Read}	4.5	_	5.5	V
3	_	Internal FCLK frequency ¹	f _{FCLK}	150	—	200	kHz
4	_	Internal FCLK period (1/f _{FCLK})	t _{Fcyc}	_{rc} 5 — 6.67			μs
5	—	Byte program time (random location) ²	t _{prog}	9			t _{Fcyc}
6	—	Byte program time (burst mode) ²	t _{Burst}	4			t _{Fcyc}
7	_	Page erase time ²	t _{Page}	4000			t _{Fcyc}
8	—	Mass erase time ²	t _{Mass}	20,000			t _{Fcyc}
9	С	Program/erase endurance ³ T _L to T _H = -40°C to +125°C T = 25°C	T_{L} to $T_{H} = -40^{\circ}$ C to +125°C n_{FLPE} 10,000 — —		cycles		
10	С	Data retention ⁴	ta retention ⁴ t _{D_ret} 15 100 —		years		

Table 3-14. FLASH Characteristics

¹ The frequency of this clock is controlled by a software setting.

² These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase.

³ Typical endurance for FLASH is based on the intrinsic bit cell performance. For additional information on how Freescale defines typical endurance, please refer to Engineering Bulletin EB619/D, Typical Endurance for Nonvolatile Memory.

⁴ Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale defines typical data retention, please refer to Engineering Bulletin EB618/D, Typical Data Retention for Nonvolatile Memory.

3.13 EMC Performance

Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

3.13.1 Radiated Emissions

Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM Cell method in accordance with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed with the microcontroller installed on a custom EMC evaluation board while running specialized EMC test software. The radiated emissions from the microcontroller are measured in a TEM cell in two package orientations (North and East).

The maximum radiated RF emissions of the tested configuration in all orientations are less than or equal to the reported emissions levels.

Parameter	Symbol	Conditions	Frequency	f _{OSC} /f _{BUS}	Level ¹ (Max)	Unit
	V _{RE_TEM}	$V_{DD} = 5 V$ $T_A = +25^{\circ}C$ package type 16-TSSOP	0.15 – 50 MHz	4 MHz crystal 8 MHz bus	-7	dBμV
			50 – 150 MHz		-11	
Radiated emissions,			150 – 500 MHz		-11	
electric field			500 – 1000 MHz		-10	
			IEC Level		Ν	—
			SAE Level		1	—

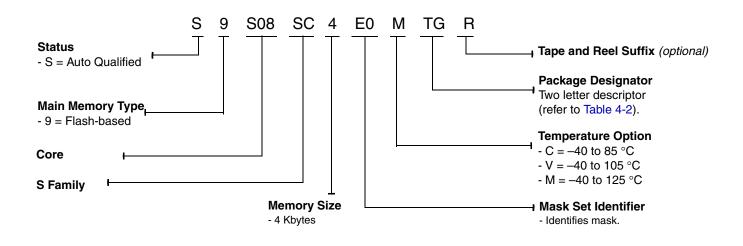
Table 3-15. Radiated Emissions, Electric Field

¹ Data based on qualification test results.

Chapter 4 Ordering Information and Mechanical Drawings

4.1 Ordering Information

This section contains ordering information for MC9S08SC4 device.


Table 4-1. Device Numbering System

Device Number ¹	Men	nory	Available
Device Number	FLASH	RAM	Packages ²
S9S08SC4E0MTG	4K	256	16 TSSOP

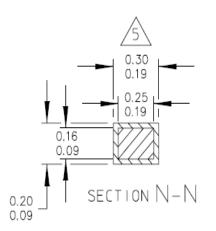
¹ See MC9S08SC4 Reference Manual for a complete description of modules. included on each device.

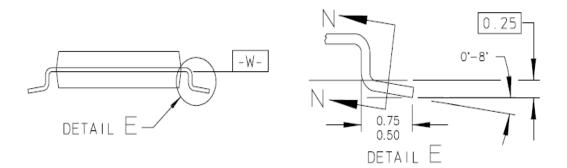
² See Table 4-2 for package information.

4.1.1 Device Numbering Scheme

4.2 Package Information

Table 4-2. Package Information


Pin Count	Туре	Designator	Case Number	Document No.
16	TSSOP	TG	948F-01	98ASH70247A


4.3 Mechanical Drawings

The following pages are mechanical drawings for the package described in Table 4-2.

MC9S08SC4 MCU Series Data Sheet, Rev. 4

Chapter 4 Ordering Information and Mechanical Drawings

© FREESCALE SEWICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCA	
TITLE:	DOCUMENT NO	: 98ASH70247A	REV: B	
16 LD TSSOP, PITCH 0.	65MM	CASE NUMBER	2: 948F-01	19 MAY 2005
	STANDARD: JE	DEC	-	

MC9S08SC4 MCU Series Data Sheet, Rev. 4

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER
- 2. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M-1982.
- DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE.
- 4 DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 PER SIDE

5 DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF THE DIMENSION AT MAXIMUM MATERIAL CONDITION.

6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

7 dimensions are to be determined at datum plane $[-w_-]$.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICAL		L OUTLINE	PRINT VERSION NO	IT TO SCALE
TITLE:	DOCUMENT NO	1: 98ASH70247A	REV: B	
16 LD TSSOP, PITCH 0.6	5MM	CASE NUMBER	2: 948F-01	19 MAY 2005
	STANDARD: JE	DEC		

Chapter 5 Revision History

To provide the most up-to-date information, the version of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to: http://freescale.com/

The following revision history table summarizes changes contained in this document.

Revision Number	Revision Date	Description of Changes
1	9/2008	Initial Release.
2	7/2009	 Incorporated editing updates. Added C and V temperature ranges at page 1. Updated Section 3.10, "ADC Characteristics". Updated Table 3-3, Table 3-6, Table 3-7, Table 3-9, Table 3-12, Table 3-15 and Section 4.1.1, "Device Numbering Scheme". Added actual package mechanical drawings. Updated Figure 3-5, Figure 3-6. Removed Transient Susceptibility Section. Updated disclaimer page.
3	3/2010	 Updated TSSOP-16 package diagram, clarified ICS deviation, SCI LIN features at page 1. Updated Table 3-6, Table 3-7, Table 3-9, Table 3-12, Table 4-1. Updated Figure 3-5 and Figure 3-7.
4	6/2010	 Document changed from Advance Information to Technical Data Updated footnotes in Table 3-7 Updated Figure 3-5

Chapter 5 Revision History