E·XFL

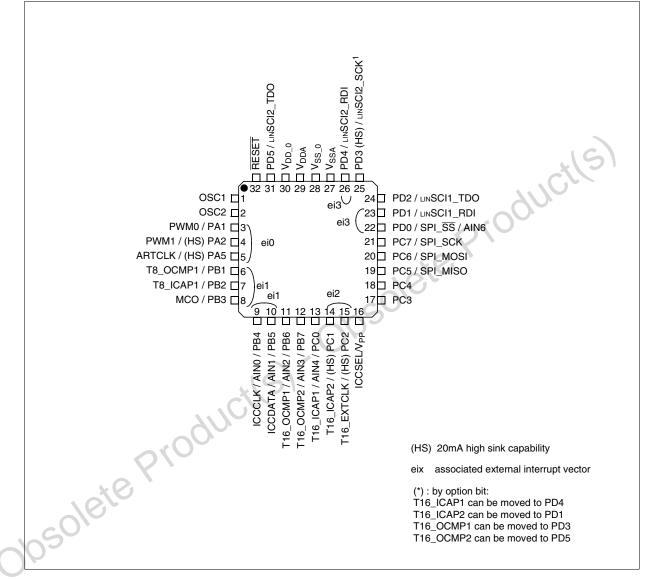
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Product Status	Obsolete
Core Processor	ST7
Core Size	8-Bit
Speed	8MHz
Connectivity	LINbusSCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	48
Program Memory Size	60KB (60K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3.8V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st72f361ar9tc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

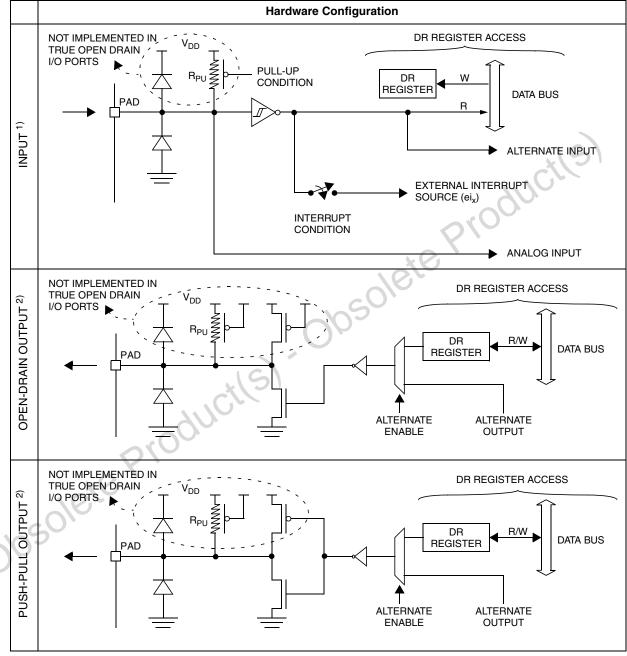
PIN DESCRIPTION (Cont'd)

Figure 4. LQFP 32-Pin Package Pinout

For external pin connection guidelines, refer to "ELECTRICAL CHARACTERISTICS" on page 178.

Address	Block	Register Label	Register Name	Reset Status	Remarks
0048h		SCI1ISR	SCI1 Status Register	C0h	Read Only
0049h		SCI1DR	SCI1 Data Register	xxh	R/W
004Ah	LINSCI1	SCI1BRR	SCI1 Baud Rate Register	00h	R/W
004Bh	(LIN Master/	SCI1CR1	SCI1 Control Register 1	xxh	R/W
004Ch	Slave)	SCI1CR2	SCI1 Control Register 2	00h	R/W
004Dh	Olavej	SCI1CR3	SCI1Control Register 3	00h	R/W
004Eh		SCI1ERPR	SCI1 Extended Receive Prescaler Register	00h	R/W
004Fh		SCI1ETPR	SCI1 Extended Transmit Prescaler Register	00h	R/W
0050h			Reserved Area (1 byte)		1
0051h		T16CR2	Timer Control Register 2	00h	R/W
0052h		T16CR1	Timer Control Register 1	00h	R/W
0053h		T16CSR	Timer Control/Status Register	00h	R/W
0054h		T16IC1HR	Timer Input Capture 1 High Register	xxh	Read Only
0055h		T16IC1LR	Timer Input Capture 1 Low Register	xxh	Read Only
0056h		T16OC1HR	Timer Output Compare 1 High Register	80h	R/W
0057h	16-BIT	T16OC1LR	Timer Output Compare 1 Low Register	00h	R/W
0058h	TIMER	T16CHR	Timer Counter High Register	FFh	Read Only
0059h		T16CLR	Timer Counter Low Register	FCh	Read Only
005Ah		T16ACHR	Timer Alternate Counter High Register	FFh	Read Only
005Bh		T16ACLR	Timer Alternate Counter Low Register	FCh	Read Only
005Ch		T16IC2HR	Timer Input Capture 2 High Register	xxh	Read Only
005Dh		T16IC2LR	Timer Input Capture 2 Low Register	xxh	Read Only
005Eh		T16OC2HR	Timer Output Compare 2 High Register	80h	R/W
005Fh		T16OC2LR	Timer Output Compare 2 Low Register	00h	R/W
0060h		SCI2SR 🖌	SCI2 Status Register	C0h	Read Only
0061h		SCI2DR	SCI2 Data Register	xxh	R/W
0062h		SCI2BRR	SCI2 Baud Rate Register	00h	R/W
0063h	LINSCI2	SCI2CR1	SCI2 Control Register 1	xxh	R/W
0064h	(LIN Master)	SCI2CR2	SCI2 Control Register 2	00h	R/W
0065h	\mathcal{O}	SCI2CR3	SCI2 Control Register 3	00h	R/W
0066h		SCI2ERPR	SCI2 Extended Receive Prescaler Register	00h	R/W
0067h	XU	SCI2ETPR	SCI2 Extended Transmit Prescaler Register	00h	R/W
0068h	6				
to	•		Reserved area (24 bytes)		
007Fh					

Legend: x = undefined, R/W = read/write


Notes:

1. The contents of the I/O port DR registers are readable only in output configuration. In input configuration, the values of the I/O pins are returned instead of the DR register contents.

2. The bits associated with unavailable pins must always keep their reset value.

I/O PORTS (Cont'd)

Notes:

- 1. When the I/O port is in input configuration and the associated alternate function is enabled as an output, reading the DR register will read the alternate function output status.
- When the I/O port is in output configuration and the associated alternate function is enabled as an input, the alternate function reads the pin status given by the DR register content.

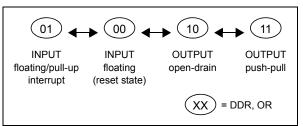
I/O PORTS (Cont'd)

CAUTION: The alternate function must not be activated as long as the pin is configured as input with interrupt, in order to avoid generating spurious interrupts.

Analog alternate function

When the pin is used as an ADC input, the I/O must be configured as floating input. The analog multiplexer (controlled by the ADC registers) switches the analog voltage present on the selected pin to the common analog rail which is connected to the ADC input.

It is recommended not to change the voltage level or loading on any port pin while conversion is in progress. Furthermore it is recommended not to have clocking pins located close to a selected analog pin.


WARNING: The analog input voltage level must be within the limits stated in the absolute maximum ratings.

9.3 I/O PORT IMPLEMENTATION

The hardware implementation on each I/O port depends on the settings in the DDR and OR registers and specific feature of the I/O port such as ADC Input or true open drain.

Switching these I/O ports from one state to another should be done in a sequence that prevents unwanted side effects. Recommended safe transitions are illustrated in Figure 33 on page 49. Other transitions are potentially risky and should be avoided, since they are likely to present unwanted side-effects such as spurious interrupt generation.

Figure 33. Interrupt I/O Port State Transitions

9.4 LOW POWER MODES

Mode	Description
WAIT	No effect on I/O ports. External interrupts cause the device to exit from WAIT mode.
HALT	No effect on I/O ports. External interrupts cause the device to exit from HALT mode.

9.5 INTERRUPTS

The external interrupt event generates an interrupt if the corresponding configuration is selected with DDR and OR registers and the interrupt mask in the CC register is not active (RIM instruction).

Interrupt Event	Event Flag	Enable Control Bit		Exit from Halt
External interrupt on selected external event	-	DDRx ORx	Yes	

PWM AUTO-RELOAD TIMER (Cont'd)

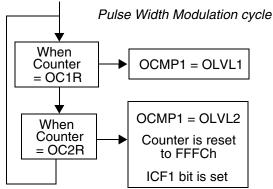
Table 17. PWM Auto-Reload Timer Register Map and Reset Values

Address (Hex.)	Register Label	7	6	5	4	3	2	1	0
0031h	PWMDCR3	DC7	DC6	DC5	DC4	DC3	DC2	DC1	DC
	Reset Value	0	0	0	0	0	0	0	0
0032h	PWMDCR2	DC7	DC6	DC5	DC4	DC3	DC2	DC1	DC
	Reset Value	0	0	0	0	0	0	0	0
0033h	PWMDCR1 Reset Value	DC7 0	DC6 0	DC5 0	DC4 0	DC3 0	DC2 0	DC1 0	
0034h	PWMDCR0	DC7	DC6	DC5	DC4	DC3	DC2	DC1	DC
	Reset Value	0	0	0	0	0	0	0	0
0035h	PWMCR	OE3	OE2	OE1	OE0	OP3	OP2	OP1	OF
	Reset Value	0	0	0	0	0	0	0	0
0036h	ARTCSR	EXCL	CC2	CC1	CC0	TCE	FCRL	RIE	0V
	Reset Value	0	0	0	0	0	0	0	0
0037h	ARTCAR	CA7	CA6	CA5	CA4	CA3	CA2	CA1	CA
	Reset Value	0	0	0	0	0	0	0	0
0038h	ARTARR	AR7	AR6	AR5	AR4	AR3	AR2	AR1	AR
	Reset Value	0	0	0	0	0	0	0	0
0039h	ARTICCSR Reset Value	0	0	CE2 0	CE1 0	CS2 0	CS1 0	CF2 0	CF 0
003Ah	ARTICR1	IC7	IC6	IC5	IC4	IC3	IC2	IC1	IC
	Reset Value	0	0	0	0	0	0	0	0
003Bh	ARTICR2	IC7	IC6	IC5	IC4	IC3	IC2	IC1	IC
	Reset Value	0	0	0	0	0	0	0	0
osoli	2								

16-BIT TIMER (Cont'd)

10.4.3.6 Pulse Width Modulation Mode

Pulse Width Modulation (PWM) mode enables the generation of a signal with a frequency and pulse length determined by the value of the OC1R and OC2R registers.


Pulse Width Modulation mode uses the complete Output Compare 1 function plus the OC2R register, and so this functionality can not be used when PWM mode is activated.

In PWM mode, double buffering is implemented on the output compare registers. Any new values written in the OC1R and OC2R registers are taken into account only at the end of the PWM period (OC2) to avoid spikes on the PWM output pin (OCMP1).

Procedure

To use Pulse Width Modulation mode:

- 1. Load the OC2R register with the value corresponding to the period of the signal using the formula in the opposite column.
- 2. Load the OC1R register with the value corresponding to the period of the pulse if (OLVL1 = 0 and OLVL2 = 1) using the formula in the opposite column.
- 3. Select the following in the CR1 register:
 - Using the OLVL1 bit, select the level to be applied to the OCMP1 pin after a successful comparison with the OC1R register.
 - Using the OLVL2 bit, select the level to be applied to the OCMP1 pin after a successful comparison with the OC2R register.
- 4. Select the following in the CR2 register:
 - Set OC1E bit: the OCMP1 pin is then dedicated to the output compare 1 function.
 - Set the PWM bit.
 - Select the timer clock (CC[1:0]) (see Table 17 Clock Control Bits).

If OLVL1 = 1 and OLVL2 = 0 the length of the positive pulse is the difference between the OC2R and OC1R registers.

If OLVL1 = OLVL2 a continuous signal will be seen on the OCMP1 pin.

The OC*i*R register value required for a specific timing application can be calculated using the following formula:

$$OC_{i}R Value = \frac{t \cdot t_{CPU}}{PRESC} - 5$$

Where:

t = Signal or pulse period (in seconds)

f_{CPU} = CPU clock frequency (in hertz)

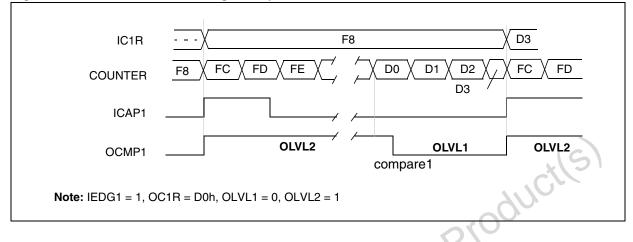
PRESC = Timer prescaler factor (2, 4 or 8 depending on CC[1:0] bits, see Table 17 Clock Control Bits)

If the timer clock is an external clock the formula is:

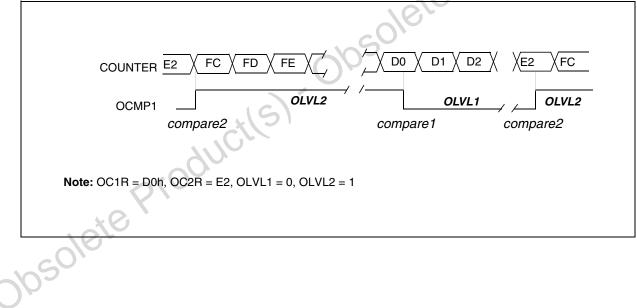
Where:

= Signal or pulse period (in seconds)

 f_{EXT} = External timer clock frequency (in hertz)


The Output Compare 2 event causes the counter to be initialized to FFFCh (See Figure 58)

Notes:


- 1. After a write instruction to the OC*i*HR register, the output compare function is inhibited until the OC*i*LR register is also written.
- 2. The OCF1 and OCF2 bits cannot be set by hardware in PWM mode therefore the Output Compare interrupt is inhibited.
- 3. The ICF1 bit is set by hardware when the counter reaches the OC2R value and can produce a timer interrupt if the ICIE bit is set and the I bit is cleared.
- 4. In PWM mode the ICAP1 pin can not be used to perform input capture because it is disconnected to the timer. The ICAP2 pin can be used to perform input capture (ICF2 can be set and IC2R can be loaded) but the user must take care that the counter is reset each period and ICF1 can also generates interrupt if ICIE is set.
- 5. When the Pulse Width Modulation (PWM) and One Pulse mode (OPM) bits are both set, the PWM mode is the only active one.

8-BIT TIMER (Cont'd)

Figure 68. One Pulse Mode Timing Example

8-BIT TIMER (Cont'd) CONTROL REGISTER 2 (CR2)

Read/Write

Reset Value: 0000 0000 (00h)

7							0
OC1E	OC2E	OPM	PWM	CC1	CC0	IEDG2	0

Bit 7 = **OC1E** *Output Compare 1 Pin Enable.*

This bit is used only to output the signal from the timer on the OCMP1 pin (OLV1 in Output Compare mode, both OLV1 and OLV2 in PWM and one-pulse mode). Whatever the value of the OC1E bit, the Output Compare 1 function of the timer remains active.

- 0: OCMP1 pin alternate function disabled (I/O pin free for general-purpose I/O).
- 1: OCMP1 pin alternate function enabled.

Bit 6 = **OC2E** Output Compare 2 Pin Enable.

This bit is used only to output the signal from the timer on the OCMP2 pin (OLV2 in Output Compare mode). Whatever the value of the OC2E bit, the Output Compare 2 function of the timer remains active.

- 0: OCMP2 pin alternate function disabled (I/O pin free for general-purpose I/O).
- 1: OCMP2 pin alternate function enabled.

Bit 5 = **OPM** One Pulse Mode.

- 0: One Pulse Mode is not active.
- 1: One Pulse Mode is active, the ICAP1 pin can be used to trigger one pulse on the OCMP1 pin; the active transition is given by the IEDG1 bit. The length of the generated pulse depends on the contents of the OC1R register.

Bit 4 = **PWM** Pulse Width Modulation.

- 0: PWM mode is not active.
- 1: PWM mode is active, the OCMP1 pin outputs a programmable cyclic signal; the length of the pulse depends on the value of OC1R register; the period depends on the value of OC2R register.

Bit 3, 2 = **CC[1:0]** *Clock Control.*

The timer clock mode depends on these bits:

Table 20. Clock Control Bits

Timer Clock	CC1	CC0
f _{CPU} / 4	0	0
f _{CPU} / 2	0	1
f _{CPU} / 8	KU1	0
f _{OSC2} / 8000*	1	1

16

* Not available in Slow mode in ST72F561.

Bit 1 = IEDG2 Input Edge 2.

This bit determines which type of level transition on the ICAP2 pin will trigger the capture.

0: A falling edge triggers the capture.

1: A rising edge triggers the capture.

Bit 0 = Reserved, must be kept at 0.

SERIAL PERIPHERAL INTERFACE (cont'd)

10.6.3.3 Master Mode Operation

In master mode, the serial clock is output on the SCK pin. The clock frequency, polarity and phase are configured by software (refer to the description of the SPICSR register).

Note: The idle state of SCK must correspond to the polarity selected in the SPICSR register (by pulling up SCK if CPOL = 1 or pulling down SCK if CPOL = 0).

How to operate the SPI in master mode

To operate the SPI in master mode, perform the following steps in order:

- Write to the SPICR register:
 - Select the clock frequency by configuring the SPR[2:0] bits.
 - Select the clock polarity and clock phase by configuring the CPOL and CPHA bits. Figure 74 shows the four possible configurations. **Note:** The slave must have the same CPOL and CPHA settings as the master.
- 2. Write to the SPICSR register:
 - Either set the SSM bit and set the SSI bit or clear the SSM bit and tie the SS pin high for the complete byte transmit sequence.
- 3. Write to the SPICR register:

 - Set the MSTR and SPE bits
 Note: MSTR and SPE bits remain set only if SS is high).

Important note: if the SPICSR register is not written first, the SPICR register setting (MSTR bit) may be not taken into account.

The transmit sequence begins when software writes a byte in the SPIDR register.

10.6.3.4 Master Mode Transmit Sequence

When software writes to the SPIDR register, the data byte is loaded into the 8-bit shift register and then shifted out serially to the MOSI pin most significant bit first.

When data transfer is complete:

- The SPIF bit is set by hardware.
- An interrupt request is generated if the SPIE bit is set and the interrupt mask in the CCR register is cleared.

Clearing the SPIF bit is performed by the following software sequence:

- 1. An access to the SPICSR register while the SPIF bit is set
- 2. A read to the SPIDR register

Note: While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR register is read.

10.6.3.5 Slave Mode Operation

In slave mode, the serial clock is received on the SCK pin from the master device.

To operate the SPI in slave mode:

- 1. Write to the SPICSR register to perform the following actions:
 - Select the clock polarity and clock phase by configuring the CPOL and CPHA bits (see **Note:** The slave must have the same CPOL and CPHA settings as the master.
 - Manage the \overline{SS} pin as described in Section 10.6.3.2 and Figure 72. If CPHA = 1 SS must be held low continuously. If CPHA = 0 SS must be held low during byte transmission and pulled up between each byte to let the slave write in the shift register.
- 2. Write to the SPICR register to clear the MSTR bit and set the SPE bit to enable the SPI I/O functions.

10.6.3.6 Slave Mode Transmit Sequence

When software writes to the SPIDR register, the data byte is loaded into the 8-bit shift register and then shifted out serially to the MISO pin most significant bit first.

The transmit sequence begins when the slave device receives the clock signal and the most significant bit of the data on its MOSI pin.

When data transfer is complete:

- The SPIF bit is set by hardware.
- An interrupt request is generated if SPIE bit is set and interrupt mask in the CCR register is cleared.

Clearing the SPIF bit is performed by the following software sequence:

- 1. An access to the SPICSR register while the SPIF bit is set
- A write or a read to the SPIDR register

Notes: While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR register is read.

The SPIF bit can be cleared during a second transmission; however, it must be cleared before the second SPIF bit in order to prevent an Overrun condition (see Section 10.6.5.2).

SERIAL PERIPHERAL INTERFACE (cont'd)

10.6.5.4 Single Master and Multimaster Configurations

There are two types of SPI systems:

- Single Master System
- Multimaster System

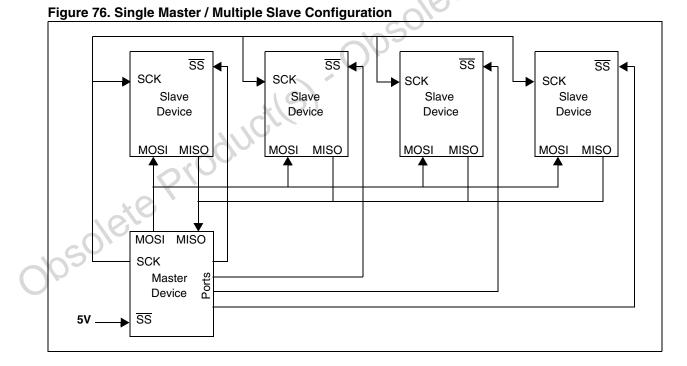
Single Master System

A typical single master system may be configured using a device as the master and four devices as slaves (see Figure 76).

The master device selects the individual slave devices by <u>using</u> four pins of a parallel port to control the four SS pins of the slave devices.

The \overline{SS} pins are pulled high during reset since the master device ports will be forced to be inputs at that time, thus disabling the slave devices.

Note: To prevent a bus conflict on the MISO line, the master allows only one active slave device during a transmission.


For more security, the slave device may respond to the master with the received data byte. Then the master will receive the previous byte back from the slave device if all MISO and MOSI pins are connected and the slave has not written to its SPIDR register.

Other transmission security methods can use ports for handshake lines or data bytes with command fields.

Multimaster System

A multimaster system may also be configured by the user. Transfer of master control could be implemented using a handshake method through the I/O ports or by an exchange of code messages through the serial peripheral interface system.

The multimaster system is principally handled by the MSTR bit in the SPICR register and the MODF bit in the SPICSR register.

LINSCI™ SERIAL COMMUNICATION INTERFACE (LIN Mode) (cont'd)

10.7.9.4 LIN Error Detection

LIN Header Error Flag

The LIN Header Error Flag indicates that an invalid LIN Header has been detected.

When a LIN Header Error occurs:

- The LHE flag is set
- An interrupt is generated if the RIE bit is set and the I[1:0] bits are cleared in the CCR register.

If autosynchronization is enabled (LASE bit = 1), this can mean that the LIN Synch Field is corrupted, and that the SCI is in a blocked state (LSF bit is set). The only way to recover is to reset the LSF bit and then to clear the LHE bit.

- The LHE bit is reset by an access to the SCISR register followed by a read of the SCIDR register.

LHE/OVR Error Conditions

When Auto Resynchronization is disabled (LASE bit = 0), the LHE flag detects:

- That the received LIN Synch Field is not equal to 55h.
- That an overrun occurred (as in standard SCI mode)
- Furthermore, if LHDM is set it also detects that a LIN Header Reception Timeout occurred (only if LHDM is set).

When the LIN auto-resynchronization is enabled (LASE bit = 1), the LHE flag detects:

- That the deviation error on the Synch Field is outside the LIN specification which allows up to +/-15.5% of period deviation between the slave and master oscillators.
- A LIN Header Reception Timeout occurred.
 If T_{HEADER} > T_{HEADER_MAX} then the LHE flag is set. Refer to Figure 6. (only if LHDM is set to 1)
- An overflow during the Synch Field Measurement, which leads to an overflow of the divider registers. If LHE is set due to this error then the SCI goes into a blocked state (LSF bit is set).
- That an overrun occurred on Fields other than the Synch Field (as in standard SCI mode)

Deviation Error on the Synch Field

The deviation error is checking by comparing the current baud rate (relative to the slave oscillator) with the received LIN Synch Field (relative to the master oscillator). Two checks are performed in parallel:

 The first check is based on a measurement between the first falling edge and the last falling edge of the Synch Field. Let us refer to this period deviation as D:

If the LHE flag is set, it means that:

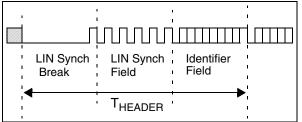
D > 15.625%

If LHE flag is not set, it means that:

D < 16.40625%

If $15.625\% \le D < 16.40625\%$, then the flag can be either set or reset depending on the dephasing between the signal on the RDI line and the CPU clock.

 The second check is based on the measurement of each bit time between both edges of the Synch Field: this checks that each of these bit times is large enough compared to the bit time of the current baud rate.


When LHE is set due to this error then the SCI goes into a blocked state (LSF bit is set).

LIN Header Time-out Error

When the LIN Identifier Field Detection Method is used (by configuring LHDM to 1) or when LIN auto-resynchronization is enabled (LASE bit = 1), the LINSCI automatically monitors the T_{HEADER_MAX} condition given by the LIN protocol.

If the entire Header (up to and including the STOP bit of the LIN Identifier Field) is not received within the maximum time limit of 57 bit times then a LIN Header Error is signalled and the LHE bit is set in the SCISR register.

Figure 82. LIN Header Reception Timeout

The time-out counter is enabled at each break detection. It is stopped in the following conditions:

- A LIN Identifier Field has been received

- An LHE error occurred (other than a timeout error).

- A software reset of LSF bit (transition from high to low) occurred during the analysis of the LIN Synch Field or

If LHE bit is set due to this error during the LIN Synchr Field (if LASE bit = 1) then the SCI goes into a blocked state (LSF bit is set).

10.8 LINSCI SERIAL COMMUNICATION INTERFACE (LIN Master Only)

10.8.1 Introduction

The Serial Communications Interface (SCI) offers a flexible means of full-duplex data exchange with external equipment requiring an industry standard NRZ asynchronous serial data format. The SCI offers a very wide range of baud rates using two baud rate generator systems.

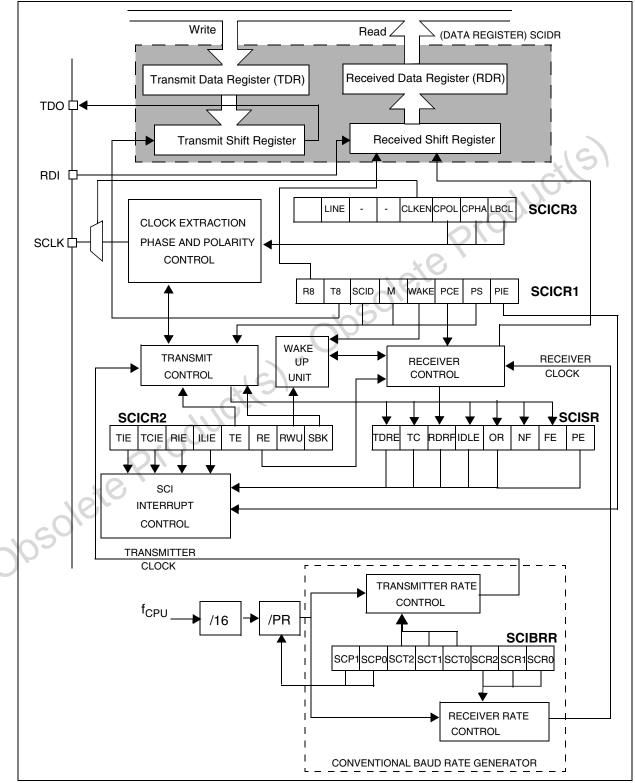
10.8.2 Main Features

- Full duplex, asynchronous communications
- NRZ standard format (Mark/Space)
- Dual baud rate generator systems
- Independently programmable transmit and receive baud rates up to 500K baud.
- Programmable data word length (8 or 9 bits)
- Receive buffer full, Transmit buffer empty and End of Transmission flags
- 2 receiver wake-up modes:
 - Address bit (MSB)
 - Idle line
- Muting function for multiprocessor configurations
- Separate enable bits for Transmitter and Receiver
- 4 error detection flags:
 - Overrun error
 - Noise error
 - Frame error
 - Parity error
- 5 interrupt sources with flags:
 - Transmit data register empty
 - Transmission complete
 - Receive data register full
 - Idle line received
 - Overrun error detected
- Transmitter clock output
- Parity control:
 - Transmits parity bit
 - Checks parity of received data byte
- Reduced power consumption mode
- LIN Synch Break send capability

10.8.3 General Description

The interface is externally connected to another device by three pins (see Figure 88 on page 153). Any SCI bidirectional communication requires a minimum of two pins: Receive Data In (RDI) and Transmit Data Out (TDO):

- SCLK: Transmitter clock output. This pin outputs the transmitter data clock for synchronous transmission (no clock pulses on start bit and stop bit, and a software option to send a clock pulse on the last data bit). This can be used to control peripherals that have shift registers (e.g. LCD drivers). The clock phase and polarity are software programmable.
- TDO: Transmit Data Output. When the transmitter is disabled, the output pin returns to its I/O port configuration. When the transmitter is enabled and nothing is to be transmitted, the TDO pin is at high level.
- RDI: Receive Data Input is the serial data input. Oversampling techniques are used for data recovery by discriminating between valid incoming data and noise.


Through these pins, serial data is transmitted and received as frames comprising:

- An Idle Line prior to transmission or reception
- A start bit
- A data word (8 or 9 bits) least significant bit first
- A Stop bit indicating that the frame is complete.
- This interface uses two types of baud rate generator:
- A conventional type for commonly-used baud rates,
- An extended type with a prescaler offering a very wide range of baud rates even with non-standard oscillator frequencies.

67/

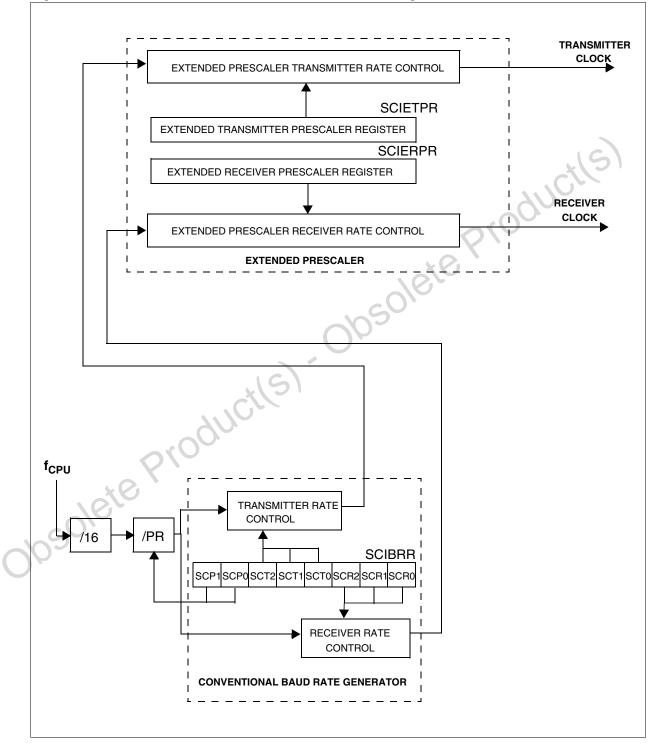

LINSCITM SERIAL COMMUNICATION INTERFACE (LIN Master Only) (Cont'd)

Figure 88. SCI Block Diagram

LINSCI™ SERIAL COMMUNICATION INTERFACE (LIN Master Only) (Cont'd)

Figure 90. SCI Baud Rate and Extended Prescaler Block Diagram

Ĺ**Ţ**

LINSCI™ SERIAL COMMUNICATION INTERFACE (LIN Master Only) (Cont'd) CONTROL REGISTER 1 (SCICR1)

Read/Write

Reset Value: x000 0000 (x0h)

7							0
R8	Т8	SCID	М	WAKE	PCE	PS	PIE

Bit 7 = R8 Receive data bit 8.

This bit is used to store the 9th bit of the received word when M = 1.

Bit 6 = T8 Transmit data bit 8.

This bit is used to store the 9th bit of the transmitted word when M = 1.

Bit 5 = **SCID** *Disabled for low power consumption* When this bit is set the SCI prescalers and outputs are stopped and the end of the current byte transfer in order to reduce power consumption. This bit is set and cleared by software. 0: SCI enabled

1: SCI prescaler and outputs disabled

Bit 4 = M Word length.
This bit determines the word length. It is set or cleared by software.
0: 1 Start bit, 8 Data bits, 1 Stop bit
1: 1 Start bit, 9 Data bits, 1 Stop bit

Note: The M bit must not be modified during a data transfer (both transmission and reception).

Bit 3 = **WAKE** Wake-Up method.

This bit determines the SCI Wake-Up method, it is set or cleared by software. 0: Idle Line

1: Address Mark

Bit 2 = **PCE** Parity control enable.

This bit selects the hardware parity control (generation and detection). When the parity control is enabled, the computed parity is inserted at the MSB position (9th bit if M = 1; 8th bit if M = 0) and parity is checked on the received data. This bit is set and cleared by software. Once it is set, PCE is active after the current byte (in reception and in transmission).

0: Parity control disabled

1: Parity control enabled

Bit 1 = **PS** Parity selection.

This bit selects the odd or even parity when the parity generation/detection is enabled (PCE bit set). It is set and cleared by software. The parity is selected after the current byte.

0: Even parity

1: Odd parity

Bit 0 = **PIE** Parity interrupt enable.

This bit enables the interrupt capability of the hardware parity control when a parity error is detected (PE bit set). It is set and cleared by software. 0: Parity error interrupt disabled

1: Parity error interrupt enabled

LINSCI™ SERIAL COMMUNICATION INTERFACE (LIN Master Only) (Cont'd)

DATA REGISTER (SCIDR)

Read/Write

Reset Value: Undefined

Contains the Received or Transmitted data character, depending on whether it is read from or written to.

7							0
DR7	DR6	DR5	DR4	DR3	DR2	DR1	DR0

The Data register performs a double function (read and write) since it is composed of two registers, one for transmission (TDR) and one for reception (RDR).

The TDR register provides the parallel interface between the internal bus and the output shift register (see Figure 88 on page 153).

The RDR register provides the parallel interface between the input shift register and the internal bus (see Figure 88).

BAUD RATE REGISTER (SCIBRR)

Read/Write

67/

Reset Value: 0000 0000 (00h)

7				2	6	0	
SCP1	SCP0	SCT2	SCT1	SCT0	SCR2	SCR1	SCR0

Bits 7:6 = **SCP[1:0**] *First SCI Prescaler*

These 2 prescaling bits allow several standard clock division ranges:

PR Prescaling factor	SCP1	SCP0
	0	0
3	0	1
4	1	0
13		1

Bits 5:3 = **SCT[2:0]** *SCI Transmitter rate divisor* These 3 bits, in conjunction with the SCP1 and SCP0 bits define the total division applied to the bus clock to yield the transmit rate clock in conventional Baud Rate Generator mode.

TR dividing factor	SCT2	SCT1	SCT0
1		0	0
2	0	0	1
4	0	4	0
8		I	1
16		0	50
32	1	0	1
64			0
128			1

Note: This TR factor is used only when the ETPR fine tuning factor is equal to 00h; otherwise, TR is replaced by the (TR*ETPR) dividing factor.

Bits 2:0 = **SCR[2:0]** *SCI Receiver rate divisor.* These 3 bits, in conjunction with the SCP1 and SCP0 bits define the total division applied to the bus clock to yield the receive rate clock in conventional Baud Rate Generator mode.

RR dividing factor	SCR2	SCR1	SCR0
1	0	0	0
2		0	1
4		-1	0
8		I	1
16	1	0	0
32		0	1
64		-1	0
128		I	1

Note: This RR factor is used only when the ERPR fine tuning factor is equal to 00h; otherwise, RR is replaced by the (RR*ERPR) dividing factor.

165/225

12.2 ABSOLUTE MAXIMUM RATINGS

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these condi-

12.2.1 Voltage Characteristics

tions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Maximum value	Unit
V _{DD} - V _{SS}	V _{DD} - V _{SS} Supply voltage V _{PP} - V _{SS} Programming Voltage V _{IN} Input voltage on any pin ¹⁾²⁾		
V _{PP} - V _{SS}			V
V _{IN}			
$ \Delta V_{DDx} $ and $ \Delta V_{SSx} $	Variations between different digital power pins	50	mV
IV _{SSA} - V _{SSx} I	Variations between digital and analog ground pins	50	niv
V _{ESD(HBM)}	Electro-static discharge voltage (Human Body Model)	see Section 12.8.3 on p	200 102
V _{ESD(MM)}	Electro-static discharge voltage (Machine Model)	see Section 12.8.3 on p	age 192

12.2.2 Current Characteristics

Symbol	Ratings	Maximum value	Unit
I _{VDD}	Total current into V _{DD} power lines (source) ³⁾	150	
I _{VSS}	I _{VSS} Total current out of V _{SS} ground lines (sink) ³⁾		
	Output current sunk by any standard I/O and control pin	25	
I _{IO}	Output current sunk by any high sink I/O pin	50	ļ
	Output current source by any I/Os and control pin	- 25	
	Injected current on V _{PP} pin		mA
	Injected current on RESET pin	± 5	
I _{INJ(PIN)} 2)4)	Injected current on OSC1 and OSC2 pins		
	Injected current on PB3 (on Flash devices)	+5	
	Injected current on any other pin ⁵⁾	± 5	
$\Sigma I_{INJ(PIN)}^{2)}$ Total injected current (sum of all I/O and control pins) ⁵⁾		± 25	

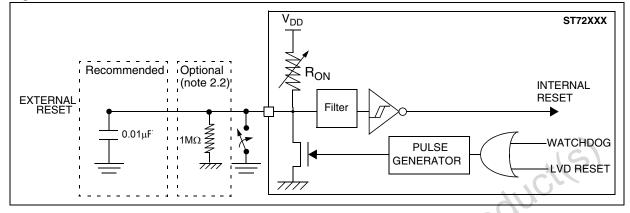
12.2.3 Thermal Characteristics

Γ	Symbol	Ratings	Value	Unit	
	T _{STG}	Storage temperature range	-65 to +150	°C	
	Тј	aximum junction temperature (see Section 13.2 "THERMAL CHARACTERISTICS")			

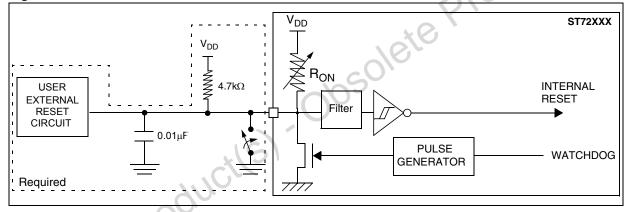
Notes:

1. Directly connecting the RESET and I/O pins to V_{DD} or V_{SS} could damage the device if an unintentional internal reset is generated or an unexpected change of the I/O configuration occurs (for example, due to a corrupted program counter). To guarantee safe operation, this connection has to be done through a pull-up or pull-down resistor (typical: $4.7k\Omega$ for RESET, $10k\Omega$ for I/Os). Unused I/O pins must be tied in the same way to V_{DD} or V_{SS} according to their reset configuration. 2. $I_{INJ(PIN)}$ must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the $I_{INJ(PIN)}$ value. A positive injection is induced by $V_{IN} < V_{SS}$. For true open-drain pads, there is no positive injection current, and the corresponding V_{IN} maximum must always be respected.

3. All power (V_{DD}) and ground (V_{SS}) lines must always be connected to the external supply.


4. Negative injection disturbs the analog performance of the device. See note in "10-BIT ADC CHARACTERISTICS" on page 204.

5. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterization with $\Sigma I_{INJ(PIN)}$ maximum current injection on four I/O port pins of the device.


<u>ل</u>رک

CONTROL PIN CHARACTERISTICS (Cont'd)

Figure 112. RESET Pin Protection When LVD Is Enabled¹⁾²⁾

Figure 113. RESET Pin Protection When LVD Is Disabled¹⁾

Note 1:

1.1 The reset network protects the device against parasitic resets.

1.2 The output of the external reset circuit must have an open-drain output to drive the ST7 reset pad. Otherwise the device can be damaged when the ST7 generates an internal reset (LVD or watchdog).

1.3 Whatever the reset source is (internal or external), the user must ensure that the level on the $\overline{\text{RESET}}$ pin can go below the V_{IL} max. level specified in Section 12.10.1. Otherwise the reset will not be taken into account internally.

1.4 Because the reset circuit is designed to allow the internal RESET to be output in the RESET pin, the user must ensure that the current sunk on the RESET pin (by an external pull-up for example) is less than the absolute maximum value specified for I_{INJ(RESET)} in Section 12.2.2 on page 179.

Note 2:

2.1 When the LVD is enabled, it is mandatory not to connect a pull-up resistor. A 10nF pull-down capacitor is recommended to filter noise on the reset line.

2.2. In case a capacitive power supply is used, it is recommended to connect a1MW pull-down resistor to the $\overrightarrow{\text{RESET}}$ pin to discharge any residual voltage induced by this capacitive power supply (this will add 5µA to the power consumption of the MCU).

2.3. Tips when using the LVD:

- 1. Check that all recommendations related to reset circuit have been applied (see notes above)
- 2. Check that the power supply is properly decoupled (100nF + 10μF close to the MCU). Refer to AN1709. If this cannot be done, it is recommended to put a 100nF + 1MW pull-down on the RESET pin.
- 3. The capacitors connected on the RESET pin and also the power supply are key to avoiding any start-up marginality. In most cases, steps 1 and 2 above are sufficient for a robust solution. Otherwise: Replace 10nF pull-down on the RESET pin with a 5µF to 20µF capacitor.

ADC CHARACTERISTICS (Cont'd)

12.13.0.1 Analog Power Supply and Reference Pins

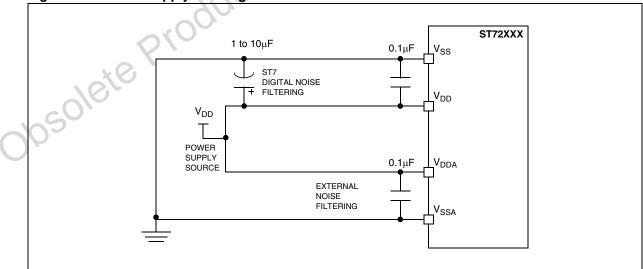
Depending on the MCU pin count, the package may feature separate V_{DDA} and V_{SSA} analog power supply pins. These pins supply power to the A/D converter cell and function as the high and low reference voltages for the conversion. In smaller packages V_{DDA} and V_{SSA} pins are not available and the analog supply and reference pads are internally bonded to the V_{DD} and V_{SS} pins.

Separation of the digital and analog power pins allow board designers to improve A/D performance. Conversion accuracy can be impacted by voltage drops and noise in the event of heavily loaded or badly decoupled power supply lines (see Section 12.13.0.2 "General PCB Design Guidelines").

12.13.0.2 General PCB Design Guidelines

To obtain best results, some general design and layout rules should be followed when designing the application PCB to shield the noise-sensitive, analog physical interface from noise-generating CMOS logic signals.

 Use separate digital and analog planes. The analog ground plane should be connected to the digital ground plane via a single point on the PCB. - Filter power to the analog power planes. It is recommended to connect capacitors, with good high frequency characteristics, between the power and ground lines, placing 0.1µF and optionally, if needed 10pF capacitors as close as possible to the ST7 power supply pins and a 1 to 10µF capacitor close to the power source (see Figure 122).


 The analog and digital power supplies should be connected in a star network. Do not use a resistor, as V_{DDA} is used as a reference voltage by the A/D converter and any resistance would cause a voltage drop and a loss of accuracy.

Properly place components and route the signal traces on the PCB to shield the analog inputs. Analog signals paths should run over the analog ground plane and be as short as possible. Isolate analog signals from digital signals that may switch while the analog inputs are being sampled by the A/D converter. Do not toggle digital outputs on the same I/O port as the A/D input being converted.

12.13.0.3 Software Filtering of Spurious Conversion Results

For EMC performance reasons, it is recommended to filter A/D conversion outliers using software filtering techniques.

/رکا

Figure 122. Power Supply Filtering

DEVICE CONFIGURATION AND ORDER INFORMATION (cont'd)

Table 35. FLASH User Programmable Device Types

Part Number	Package	Memory (Kbytes)	RAM (Kbytes)	Temp Range	
ST72F361AR6T6		32	1.5		
ST72F361AR7T6	LQFP64 10x10	48	2		
ST72F361AR9T6	1	60	2		
ST72F361J6T6		32	1.5		
ST72F361J7T6	LQFP44 10x10	48	2	-40 to +85°C	
ST72F361J9T6		60	2		
ST72F361K6T6		32	1.5	16	
ST72F361K7T6	LQFP32 7x7	48	2	*(2)	
ST72F361K9T6		60	2		
ST72F361AR6T3		32	1.5	40.5	
ST72F361AR7T3	LQFP64 10x10	48	2		
ST72F361AR9T3		60	2		
ST72F361J6T3		32	1.5		
ST72F361J7T3	LQFP44 10x10	48	2	-40 to +125°C	
ST72F361J9T3	1	60	2		
ST72F361K6T3		32	1.5		
ST72F361K7T3	LQFP32 7x7	48	2		
ST72F361K9T3	1	60	2		

14.2 TRANSFER OF CUSTOMER CODE

Customer code is made up of the ROM/FAS-TROM contents and the list of the selected options (if any). The ROM/FASTROM contents are to be sent on diskette, or by electronic means, with the S19 hexadecimal file generated by the development tool. All unused bytes must be set to FFh.

The selected options are communicated to STMicroelectronics using the correctly completed OPTION LIST appended.

Refer to application note AN1635 for information on the counter listing returned by ST after code has been transferred.

The STMicroelectronics Sales Organization will be pleased to provide detailed information on contractual points.

