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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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RESET SEQUENCE MANAGER (Cont’d)

The RESET pin is an asynchronous signal which 
plays a major role in EMS performance. In a noisy 
environment, it is recommended to follow the 
guidelines mentioned in the electrical characteris-
tics section.

6.3.3 External Power-On RESET
If the LVD is disabled by option byte, to start up the 
microcontroller correctly, the user must ensure by 
means of an external reset circuit that the reset 
signal is held low until VDD is over the minimum 
level specified for the selected fOSC frequency. 

A proper reset signal for a slow rising VDD supply 
can generally be provided by an external RC net-
work connected to the RESET pin.

6.3.4 Internal Low Voltage Detector (LVD) 
RESET
Two different RESET sequences caused by the in-
ternal LVD circuitry can be distinguished:
■ Power-On RESET
■ Voltage Drop RESET

The device RESET pin acts as an output that is 
pulled low when VDD < VIT+ (rising edge) or 
VDD < VIT- (falling edge) as shown in Figure 3.

The LVD filters spikes on VDD larger than tg(VDD) to 
avoid parasitic resets.

6.3.5 Internal Watchdog RESET
The RESET sequence generated by a internal 
Watchdog counter overflow is shown in Figure 3.

Starting from the Watchdog counter underflow, the 
device RESET pin acts as an output that is pulled 
low during at least tw(RSTL)out.

Figure 14. RESET Sequences 
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6.4 SYSTEM INTEGRITY MANAGEMENT (SI)

The System Integrity Management block contains 
the Low Voltage Detector (LVD) and Auxiliary Volt-
age Detector (AVD) functions. It is managed by 
the SICSR register.

6.4.1 Low Voltage Detector (LVD)
The Low Voltage Detector function (LVD) gener-
ates a static reset when the VDD supply voltage is 
below a VIT-(LVD) reference value. This means that 
it secures the power-up as well as the power-down 
keeping the ST7 in reset.

The VIT-(LVD) reference value for a voltage drop is 
lower than the VIT+(LVD) reference value for power-
on in order to avoid a parasitic reset when the 
MCU starts running and sinks current on the sup-
ply (hysteresis).

The LVD Reset circuitry generates a reset when 
VDD is below:

– VIT+(LVD) when VDD is rising 
– VIT-(LVD) when VDD is falling 

The LVD function is illustrated in Figure 15.

Provided the minimum VDD value (guaranteed for 
the oscillator frequency) is above VIT-(LVD), the 
MCU can only be in two modes: 

– under full software control
– in static safe reset

In these conditions, secure operation is always en-
sured for the application without the need for ex-
ternal reset hardware.

During a Low Voltage Detector Reset, the RESET
pin is held low, thus permitting the MCU to reset 
other devices.

Notes:

The LVD allows the device to be used without any 
external RESET circuitry.

The LVD is an optional function which can be se-
lected by option byte.

It is recommended to make sure that the VDD sup-
ply voltage rises monotonously when the device is 
exiting from Reset, to ensure the application func-
tions properly.

Figure 15. Low Voltage Detector vs Reset 
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INTERRUPTS (Cont’d)

Table 8. Dedicated Interrupt Instruction Set

Note: During the execution of an interrupt routine, the HALT, POPCC, RIM, SIM and WFI instructions change the current 
software priority up to the next IRET instruction or one of the previously mentioned instructions.

Instruction New Description Function/Example I1 H I0 N Z C

HALT Entering Halt mode 1 0

IRET Interrupt routine return Pop CC, A, X, PC I1 H I0 N Z C

JRM Jump if I1:0 = 11 (level 3) I1:0 = 11 ?

JRNM Jump if I1:0 <> 11 I1:0 <> 11 ?

POP CC Pop CC from the Stack Mem => CC I1 H I0 N Z C

RIM Enable interrupt (level 0 set) Load 10 in I1:0 of CC 1 0

SIM Disable interrupt (level 3 set) Load 11 in I1:0 of CC 1 1

TRAP Software trap Software NMI 1 1

WFI Wait for interrupt 1 0
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INTERRUPTS (Cont’d)

Table 10. Nested Interrupts Register Map and Reset Values 

Address
(Hex.)

Register
Label

7 6 5 4 3 2 1 0

0025h ISPR0 
Reset Value

ei1 ei0 CLKM TLI

I1_3
1

I0_3
1

I1_2
1

I0_2
1

I1_1
1

I0_1
1 1 1

0026h ISPR1 
Reset Value

ei3 ei2

I1_7
1

I0_7
1

I1_6
1

I0_6
1

I1_5
1

I0_5
1

I1_4
1

I0_4
1

0027h ISPR2 
Reset Value

LINSCI 2 TIMER 16 TIMER 8 SPI

I1_11
1

I0_11
1

I1_10
1

I0_10
1

I1_9
1

I0_9
1

I1_8
1

I0_8
1

0028h ISPR3 
Reset Value 1 1 1 1

ART LINSCI 1

I1_13
1

I0_13
1

I1_12
1

I0_12
1

0029h
EICR0 
Reset Value

IS31
0

IS30
0

IS21
0

IS20
0

IS11
0

IS10
0

IS01
0

IS00
0

002Ah
EICR1 
Reset Value 0 0 0 0 0 0

TLIS
0

TLIE
0
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I/O PORTS (Cont’d)

Figure 32. I/O Port General Block Diagram

Table 12. I/O Port Mode Options

Legend: NI - not implemented 
Off - implemented not activated 
On - implemented and activated 

 

Note: The diode to VDD is not implemented in the 
true open drain pads. A local protection between 
the pad and VSS is implemented to protect the de-
vice against positive stress.

Configuration Mode Pull-Up P-Buffer
Diodes

to VDD to VSS

Input
Floating with/without Interrupt Off

Off
On

On
Pull-up with/without Interrupt On

Output
Push-pull

Off
On

Open Drain (logic level) Off
True Open Drain NI NI NI (see note)

DR

DDR

ORD
A

T
A

 B
U

S

PAD

VDD

ALTERNATE
ENABLE

ALTERNATE
OUTPUT

1

0

OR SEL

DDR SEL

DR SEL

PULL-UP
CONDITION

P-BUFFER
(see table below)

N-BUFFER

PULL-UP
(see table below)

1

0

ANALOG
INPUT

If implemented

ALTERNATE
INPUT

VDD

DIODES
(see table below)

EXTERNAL 

SOURCE (eix)
INTERRUPT

CMOS 
SCHMITT
TRIGGER

REGISTER
ACCESS
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ON-CHIP PERIPHERALS (Cont’d)

10.2 MAIN CLOCK CONTROLLER WITH REAL TIME CLOCK MCC/RTC

The Main Clock Controller consists of three differ-
ent functions:
■ a programmable CPU clock prescaler
■ a clock-out signal to supply external devices
■ a real time clock timer with interrupt capability

Each function can be used independently and si-
multaneously.
10.2.1 Programmable CPU Clock Prescaler
The programmable CPU clock prescaler supplies 
the clock for the ST7 CPU and its internal periph-
erals. It manages SLOW power saving mode (See 
Section 8.2 "SLOW MODE" for more details). 

The prescaler selects the fCPU main clock frequen-
cy and is controlled by three bits in the MCCSR 
register: CP[1:0] and SMS.

10.2.2 Clock-out Capability
The clock-out capability is an alternate function of 
an I/O port pin that outputs a fOSC2 clock to drive 
external devices. It is controlled by the MCO bit in 
the MCCSR register.
10.2.3 Real Time Clock Timer (RTC)
The counter of the real time clock timer allows an 
interrupt to be generated based on an accurate 
real time clock. Four different time bases depend-
ing directly on fOSC2 are available. The whole 
functionality is controlled by 4 bits of the MCCSR 
register: TB[1:0], OIE and OIF.

When the RTC interrupt is enabled (OIE bit set), 
the ST7 enters ACTIVE HALT mode when the 
HALT instruction is executed. See Section 8.5 
"ACTIVE HALT MODE" for more details.

Figure 39. Main Clock Controller (MCC/RTC) Block Diagram
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16-BIT TIMER (Cont’d)

Figure 49. Counter Timing Diagram, Internal Clock Divided by 2

Figure 50. Counter Timing Diagram, Internal Clock Divided by 4

Figure 51. Counter Timing Diagram, Internal Clock Divided By 8

Note: The MCU is in reset state when the internal reset signal is high, when it is low the MCU is running.
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16-BIT TIMER (Cont’d)

10.4.3.6 Pulse Width Modulation Mode
Pulse Width Modulation (PWM) mode enables the 
generation of a signal with a frequency and pulse 
length determined by the value of the OC1R and 
OC2R registers.

Pulse Width Modulation mode uses the complete 
Output Compare 1 function plus the OC2R regis-
ter, and so this functionality can not be used when 
PWM mode is activated. 

In PWM mode, double buffering is implemented on 
the output compare registers. Any new values writ-
ten in the OC1R and OC2R registers are taken 
into account only at the end of the PWM period 
(OC2) to avoid spikes on the PWM output pin 
(OCMP1).

Procedure
To use Pulse Width Modulation mode:

1. Load the OC2R register with the value corre-
sponding to the period of the signal using the 
formula in the opposite column.

2. Load the OC1R register with the value corre-
sponding to the period of the pulse if 
(OLVL1 = 0 and OLVL2 = 1) using the formula 
in the opposite column.

3. Select the following in the CR1 register:

– Using the OLVL1 bit, select the level to be ap-
plied to the OCMP1 pin after a successful 
comparison with the OC1R register.

– Using the OLVL2 bit, select the level to be ap-
plied to the OCMP1 pin after a successful 
comparison with the OC2R register.

4. Select the following in the CR2 register:

– Set OC1E bit: the OCMP1 pin is then dedicat-
ed to the output compare 1 function.

– Set the PWM bit.

– Select the timer clock (CC[1:0]) (see Table 17 
Clock Control Bits).

If OLVL1 = 1 and OLVL2 = 0 the length of the pos-
itive pulse is the difference between the OC2R and 
OC1R registers.

If OLVL1 = OLVL2 a continuous signal will be 
seen on the OCMP1 pin.

The OCiR register value required for a specific tim-
ing application can be calculated using the follow-
ing formula:

Where: 
t = Signal or pulse period (in seconds)

fCPU = CPU clock frequency (in hertz)

PRESC = Timer prescaler factor (2, 4 or 8 depend-
ing on CC[1:0] bits, see Table 17 Clock 
Control Bits)

If the timer clock is an external clock the formula is:

Where:

t = Signal or pulse period (in seconds)

fEXT = External timer clock frequency (in hertz)

The Output Compare 2 event causes the counter 
to be initialized to FFFCh (See Figure 58)

Notes: 
1. After a write instruction to the OCiHR register, 

the output compare function is inhibited until the 
OCiLR register is also written. 

2. The OCF1 and OCF2 bits cannot be set by 
hardware in PWM mode therefore the Output 
Compare interrupt is inhibited. 

3. The ICF1 bit is set by hardware when the coun-
ter reaches the OC2R value and can produce a 
timer interrupt if the ICIE bit is set and the I bit is 
cleared. 

4. In PWM mode the ICAP1 pin can not be used 
to perform input capture because it is discon-
nected to the timer. The ICAP2 pin can be used 
to perform input capture (ICF2 can be set and 
IC2R can be loaded) but the user must take 
care that the counter is reset each period and 
ICF1 can also generates interrupt if ICIE is set.

5. When the Pulse Width Modulation (PWM) and 
One Pulse mode (OPM) bits are both set, the 
PWM mode is the only active one.

Counter

OCMP1 = OLVL2
Counter
= OC2R

OCMP1 = OLVL1

When

When

= OC1R

Pulse Width Modulation cycle

Counter is reset
to FFFCh

ICF1 bit is set

OCiR Value =
t * fCPU

PRESC

- 5

 OCiR = t * fEXT -5
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SERIAL PERIPHERAL INTERFACE (cont’d)

10.6.3.3 Master Mode Operation
In master mode, the serial clock is output on the 
SCK pin. The clock frequency, polarity and phase 
are configured by software (refer to the description 
of the SPICSR register).

Note: The idle state of SCK must correspond to 
the polarity selected in the SPICSR register (by 
pulling up SCK if CPOL = 1 or pulling down SCK if 
CPOL = 0).

How to operate the SPI in master mode
To operate the SPI in master mode, perform the 
following steps in order:

1. Write to the SPICR register:
– Select the clock frequency by configuring the 

SPR[2:0] bits.
– Select the clock polarity and clock phase by 

configuring the CPOL and CPHA bits. Figure 
74 shows the four possible configurations. 
Note: The slave must have the same CPOL 
and CPHA settings as the master. 

2. Write to the SPICSR register:
– Either set the SSM bit and set the SSI bit or 

clear the SSM bit and tie the SS pin high for 
the complete byte transmit sequence.

3. Write to the SPICR register:
– Set the MSTR and SPE bits 

Note: MSTR and SPE bits remain set only if 
SS is high).

Important note: if the SPICSR register is not writ-
ten first, the SPICR register setting (MSTR bit) 
may be not taken into account.

The transmit sequence begins when software 
writes a byte in the SPIDR register.

10.6.3.4 Master Mode Transmit Sequence
When software writes to the SPIDR register, the 
data byte is loaded into the 8-bit shift register and 
then shifted out serially to the MOSI pin most sig-
nificant bit first.

When data transfer is complete:

– The SPIF bit is set by hardware.

– An interrupt request is generated if the SPIE 
bit is set and the interrupt mask in the CCR 
register is cleared.

Clearing the SPIF bit is performed by the following 
software sequence:

1. An access to the SPICSR register while the 
SPIF bit is set

2. A read to the SPIDR register 

Note: While the SPIF bit is set, all writes to the 
SPIDR register are inhibited until the SPICSR reg-
ister is read.

10.6.3.5 Slave Mode Operation
In slave mode, the serial clock is received on the 
SCK pin from the master device. 

To operate the SPI in slave mode:

1. Write to the SPICSR register to perform the fol-
lowing actions:
– Select the clock polarity and clock phase by 

configuring the CPOL and CPHA bits (see 
Figure 74). 
Note: The slave must have the same CPOL 
and CPHA settings as the master. 

– Manage the SS pin as described in Section 
10.6.3.2 and Figure 72. If CPHA = 1 SS must 
be held low continuously. If CPHA = 0 SS
must be held low during byte transmission and 
pulled up between each byte to let the slave 
write in the shift register. 

2. Write to the SPICR register to clear the MSTR 
bit and set the SPE bit to enable the SPI I/O 
functions.

10.6.3.6 Slave Mode Transmit Sequence
When software writes to the SPIDR register, the 
data byte is loaded into the 8-bit shift register and 
then shifted out serially to the MISO pin most sig-
nificant bit first.

The transmit sequence begins when the slave de-
vice receives the clock signal and the most signifi-
cant bit of the data on its MOSI pin.

When data transfer is complete:

– The SPIF bit is set by hardware.

– An interrupt request is generated if SPIE bit is 
set and interrupt mask in the CCR register is 
cleared.

Clearing the SPIF bit is performed by the following 
software sequence:

1. An access to the SPICSR register while the 
SPIF bit is set

2. A write or a read to the SPIDR register 

Notes: While the SPIF bit is set, all writes to the 
SPIDR register are inhibited until the SPICSR reg-
ister is read.

The SPIF bit can be cleared during a second 
transmission; however, it must be cleared before 
the second SPIF bit in order to prevent an Overrun 
condition (see Section 10.6.5.2).
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SERIAL PERIPHERAL INTERFACE (cont’d)

10.6.4 Clock Phase and Clock Polarity
Four possible timing relationships may be chosen 
by software, using the CPOL and CPHA bits (See 
Figure 74).

Note: The idle state of SCK must correspond to 
the polarity selected in the SPICSR register (by 
pulling up SCK if CPOL = 1 or pulling down SCK if 
CPOL = 0).

The combination of the CPOL clock polarity and 
CPHA (clock phase) bits selects the data capture 
clock edge.

Figure 74 shows an SPI transfer with the four com-
binations of the CPHA and CPOL bits. The dia-
gram may be interpreted as a master or slave tim-
ing diagram where the SCK pin, the MISO pin and 
the MOSI pin are directly connected between the 
master and the slave device.

Note: If CPOL is changed at the communication 
byte boundaries, the SPI must be disabled by re-
setting the SPE bit.

Figure 74. Data Clock Timing Diagram

SCK 
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Note: This figure should not be used as a replacement for parametric information.
Refer to the Electrical Characteristics chapter.
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SERIAL PERIPHERAL INTERFACE (cont’d)

10.6.5 Error Flags
10.6.5.1 Master Mode Fault (MODF)
Master mode fault occurs when the master de-
vice’s SS pin is pulled low. 

When a Master mode fault occurs:

– The MODF bit is set and an SPI interrupt re-
quest is generated if the SPIE bit is set.

– The SPE bit is reset. This blocks all output 
from the device and disables the SPI periph-
eral.

– The MSTR bit is reset, thus forcing the device 
into slave mode.

Clearing the MODF bit is done through a software 
sequence:

1. A read access to the SPICSR register while the 
MODF bit is set.

2. A write to the SPICR register.

Notes: To avoid any conflicts in an application 
with multiple slaves, the SS pin must be pulled 
high during the MODF bit clearing sequence. The 
SPE and MSTR bits may be restored to their orig-
inal state during or after this clearing sequence. 

Hardware does not allow the user to set the SPE 
and MSTR bits while the MODF bit is set except in 
the MODF bit clearing sequence.

In a slave device, the MODF bit can not be set, but 
in a multimaster configuration the device can be in 
slave mode with the MODF bit set.

The MODF bit indicates that there might have 
been a multimaster conflict and allows software to 
handle this using an interrupt routine and either 
perform a reset or return to an application default 
state. 

10.6.5.2 Overrun Condition (OVR)
An overrun condition occurs when the master de-
vice has sent a data byte and the slave device has 
not cleared the SPIF bit issued from the previously 
transmitted byte.

When an Overrun occurs:

– The OVR bit is set and an interrupt request is 
generated if the SPIE bit is set.

In this case, the receiver buffer contains the byte 
sent after the SPIF bit was last cleared. A read to 
the SPIDR register returns this byte. All other 
bytes are lost.

The OVR bit is cleared by reading the SPICSR 
register.

10.6.5.3 Write Collision Error (WCOL)
A write collision occurs when the software tries to 
write to the SPIDR register while a data transfer is 
taking place with an external device. When this 
happens, the transfer continues uninterrupted and 
the software write will be unsuccessful.

Write collisions can occur both in master and slave 
mode. See also Section 10.6.3.2 "Slave Select 
Management".

Note: A "read collision" will never occur since the 
received data byte is placed in a buffer in which 
access is always synchronous with the CPU oper-
ation.

The WCOL bit in the SPICSR register is set if a 
write collision occurs.

No SPI interrupt is generated when the WCOL bit 
is set (the WCOL bit is a status flag only).

Clearing the WCOL bit is done through a software 
sequence (see Figure 75).

Figure 75. Clearing the WCOL Bit (Write Collision Flag) Software Sequence
Clearing sequence after SPIF = 1 (end of a data byte transfer)

1st Step
Read SPICSR

Read SPIDR2nd Step SPIF = 0
WCOL = 0

Clearing sequence before SPIF = 1 (during a data byte transfer)

1st Step

2nd Step WCOL = 0

Read SPICSR

Read SPIDR
Note: Writing to the SPIDR register in-
stead of reading it does not reset the 
WCOL bit.

RESULT

RESULT
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LINSCI™ SERIAL COMMUNICATION INTERFACE (SCI Mode) (cont’d)

10.7.5.6 Receiver Muting and Wake-up Feature
In multiprocessor configurations it is often desira-
ble that only the intended message recipient 
should actively receive the full message contents, 
thus reducing redundant SCI service overhead for 
all non-addressed receivers. 

The non-addressed devices may be placed in 
sleep mode by means of the muting function. 

Setting the RWU bit by software puts the SCI in 
sleep mode:

All the reception status bits can not be set.

All the receive interrupts are inhibited.

A muted receiver may be woken up in one of the 
following ways: 

– by Idle Line detection if the WAKE bit is reset,

– by Address Mark detection if the WAKE bit is set. 

Idle Line Detection
Receiver wakes up by Idle Line detection when the 
Receive line has recognized an Idle Line. Then the 
RWU bit is reset by hardware but the IDLE bit is 
not set.

This feature is useful in a multiprocessor system 
when the first characters of the message deter-
mine the address and when each message ends 
by an idle line: As soon as the line becomes idle, 
every receivers is waken up and analyse the first 
characters of the message which indicates the ad-
dressed receiver. The receivers which are not ad-
dressed set RWU bit to enter in mute mode. Con-
sequently, they will not treat the next characters 
constituting the next part of the message. At the 
end of the message, an idle line is sent by the 
transmitter: this wakes up every receivers which 
are ready to analyse the addressing characters of 
the new message.

In such a system, the inter-characters space must 
be smaller than the idle time.

Address Mark Detection
Receiver wakes up by Address Mark detection 
when it received a “1” as the most significant bit of 
a word, thus indicating that the message is an ad-
dress. The reception of this particular word wakes 
up the receiver, resets the RWU bit and sets the 
RDRF bit, which allows the receiver to receive this 
word normally and to use it as an address word.

This feature is useful in a multiprocessor system 
when the most significant bit of each character 
(except for the break character) is reserved for Ad-
dress Detection. As soon as the receivers re-

ceived an address character (most significant bit 
= ’1’), the receivers are waken up. The receivers 
which are not addressed set RWU bit to enter in 
mute mode. Consequently, they will not treat the 
next characters constituting the next part of the 
message.

10.7.5.7 Parity Control
Hardware byte Parity control (generation of parity 
bit in transmission and parity checking in recep-
tion) can be enabled by setting the PCE bit in the 
SCICR1 register. Depending on the character for-
mat defined by the M bit, the possible SCI charac-
ter formats are as listed in Table 1.

Note: In case of wake-up by an address mark, the 
MSB bit of the data is taken into account and not 
the parity bit

Table 23. Character Formats

Legend: SB = Start Bit, STB = Stop Bit,  
PB = Parity Bit

Even parity: The parity bit is calculated to obtain 
an even number of “1s” inside the character made 
of the 7 or 8 LSB bits (depending on whether M is 
equal to 0 or 1) and the parity bit.

Example: data = 00110101; 4 bits set => parity bit 
will be 0 if even parity is selected (PS bit = 0).

Odd parity: The parity bit is calculated to obtain 
an odd number of “1s” inside the character made 
of the 7 or 8 LSB bits (depending on whether M is 
equal to 0 or 1) and the parity bit.

Example: data = 00110101; 4 bits set => parity bit 
will be 1 if odd parity is selected (PS bit = 1).

Transmission mode: If the PCE bit is set then the 
MSB bit of the data written in the data register is 
not transmitted but is changed by the parity bit.

Reception mode: If the PCE bit is set then the in-
terface checks if the received data byte has an 
even number of “1s” if even parity is selected 
(PS = 0) or an odd number of “1s” if odd parity is 
selected (PS = 1). If the parity check fails, the PE 
flag is set in the SCISR register and an interrupt is 
generated if PCIE is set in the SCICR1 register.

M bit PCE bit Character format

0
0 | SB | 8 bit data | STB |
1 | SB | 7-bit data | PB | STB |

1
0 | SB | 9-bit data | STB |
1 | SB | 8-bit data | PB | STB |
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LINSCI™ SERIAL COMMUNICATION INTERFACE (SCI Mode) (cont’d)

10.7.6 Low Power Modes 10.7.7 Interrupts

The SCI interrupt events are connected to the 
same interrupt vector (see Interrupts chapter). 

These events generate an interrupt if the corre-
sponding Enable Control Bit is set and the inter-
rupt mask in the CC register is reset (RIM instruc-
tion).

Mode Description 

WAIT
No effect on SCI. 
SCI interrupts cause the device to exit from 
Wait mode.

HALT
SCI registers are frozen. 
In Halt mode, the SCI stops transmitting/re-
ceiving until Halt mode is exited. 

Interrupt Event
Event
Flag

Enable 
Control 

Bit

Exit 
from
Wait

Exit 
from 
Halt

Transmit Data Register 
Empty

TDRE TIE

Yes No 

Transmission Com-
plete

TC TCIE

Received Data Ready 
to be Read

RDRF
RIE

Overrun Error or LIN 
Synch Error Detected

OR/
LHE

Idle Line Detected IDLE ILIE
Parity Error PE PIE
LIN Header Detection LHDF LHIE
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LINSCI™ SERIAL COMMUNICATION INTERFACE (SCI Mode) (cont’d)

10.7.8 SCI Mode Register Description
STATUS REGISTER (SCISR) 
Read Only 
Reset Value: 1100 0000  (C0h)

Bit 7 = TDRE Transmit data register empty 
This bit is set by hardware when the content of the 
TDR register has been transferred into the shift 
register. An interrupt is generated if the TIE = 1 in 
the SCICR2 register. It is cleared by a software se-
quence (an access to the SCISR register followed 
by a write to the SCIDR register).
0: Data is not transferred to the shift register
1: Data is transferred to the shift register

Bit 6 = TC Transmission complete 
This bit is set by hardware when transmission of a 
character containing Data is complete. An inter-
rupt is generated if TCIE = 1 in the SCICR2 regis-
ter. It is cleared by a software sequence (an ac-
cess to the SCISR register followed by a write to 
the SCIDR register).
0: Transmission is not complete
1: Transmission is complete

Note: TC is not set after the transmission of a Pre-
amble or a Break.

Bit 5 = RDRF Received data ready flag 
This bit is set by hardware when the content of the 
RDR register has been transferred to the SCIDR 
register. An interrupt is generated if RIE = 1 in the 
SCICR2 register. It is cleared by a software se-
quence (an access to the SCISR register followed 
by a read to the SCIDR register).
0: Data is not received
1: Received data is ready to be read

Bit 4 = IDLE Idle line detected 
This bit is set by hardware when an Idle Line is de-
tected. An interrupt is generated if the ILIE = 1 in 
the SCICR2 register. It is cleared by a software se-
quence (an access to the SCISR register followed 
by a read to the SCIDR register).
0: No Idle Line is detected
1: Idle Line is detected

Note: The IDLE bit will not be set again until the 
RDRF bit has been set itself (that is, a new idle line 
occurs). 

Bit 3 = OR Overrun error

The OR bit is set by hardware when the word cur-
rently being received in the shift register is ready to 
be transferred into the RDR register whereas 
RDRF is still set. An interrupt is generated if 
RIE = 1 in the SCICR2 register. It is cleared by a 
software sequence (an access to the SCISR regis-
ter followed by a read to the SCIDR register).
0: No Overrun error 
1: Overrun error detected

Note: When this bit is set, RDR register contents 
will not be lost but the shift register will be overwrit-
ten. 

Bit 2 = NF Character Noise flag 
This bit is set by hardware when noise is detected 
on a received character. It is cleared by a software 
sequence (an access to the SCISR register fol-
lowed by a read to the SCIDR register).
0: No noise 
1: Noise is detected

Note: This bit does not generate interrupt as it ap-
pears at the same time as the RDRF bit which it-
self generates an interrupt.

Bit 1 = FE Framing error 
This bit is set by hardware when a desynchroniza-
tion, excessive noise or a break character is de-
tected. It is cleared by a software sequence (an 
access to the SCISR register followed by a read to 
the SCIDR register).
0: No Framing error
1: Framing error or break character detected

Note: This bit does not generate an interrupt as it 
appears at the same time as the RDRF bit which it-
self generates an interrupt. If the word currently 
being transferred causes both a frame error and 
an overrun error, it will be transferred and only the 
OR bit will be set.

Bit 0 = PE Parity error 
This bit is set by hardware when a byte parity error 
occurs (if the PCE bit is set) in receiver mode. It is 
cleared by a software sequence (a read to the sta-
tus register followed by an access to the SCIDR 
data register). An interrupt is generated if PIE = 1 
in the SCICR1 register.
0: No parity error
1: Parity error detected

7 0

TDRE TC RDRF IDLE OR1) NF1) FE1) PE1)
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LINSCI™ SERIAL COMMUNICATION INTERFACE (LIN Mode) (cont’d)

10.7.9.3 LIN Reception
In LIN mode the reception of a byte is the same as 
in SCI mode but the LINSCI has features for han-
dling the LIN Header automatically (identifier de-
tection) or semiautomatically (Synch Break detec-
tion) depending on the LIN Header detection 
mode. The detection mode is selected by the 
LHDM bit in the SCICR3.

Additionally, an automatic resynchronization fea-
ture can be activated to compensate for any clock 
deviation, for more details please refer to Section 
0.1.9.5 LIN Baud Rate.

LIN Header Handling by a Slave
Depending on the LIN Header detection method 
the LINSCI will signal the detection of a LIN Head-
er after the LIN Synch Break or after the Identifier 
has been successfully received. 

Note:
It is recommended to combine the Header detec-
tion function with Mute mode. Putting the LINSCI 
in Mute mode allows the detection of Headers only 
and prevents the reception of any other charac-
ters. 

This mode can be used to wait for the next Header 
without being interrupted by the data bytes of the 
current message in case this message is not rele-
vant for the application.

Synch Break Detection (LHDM = 0):
When a LIN Synch Break is received:

– The RDRF bit in the SCISR register is set. It in-
dicates that the content of the shift register is 
transferred to the SCIDR register, a value of 
0x00 is expected for a Break.

– The LHDF flag in the SCICR3 register indicates 
that a LIN Synch Break Field has been detected.

– An interrupt is generated if the LHIE bit in the 
SCICR3 register is set and the I[1:0] bits are 
cleared in the CCR register.

– Then the LIN Synch Field is received and meas-
ured. 

– If automatic resynchronization is enabled (LA-
SE bit = 1), the LIN Synch Field is not trans-
ferred to the shift register: There is no need to 
clear the RDRF bit.

– If automatic resynchronization is disabled (LA-
SE bit = 0), the LIN Synch Field is received as 
a normal character and transferred to the 
SCIDR register and RDRF is set.

Note:
In LIN slave mode, the FE bit detects all frame er-
ror which does not correspond to a break.

Identifier Detection (LHDM = 1): 
This case is the same as the previous one except 
that the LHDF and the RDRF flags are set only af-
ter the entire header has been received (this is 
true whether automatic resynchronization is ena-
bled or not). This indicates that the LIN Identifier is 
available in the SCIDR register.

Notes:
During LIN Synch Field measurement, the SCI 
state machine is switched off: No characters are 
transferred to the data register.

LIN Slave parity
In LIN Slave mode (LINE and LSLV bits are set) 
LIN parity checking can be enabled by setting the 
PCE bit.

In this case, the parity bits of the LIN Identifier 
Field are checked. The identifier character is rec-
ognized as the third received character after a 
break character (included):

The bits involved are the two MSB positions (7th 
and 8th bits if M = 0; 8th and 9th bits if M = 1) of 
the identifier character. The check is performed as 
specified by the LIN specification:

LIN Synch LIN Synch Identifier

parity bits

Field Field Break

Identifier Field

parity bits

ID0

start bit stop bit

ID1 ID2 ID3 ID4 ID5 P0 P1

identifier bits

P1 ID1 ID3 ID4 ID5⊕ ⊕ ⊕=

P0 ID0= ID1 ID2 ID4⊕ ⊕ ⊕
M = 0
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LINSCI™ SERIAL COMMUNICATION INTERFACE (LIN Master Only) (Cont’d)

DATA REGISTER (SCIDR)
Read/Write

Reset Value: Undefined

Contains the Received or Transmitted data char-
acter, depending on whether it is read from or writ-
ten to.

The Data register performs a double function (read 
and write) since it is composed of two registers, 
one for transmission (TDR) and one for reception 
(RDR). 
The TDR register provides the parallel interface 
between the internal bus and the output shift reg-
ister (see Figure 88 on page 153). 
The RDR register provides the parallel interface 
between the input shift register and the internal 
bus (see Figure 88).

BAUD RATE REGISTER (SCIBRR)
Read/Write

Reset Value: 00 00 0000 (00h)

Bits 7:6 = SCP[1:0] First SCI Prescaler  
These 2 prescaling bits allow several standard 
clock division ranges:

Bits 5:3 = SCT[2:0] SCI Transmitter rate divisor 
These 3 bits, in conjunction with the SCP1 and 
SCP0 bits define the total division applied to the 
bus clock to yield the transmit rate clock in conven-
tional Baud Rate Generator mode.

Note: This TR factor is used only when the ETPR 
fine tuning factor is equal to 00h; otherwise, TR is 
replaced by the (TR*ETPR) dividing factor.

Bits 2:0 = SCR[2:0] SCI Receiver rate divisor. 
These 3 bits, in conjunction with the SCP1 and 
SCP0 bits define the total division applied to the 
bus clock to yield the receive rate clock in conven-
tional Baud Rate Generator mode.

Note: This RR factor is used only when the ERPR 
fine tuning factor is equal to 00h; otherwise, RR is 
replaced by the (RR*ERPR) dividing factor.

7 0

DR7 DR6 DR5 DR4 DR3 DR2 DR1 DR0

7 0

SCP1 SCP0 SCT2 SCT1 SCT0 SCR2 SCR1 SCR0

PR Prescaling factor SCP1 SCP0

1
0

0

3 1

4
1

0

13 1

TR dividing factor SCT2 SCT1 SCT0

1

0

0
0

2 1

4
1

0

8 1

16

1

0
0

32 1

64
1

0

128 1

RR dividing factor SCR2 SCR1 SCR0

1

0

0
0

2 1

4
1

0

8 1

16

1

0
0

32 1

64
1

0
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I/O PORT PIN CHARACTERISTICS (Cont’d)

Figure 109. Typical VOL vs VDD (Standard I/Os)

Figure 110. Typical VOL vs VDD (High-sink I/Os)
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COMMUNICATION INTERFACE CHARACTERISTICS (Cont’d)

Figure 117. SPI Slave Timing Diagram with CPHA = 11)

Figure 118. SPI Master Timing Diagram1)

Notes:
1. Measurement points are done at CMOS levels: 0.3 x VDD and 0.7 x VDD.
2. When no communication is on-going the data output line of the SPI (MOSI in master mode, MISO in slave mode) has 
its alternate function capability released. In this case, the pin status depends on the I/O port configuration.
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ADC CHARACTERISTICS (Cont’d)

Figure 119. RAIN Max vs fADC with CAIN = 0pF1)2) Figure 120. Recommended CAIN/RAIN Values3)

Figure 121. Typical Application with ADC

Notes:
1. CPARASITIC represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad ca-
pacitance (3pF). A high CPARASITIC value will downgrade conversion accuracy. To remedy this, fADC should be reduced.
2. Any added external serial resistor will downgrade the ADC accuracy (especially for resistance greater than 10kΩ). Data 
based on characterization results, not tested in production.
3. This graph shows that depending on the input signal variation (fAIN), CAIN can be increased for stabilization time and 
reduced to allow the use of a larger serial resistor (RAIN). It is valid for all fADC frequencies ≤ 4 MHz. 
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16 IMPORTANT NOTES

16.1 ALL DEVICES

16.1.1 RESET Pin Protection with LVD Enabled
As mentioned in note 2 below Figure 112 on page 
199, when the LVD is enabled, it is recommended 
not to connect a pull-up resistor or capacitor. A 
10nF pull-down capacitor is required to filter noise 
on the reset line.

16.1.2 Clearing Active Interrupts Outside 
Interrupt Routine
When an active interrupt request occurs at the 
same time as the related flag or interrupt mask is 
being cleared, the CC register may be corrupted.

Concurrent interrupt context
The symptom does not occur when the interrupts 
are handled normally, that is, when:

– The interrupt request is cleared (flag reset or in-
terrupt mask) within its own interrupt routine

– The interrupt request is cleared (flag reset or in-
terrupt mask) within any interrupt routine

– The interrupt request is cleared (flag reset or in-
terrupt mask) in any part of the code while this in-
terrupt is disabled

If these conditions are not met, the symptom can 
be avoided by implementing the following se-
quence:

Perform SIM and RIM operation before and after 
resetting an active interrupt request

 Example: 

SIM

reset flag or interrupt mask

RIM

Nested interrupt context
The symptom does not occur when the interrupts 
are handled normally, that is, when:

– The interrupt request is cleared (flag reset or in-
terrupt mask) within its own interrupt routine

– The interrupt request is cleared (flag reset or in-
terrupt mask) within any interrupt routine with 
higher or identical priority level

– The interrupt request is cleared (flag reset or in-
terrupt mask) in any part of the code while this in-
terrupt is disabled

If these conditions are not met, the symptom can 
be avoided by implementing the following se-
quence:

PUSH CC

SIM

reset flag or interrupt mask

POP CC

16.1.3 External Interrupt Missed
To avoid any risk of generating a parasitic inter-
rupt, the edge detector is automatically disabled 
for one clock cycle during an access to either DDR 
and OR. Any input signal edge during this period 
will not be detected and will not generate an inter-
rupt.

This case can typically occur if the application re-
freshes the port configuration registers at intervals 
during runtime.

Workaround
The workaround is based on software checking 
the level on the interrupt pin before and after writ-
ing to the PxOR or PxDDR registers. If there is a 
level change (depending on the sensitivity pro-
grammed for this pin) the interrupt routine is in-
voked using the call instruction with three extra 
PUSH instructions before executing the interrupt 
routine (this is to make the call compatible with the 
IRET instruction at the end of the interrupt service 
routine).

But detection of the level change does ensure that 
edge occurs during the critical 1 cycle duration and 
the interrupt has been missed. This may lead to 
occurrence of same interrupt twice (one hardware 
and another with software call).

To avoid this, a semaphore is set to '1' before 
checking the level change. The semaphore is 
changed to level '0' inside the interrupt routine. 
When a level change is detected, the semaphore 
status is checked and if it is '1' this means that the 
last interrupt has been missed. In this case, the in-
terrupt routine is invoked with the call instruction.

There is another possible case, that is, if writing to 
PxOR or PxDDR is done with global interrupts dis-
abled (interrupt mask bit set). In this case, the 
semaphore is changed to '1' when the level 
change is detected. Detecting a missed interrupt is 
done after the global interrupts are enabled (inter-
rupt mask bit reset) and by checking the status of 
the semaphore. If it is '1' this means that the last 
interrupt was missed and the interrupt routine is in-
voked with the call instruction.

To implement the workaround, the following soft-
ware sequence is to be followed for writing into the 
PxOR/PxDDR registers. The example is for Port 
PF1 with falling edge interrupt sensitivity. The
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