
STMicroelectronics - ST72F361J9TCE Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor ST7

Core Size 8-Bit

Speed 8MHz

Connectivity LINbusSCI, SPI

Peripherals LVD, POR, PWM, WDT

Number of I/O 32

Program Memory Size 60KB (60K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 3.8V ~ 5.5V

Data Converters A/D 11x10b

Oscillator Type External

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 44-LQFP

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/stmicroelectronics/st72f361j9tce

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/st72f361j9tce-4431118
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

ST72361

 O
RESET SEQUENCE MANAGER (Cont’d)

The RESET pin is an asynchronous signal which
plays a major role in EMS performance. In a noisy
environment, it is recommended to follow the
guidelines mentioned in the electrical characteris-
tics section.

6.3.3 External Power-On RESET
If the LVD is disabled by option byte, to start up the
microcontroller correctly, the user must ensure by
means of an external reset circuit that the reset
signal is held low until VDD is over the minimum
level specified for the selected fOSC frequency.

A proper reset signal for a slow rising VDD supply
can generally be provided by an external RC net-
work connected to the RESET pin.

6.3.4 Internal Low Voltage Detector (LVD)
RESET
Two different RESET sequences caused by the in-
ternal LVD circuitry can be distinguished:
■ Power-On RESET
■ Voltage Drop RESET

The device RESET pin acts as an output that is
pulled low when VDD < VIT+ (rising edge) or
VDD < VIT- (falling edge) as shown in Figure 3.

The LVD filters spikes on VDD larger than tg(VDD) to
avoid parasitic resets.

6.3.5 Internal Watchdog RESET
The RESET sequence generated by a internal
Watchdog counter overflow is shown in Figure 3.

Starting from the Watchdog counter underflow, the
device RESET pin acts as an output that is pulled
low during at least tw(RSTL)out.

Figure 14. RESET Sequences

VDD

RUN

RESET PIN

EXTERNAL

WATCHDOG

ACTIVE PHASE

VIT+(LVD)
VIT-(LVD)

th(RSTL)in

RUN

WATCHDOG UNDERFLOW

tw(RSTL)out

RUN RUN

RESET

RESET
SOURCE

EXTERNAL
RESET

LVD
RESET

WATCHDOG
RESET

INTERNAL RESET (256 or 4096 TCPU)
VECTOR FETCH

ACTIVE
PHASE

ACTIVE
PHASE

bso
lete Product(

s)
- O

bso
lete Product(

s)
23/225

ST72361

 O
6.4 SYSTEM INTEGRITY MANAGEMENT (SI)

The System Integrity Management block contains
the Low Voltage Detector (LVD) and Auxiliary Volt-
age Detector (AVD) functions. It is managed by
the SICSR register.

6.4.1 Low Voltage Detector (LVD)
The Low Voltage Detector function (LVD) gener-
ates a static reset when the VDD supply voltage is
below a VIT-(LVD) reference value. This means that
it secures the power-up as well as the power-down
keeping the ST7 in reset.

The VIT-(LVD) reference value for a voltage drop is
lower than the VIT+(LVD) reference value for power-
on in order to avoid a parasitic reset when the
MCU starts running and sinks current on the sup-
ply (hysteresis).

The LVD Reset circuitry generates a reset when
VDD is below:

– VIT+(LVD) when VDD is rising
– VIT-(LVD) when VDD is falling

The LVD function is illustrated in Figure 15.

Provided the minimum VDD value (guaranteed for
the oscillator frequency) is above VIT-(LVD), the
MCU can only be in two modes:

– under full software control
– in static safe reset

In these conditions, secure operation is always en-
sured for the application without the need for ex-
ternal reset hardware.

During a Low Voltage Detector Reset, the RESET
pin is held low, thus permitting the MCU to reset
other devices.

Notes:

The LVD allows the device to be used without any
external RESET circuitry.

The LVD is an optional function which can be se-
lected by option byte.

It is recommended to make sure that the VDD sup-
ply voltage rises monotonously when the device is
exiting from Reset, to ensure the application func-
tions properly.

Figure 15. Low Voltage Detector vs Reset

VDD

VIT+(LVD)

RESET

VIT-(LVD)

Vhys

bso
lete Product(

s)
- O

bso
lete Product(

s)
24/225

ST72361

 O
INTERRUPTS (Cont’d)

Table 8. Dedicated Interrupt Instruction Set

Note: During the execution of an interrupt routine, the HALT, POPCC, RIM, SIM and WFI instructions change the current
software priority up to the next IRET instruction or one of the previously mentioned instructions.

Instruction New Description Function/Example I1 H I0 N Z C

HALT Entering Halt mode 1 0

IRET Interrupt routine return Pop CC, A, X, PC I1 H I0 N Z C

JRM Jump if I1:0 = 11 (level 3) I1:0 = 11 ?

JRNM Jump if I1:0 <> 11 I1:0 <> 11 ?

POP CC Pop CC from the Stack Mem => CC I1 H I0 N Z C

RIM Enable interrupt (level 0 set) Load 10 in I1:0 of CC 1 0

SIM Disable interrupt (level 3 set) Load 11 in I1:0 of CC 1 1

TRAP Software trap Software NMI 1 1

WFI Wait for interrupt 1 0

bso
lete Product(

s)
- O

bso
lete Product(

s)
32/225

ST72361

 O
INTERRUPTS (Cont’d)

Table 10. Nested Interrupts Register Map and Reset Values

Address
(Hex.)

Register
Label

7 6 5 4 3 2 1 0

0025h ISPR0
Reset Value

ei1 ei0 CLKM TLI

I1_3
1

I0_3
1

I1_2
1

I0_2
1

I1_1
1

I0_1
1 1 1

0026h ISPR1
Reset Value

ei3 ei2

I1_7
1

I0_7
1

I1_6
1

I0_6
1

I1_5
1

I0_5
1

I1_4
1

I0_4
1

0027h ISPR2
Reset Value

LINSCI 2 TIMER 16 TIMER 8 SPI

I1_11
1

I0_11
1

I1_10
1

I0_10
1

I1_9
1

I0_9
1

I1_8
1

I0_8
1

0028h ISPR3
Reset Value 1 1 1 1

ART LINSCI 1

I1_13
1

I0_13
1

I1_12
1

I0_12
1

0029h
EICR0
Reset Value

IS31
0

IS30
0

IS21
0

IS20
0

IS11
0

IS10
0

IS01
0

IS00
0

002Ah
EICR1
Reset Value 0 0 0 0 0 0

TLIS
0

TLIE
0

bso
lete Product(

s)
- O

bso
lete Product(

s)
36/225

ST72361

 O
I/O PORTS (Cont’d)

Figure 32. I/O Port General Block Diagram

Table 12. I/O Port Mode Options

Legend: NI - not implemented
Off - implemented not activated
On - implemented and activated

Note: The diode to VDD is not implemented in the
true open drain pads. A local protection between
the pad and VSS is implemented to protect the de-
vice against positive stress.

Configuration Mode Pull-Up P-Buffer
Diodes

to VDD to VSS

Input
Floating with/without Interrupt Off

Off
On

On
Pull-up with/without Interrupt On

Output
Push-pull

Off
On

Open Drain (logic level) Off
True Open Drain NI NI NI (see note)

DR

DDR

ORD
A

T
A

 B
U

S

PAD

VDD

ALTERNATE
ENABLE

ALTERNATE
OUTPUT

1

0

OR SEL

DDR SEL

DR SEL

PULL-UP
CONDITION

P-BUFFER
(see table below)

N-BUFFER

PULL-UP
(see table below)

1

0

ANALOG
INPUT

If implemented

ALTERNATE
INPUT

VDD

DIODES
(see table below)

EXTERNAL

SOURCE (eix)
INTERRUPT

CMOS
SCHMITT
TRIGGER

REGISTER
ACCESS

bso
lete Product(

s)
- O

bso
lete Product(

s)
46/225

ST72361

 O
ON-CHIP PERIPHERALS (Cont’d)

10.2 MAIN CLOCK CONTROLLER WITH REAL TIME CLOCK MCC/RTC

The Main Clock Controller consists of three differ-
ent functions:
■ a programmable CPU clock prescaler
■ a clock-out signal to supply external devices
■ a real time clock timer with interrupt capability

Each function can be used independently and si-
multaneously.
10.2.1 Programmable CPU Clock Prescaler
The programmable CPU clock prescaler supplies
the clock for the ST7 CPU and its internal periph-
erals. It manages SLOW power saving mode (See
Section 8.2 "SLOW MODE" for more details).

The prescaler selects the fCPU main clock frequen-
cy and is controlled by three bits in the MCCSR
register: CP[1:0] and SMS.

10.2.2 Clock-out Capability
The clock-out capability is an alternate function of
an I/O port pin that outputs a fOSC2 clock to drive
external devices. It is controlled by the MCO bit in
the MCCSR register.
10.2.3 Real Time Clock Timer (RTC)
The counter of the real time clock timer allows an
interrupt to be generated based on an accurate
real time clock. Four different time bases depend-
ing directly on fOSC2 are available. The whole
functionality is controlled by 4 bits of the MCCSR
register: TB[1:0], OIE and OIF.

When the RTC interrupt is enabled (OIE bit set),
the ST7 enters ACTIVE HALT mode when the
HALT instruction is executed. See Section 8.5
"ACTIVE HALT MODE" for more details.

Figure 39. Main Clock Controller (MCC/RTC) Block Diagram

DIV 2, 4, 8, 16

MCC/RTC INTERRUPT

SMSCP1 CP0 TB1 TB0 OIE OIF

CPU CLOCK

MCCSR

RTC
COUNTER

TO CPU AND
PERIPHERALS

fOSC2

fCPU

MCO

MCO

TO
WATCHDOG

TIMER

bso
lete Product(

s)
- O

bso
lete Product(

s)
58/225

ST72361

 O
16-BIT TIMER (Cont’d)

Figure 49. Counter Timing Diagram, Internal Clock Divided by 2

Figure 50. Counter Timing Diagram, Internal Clock Divided by 4

Figure 51. Counter Timing Diagram, Internal Clock Divided By 8

Note: The MCU is in reset state when the internal reset signal is high, when it is low the MCU is running.

CPU CLOCK

FFFD FFFE FFFF 0000 0001 0002 0003

INTERNAL RESET

 TIMER CLOCK

COUNTER REGISTER

TIMER OVERFLOW FLAG (TOF)

FFFC FFFD 0000 0001

CPU CLOCK

INTERNAL RESET

 TIMER CLOCK

COUNTER REGISTER

TIMER OVERFLOW FLAG (TOF)

CPU CLOCK

INTERNAL RESET

 TIMER CLOCK

COUNTER REGISTER

TIMER OVERFLOW FLAG (TOF)

FFFC FFFD 0000

bso
lete Product(

s)
- O

bso
lete Product(

s)
74/225

ST72361

 O
16-BIT TIMER (Cont’d)

10.4.3.6 Pulse Width Modulation Mode
Pulse Width Modulation (PWM) mode enables the
generation of a signal with a frequency and pulse
length determined by the value of the OC1R and
OC2R registers.

Pulse Width Modulation mode uses the complete
Output Compare 1 function plus the OC2R regis-
ter, and so this functionality can not be used when
PWM mode is activated.

In PWM mode, double buffering is implemented on
the output compare registers. Any new values writ-
ten in the OC1R and OC2R registers are taken
into account only at the end of the PWM period
(OC2) to avoid spikes on the PWM output pin
(OCMP1).

Procedure
To use Pulse Width Modulation mode:

1. Load the OC2R register with the value corre-
sponding to the period of the signal using the
formula in the opposite column.

2. Load the OC1R register with the value corre-
sponding to the period of the pulse if
(OLVL1 = 0 and OLVL2 = 1) using the formula
in the opposite column.

3. Select the following in the CR1 register:

– Using the OLVL1 bit, select the level to be ap-
plied to the OCMP1 pin after a successful
comparison with the OC1R register.

– Using the OLVL2 bit, select the level to be ap-
plied to the OCMP1 pin after a successful
comparison with the OC2R register.

4. Select the following in the CR2 register:

– Set OC1E bit: the OCMP1 pin is then dedicat-
ed to the output compare 1 function.

– Set the PWM bit.

– Select the timer clock (CC[1:0]) (see Table 17
Clock Control Bits).

If OLVL1 = 1 and OLVL2 = 0 the length of the pos-
itive pulse is the difference between the OC2R and
OC1R registers.

If OLVL1 = OLVL2 a continuous signal will be
seen on the OCMP1 pin.

The OCiR register value required for a specific tim-
ing application can be calculated using the follow-
ing formula:

Where:
t = Signal or pulse period (in seconds)

fCPU = CPU clock frequency (in hertz)

PRESC = Timer prescaler factor (2, 4 or 8 depend-
ing on CC[1:0] bits, see Table 17 Clock
Control Bits)

If the timer clock is an external clock the formula is:

Where:

t = Signal or pulse period (in seconds)

fEXT = External timer clock frequency (in hertz)

The Output Compare 2 event causes the counter
to be initialized to FFFCh (See Figure 58)

Notes:
1. After a write instruction to the OCiHR register,

the output compare function is inhibited until the
OCiLR register is also written.

2. The OCF1 and OCF2 bits cannot be set by
hardware in PWM mode therefore the Output
Compare interrupt is inhibited.

3. The ICF1 bit is set by hardware when the coun-
ter reaches the OC2R value and can produce a
timer interrupt if the ICIE bit is set and the I bit is
cleared.

4. In PWM mode the ICAP1 pin can not be used
to perform input capture because it is discon-
nected to the timer. The ICAP2 pin can be used
to perform input capture (ICF2 can be set and
IC2R can be loaded) but the user must take
care that the counter is reset each period and
ICF1 can also generates interrupt if ICIE is set.

5. When the Pulse Width Modulation (PWM) and
One Pulse mode (OPM) bits are both set, the
PWM mode is the only active one.

Counter

OCMP1 = OLVL2
Counter
= OC2R

OCMP1 = OLVL1

When

When

= OC1R

Pulse Width Modulation cycle

Counter is reset
to FFFCh

ICF1 bit is set

OCiR Value =
t * fCPU

PRESC

- 5

 OCiR = t * fEXT -5

bso
lete Product(

s)
- O

bso
lete Product(

s)
82/225

ST72361

 O
SERIAL PERIPHERAL INTERFACE (cont’d)

10.6.3.3 Master Mode Operation
In master mode, the serial clock is output on the
SCK pin. The clock frequency, polarity and phase
are configured by software (refer to the description
of the SPICSR register).

Note: The idle state of SCK must correspond to
the polarity selected in the SPICSR register (by
pulling up SCK if CPOL = 1 or pulling down SCK if
CPOL = 0).

How to operate the SPI in master mode
To operate the SPI in master mode, perform the
following steps in order:

1. Write to the SPICR register:
– Select the clock frequency by configuring the

SPR[2:0] bits.
– Select the clock polarity and clock phase by

configuring the CPOL and CPHA bits. Figure
74 shows the four possible configurations.
Note: The slave must have the same CPOL
and CPHA settings as the master.

2. Write to the SPICSR register:
– Either set the SSM bit and set the SSI bit or

clear the SSM bit and tie the SS pin high for
the complete byte transmit sequence.

3. Write to the SPICR register:
– Set the MSTR and SPE bits

Note: MSTR and SPE bits remain set only if
SS is high).

Important note: if the SPICSR register is not writ-
ten first, the SPICR register setting (MSTR bit)
may be not taken into account.

The transmit sequence begins when software
writes a byte in the SPIDR register.

10.6.3.4 Master Mode Transmit Sequence
When software writes to the SPIDR register, the
data byte is loaded into the 8-bit shift register and
then shifted out serially to the MOSI pin most sig-
nificant bit first.

When data transfer is complete:

– The SPIF bit is set by hardware.

– An interrupt request is generated if the SPIE
bit is set and the interrupt mask in the CCR
register is cleared.

Clearing the SPIF bit is performed by the following
software sequence:

1. An access to the SPICSR register while the
SPIF bit is set

2. A read to the SPIDR register

Note: While the SPIF bit is set, all writes to the
SPIDR register are inhibited until the SPICSR reg-
ister is read.

10.6.3.5 Slave Mode Operation
In slave mode, the serial clock is received on the
SCK pin from the master device.

To operate the SPI in slave mode:

1. Write to the SPICSR register to perform the fol-
lowing actions:
– Select the clock polarity and clock phase by

configuring the CPOL and CPHA bits (see
Figure 74).
Note: The slave must have the same CPOL
and CPHA settings as the master.

– Manage the SS pin as described in Section
10.6.3.2 and Figure 72. If CPHA = 1 SS must
be held low continuously. If CPHA = 0 SS
must be held low during byte transmission and
pulled up between each byte to let the slave
write in the shift register.

2. Write to the SPICR register to clear the MSTR
bit and set the SPE bit to enable the SPI I/O
functions.

10.6.3.6 Slave Mode Transmit Sequence
When software writes to the SPIDR register, the
data byte is loaded into the 8-bit shift register and
then shifted out serially to the MISO pin most sig-
nificant bit first.

The transmit sequence begins when the slave de-
vice receives the clock signal and the most signifi-
cant bit of the data on its MOSI pin.

When data transfer is complete:

– The SPIF bit is set by hardware.

– An interrupt request is generated if SPIE bit is
set and interrupt mask in the CCR register is
cleared.

Clearing the SPIF bit is performed by the following
software sequence:

1. An access to the SPICSR register while the
SPIF bit is set

2. A write or a read to the SPIDR register

Notes: While the SPIF bit is set, all writes to the
SPIDR register are inhibited until the SPICSR reg-
ister is read.

The SPIF bit can be cleared during a second
transmission; however, it must be cleared before
the second SPIF bit in order to prevent an Overrun
condition (see Section 10.6.5.2).

bso
lete Product(

s)
- O

bso
lete Product(

s)
112/225

ST72361

 O
SERIAL PERIPHERAL INTERFACE (cont’d)

10.6.4 Clock Phase and Clock Polarity
Four possible timing relationships may be chosen
by software, using the CPOL and CPHA bits (See
Figure 74).

Note: The idle state of SCK must correspond to
the polarity selected in the SPICSR register (by
pulling up SCK if CPOL = 1 or pulling down SCK if
CPOL = 0).

The combination of the CPOL clock polarity and
CPHA (clock phase) bits selects the data capture
clock edge.

Figure 74 shows an SPI transfer with the four com-
binations of the CPHA and CPOL bits. The dia-
gram may be interpreted as a master or slave tim-
ing diagram where the SCK pin, the MISO pin and
the MOSI pin are directly connected between the
master and the slave device.

Note: If CPOL is changed at the communication
byte boundaries, the SPI must be disabled by re-
setting the SPE bit.

Figure 74. Data Clock Timing Diagram

SCK

MSBit Bit 6 Bit 5 Bit 4 Bit3 Bit 2 Bit 1 LSBit

MSBit Bit 6 Bit 5 Bit 4 Bit3 Bit 2 Bit 1 LSBit

MISO
(from master)

MOSI
(from slave)

SS

(to slave)

CAPTURE STROBE

CPHA = 1

MSBit Bit 6 Bit 5 Bit 4 Bit3 Bit 2 Bit 1 LSBit

MSBit Bit 6 Bit 5 Bit 4 Bit3 Bit 2 Bit 1 LSBit

MISO
(from master)

MOSI

SS
(to slave)

CAPTURE STROBE

CPHA = 0

Note: This figure should not be used as a replacement for parametric information.
Refer to the Electrical Characteristics chapter.

(from slave)

(CPOL = 1)

SCK
(CPOL = 0)

SCK
(CPOL = 1)

SCK
(CPOL = 0)bso
lete Product(

s)
- O

bso
lete Product(

s)
113/225

ST72361

 O
SERIAL PERIPHERAL INTERFACE (cont’d)

10.6.5 Error Flags
10.6.5.1 Master Mode Fault (MODF)
Master mode fault occurs when the master de-
vice’s SS pin is pulled low.

When a Master mode fault occurs:

– The MODF bit is set and an SPI interrupt re-
quest is generated if the SPIE bit is set.

– The SPE bit is reset. This blocks all output
from the device and disables the SPI periph-
eral.

– The MSTR bit is reset, thus forcing the device
into slave mode.

Clearing the MODF bit is done through a software
sequence:

1. A read access to the SPICSR register while the
MODF bit is set.

2. A write to the SPICR register.

Notes: To avoid any conflicts in an application
with multiple slaves, the SS pin must be pulled
high during the MODF bit clearing sequence. The
SPE and MSTR bits may be restored to their orig-
inal state during or after this clearing sequence.

Hardware does not allow the user to set the SPE
and MSTR bits while the MODF bit is set except in
the MODF bit clearing sequence.

In a slave device, the MODF bit can not be set, but
in a multimaster configuration the device can be in
slave mode with the MODF bit set.

The MODF bit indicates that there might have
been a multimaster conflict and allows software to
handle this using an interrupt routine and either
perform a reset or return to an application default
state.

10.6.5.2 Overrun Condition (OVR)
An overrun condition occurs when the master de-
vice has sent a data byte and the slave device has
not cleared the SPIF bit issued from the previously
transmitted byte.

When an Overrun occurs:

– The OVR bit is set and an interrupt request is
generated if the SPIE bit is set.

In this case, the receiver buffer contains the byte
sent after the SPIF bit was last cleared. A read to
the SPIDR register returns this byte. All other
bytes are lost.

The OVR bit is cleared by reading the SPICSR
register.

10.6.5.3 Write Collision Error (WCOL)
A write collision occurs when the software tries to
write to the SPIDR register while a data transfer is
taking place with an external device. When this
happens, the transfer continues uninterrupted and
the software write will be unsuccessful.

Write collisions can occur both in master and slave
mode. See also Section 10.6.3.2 "Slave Select
Management".

Note: A "read collision" will never occur since the
received data byte is placed in a buffer in which
access is always synchronous with the CPU oper-
ation.

The WCOL bit in the SPICSR register is set if a
write collision occurs.

No SPI interrupt is generated when the WCOL bit
is set (the WCOL bit is a status flag only).

Clearing the WCOL bit is done through a software
sequence (see Figure 75).

Figure 75. Clearing the WCOL Bit (Write Collision Flag) Software Sequence
Clearing sequence after SPIF = 1 (end of a data byte transfer)

1st Step
Read SPICSR

Read SPIDR2nd Step SPIF = 0
WCOL = 0

Clearing sequence before SPIF = 1 (during a data byte transfer)

1st Step

2nd Step WCOL = 0

Read SPICSR

Read SPIDR
Note: Writing to the SPIDR register in-
stead of reading it does not reset the
WCOL bit.

RESULT

RESULT

bso
lete Product(

s)
- O

bso
lete Product(

s)
114/225

ST72361

 O
LINSCI™ SERIAL COMMUNICATION INTERFACE (SCI Mode) (cont’d)

10.7.5.6 Receiver Muting and Wake-up Feature
In multiprocessor configurations it is often desira-
ble that only the intended message recipient
should actively receive the full message contents,
thus reducing redundant SCI service overhead for
all non-addressed receivers.

The non-addressed devices may be placed in
sleep mode by means of the muting function.

Setting the RWU bit by software puts the SCI in
sleep mode:

All the reception status bits can not be set.

All the receive interrupts are inhibited.

A muted receiver may be woken up in one of the
following ways:

– by Idle Line detection if the WAKE bit is reset,

– by Address Mark detection if the WAKE bit is set.

Idle Line Detection
Receiver wakes up by Idle Line detection when the
Receive line has recognized an Idle Line. Then the
RWU bit is reset by hardware but the IDLE bit is
not set.

This feature is useful in a multiprocessor system
when the first characters of the message deter-
mine the address and when each message ends
by an idle line: As soon as the line becomes idle,
every receivers is waken up and analyse the first
characters of the message which indicates the ad-
dressed receiver. The receivers which are not ad-
dressed set RWU bit to enter in mute mode. Con-
sequently, they will not treat the next characters
constituting the next part of the message. At the
end of the message, an idle line is sent by the
transmitter: this wakes up every receivers which
are ready to analyse the addressing characters of
the new message.

In such a system, the inter-characters space must
be smaller than the idle time.

Address Mark Detection
Receiver wakes up by Address Mark detection
when it received a “1” as the most significant bit of
a word, thus indicating that the message is an ad-
dress. The reception of this particular word wakes
up the receiver, resets the RWU bit and sets the
RDRF bit, which allows the receiver to receive this
word normally and to use it as an address word.

This feature is useful in a multiprocessor system
when the most significant bit of each character
(except for the break character) is reserved for Ad-
dress Detection. As soon as the receivers re-

ceived an address character (most significant bit
= ’1’), the receivers are waken up. The receivers
which are not addressed set RWU bit to enter in
mute mode. Consequently, they will not treat the
next characters constituting the next part of the
message.

10.7.5.7 Parity Control
Hardware byte Parity control (generation of parity
bit in transmission and parity checking in recep-
tion) can be enabled by setting the PCE bit in the
SCICR1 register. Depending on the character for-
mat defined by the M bit, the possible SCI charac-
ter formats are as listed in Table 1.

Note: In case of wake-up by an address mark, the
MSB bit of the data is taken into account and not
the parity bit

Table 23. Character Formats

Legend: SB = Start Bit, STB = Stop Bit,
PB = Parity Bit

Even parity: The parity bit is calculated to obtain
an even number of “1s” inside the character made
of the 7 or 8 LSB bits (depending on whether M is
equal to 0 or 1) and the parity bit.

Example: data = 00110101; 4 bits set => parity bit
will be 0 if even parity is selected (PS bit = 0).

Odd parity: The parity bit is calculated to obtain
an odd number of “1s” inside the character made
of the 7 or 8 LSB bits (depending on whether M is
equal to 0 or 1) and the parity bit.

Example: data = 00110101; 4 bits set => parity bit
will be 1 if odd parity is selected (PS bit = 1).

Transmission mode: If the PCE bit is set then the
MSB bit of the data written in the data register is
not transmitted but is changed by the parity bit.

Reception mode: If the PCE bit is set then the in-
terface checks if the received data byte has an
even number of “1s” if even parity is selected
(PS = 0) or an odd number of “1s” if odd parity is
selected (PS = 1). If the parity check fails, the PE
flag is set in the SCISR register and an interrupt is
generated if PCIE is set in the SCICR1 register.

M bit PCE bit Character format

0
0 | SB | 8 bit data | STB |
1 | SB | 7-bit data | PB | STB |

1
0 | SB | 9-bit data | STB |
1 | SB | 8-bit data | PB | STB |

bso
lete Product(

s)
- O

bso
lete Product(

s)
128/225

ST72361

 O
LINSCI™ SERIAL COMMUNICATION INTERFACE (SCI Mode) (cont’d)

10.7.6 Low Power Modes 10.7.7 Interrupts

The SCI interrupt events are connected to the
same interrupt vector (see Interrupts chapter).

These events generate an interrupt if the corre-
sponding Enable Control Bit is set and the inter-
rupt mask in the CC register is reset (RIM instruc-
tion).

Mode Description

WAIT
No effect on SCI.
SCI interrupts cause the device to exit from
Wait mode.

HALT
SCI registers are frozen.
In Halt mode, the SCI stops transmitting/re-
ceiving until Halt mode is exited.

Interrupt Event
Event
Flag

Enable
Control

Bit

Exit
from
Wait

Exit
from
Halt

Transmit Data Register
Empty

TDRE TIE

Yes No

Transmission Com-
plete

TC TCIE

Received Data Ready
to be Read

RDRF
RIE

Overrun Error or LIN
Synch Error Detected

OR/
LHE

Idle Line Detected IDLE ILIE
Parity Error PE PIE
LIN Header Detection LHDF LHIE

bso
lete Product(

s)
- O

bso
lete Product(

s)
129/225

ST72361

 O
LINSCI™ SERIAL COMMUNICATION INTERFACE (SCI Mode) (cont’d)

10.7.8 SCI Mode Register Description
STATUS REGISTER (SCISR)
Read Only
Reset Value: 1100 0000 (C0h)

Bit 7 = TDRE Transmit data register empty
This bit is set by hardware when the content of the
TDR register has been transferred into the shift
register. An interrupt is generated if the TIE = 1 in
the SCICR2 register. It is cleared by a software se-
quence (an access to the SCISR register followed
by a write to the SCIDR register).
0: Data is not transferred to the shift register
1: Data is transferred to the shift register

Bit 6 = TC Transmission complete
This bit is set by hardware when transmission of a
character containing Data is complete. An inter-
rupt is generated if TCIE = 1 in the SCICR2 regis-
ter. It is cleared by a software sequence (an ac-
cess to the SCISR register followed by a write to
the SCIDR register).
0: Transmission is not complete
1: Transmission is complete

Note: TC is not set after the transmission of a Pre-
amble or a Break.

Bit 5 = RDRF Received data ready flag
This bit is set by hardware when the content of the
RDR register has been transferred to the SCIDR
register. An interrupt is generated if RIE = 1 in the
SCICR2 register. It is cleared by a software se-
quence (an access to the SCISR register followed
by a read to the SCIDR register).
0: Data is not received
1: Received data is ready to be read

Bit 4 = IDLE Idle line detected
This bit is set by hardware when an Idle Line is de-
tected. An interrupt is generated if the ILIE = 1 in
the SCICR2 register. It is cleared by a software se-
quence (an access to the SCISR register followed
by a read to the SCIDR register).
0: No Idle Line is detected
1: Idle Line is detected

Note: The IDLE bit will not be set again until the
RDRF bit has been set itself (that is, a new idle line
occurs).

Bit 3 = OR Overrun error

The OR bit is set by hardware when the word cur-
rently being received in the shift register is ready to
be transferred into the RDR register whereas
RDRF is still set. An interrupt is generated if
RIE = 1 in the SCICR2 register. It is cleared by a
software sequence (an access to the SCISR regis-
ter followed by a read to the SCIDR register).
0: No Overrun error
1: Overrun error detected

Note: When this bit is set, RDR register contents
will not be lost but the shift register will be overwrit-
ten.

Bit 2 = NF Character Noise flag
This bit is set by hardware when noise is detected
on a received character. It is cleared by a software
sequence (an access to the SCISR register fol-
lowed by a read to the SCIDR register).
0: No noise
1: Noise is detected

Note: This bit does not generate interrupt as it ap-
pears at the same time as the RDRF bit which it-
self generates an interrupt.

Bit 1 = FE Framing error
This bit is set by hardware when a desynchroniza-
tion, excessive noise or a break character is de-
tected. It is cleared by a software sequence (an
access to the SCISR register followed by a read to
the SCIDR register).
0: No Framing error
1: Framing error or break character detected

Note: This bit does not generate an interrupt as it
appears at the same time as the RDRF bit which it-
self generates an interrupt. If the word currently
being transferred causes both a frame error and
an overrun error, it will be transferred and only the
OR bit will be set.

Bit 0 = PE Parity error
This bit is set by hardware when a byte parity error
occurs (if the PCE bit is set) in receiver mode. It is
cleared by a software sequence (a read to the sta-
tus register followed by an access to the SCIDR
data register). An interrupt is generated if PIE = 1
in the SCICR1 register.
0: No parity error
1: Parity error detected

7 0

TDRE TC RDRF IDLE OR1) NF1) FE1) PE1)

bso
lete Product(

s)
- O

bso
lete Product(

s)
130/225

ST72361

 O
LINSCI™ SERIAL COMMUNICATION INTERFACE (LIN Mode) (cont’d)

10.7.9.3 LIN Reception
In LIN mode the reception of a byte is the same as
in SCI mode but the LINSCI has features for han-
dling the LIN Header automatically (identifier de-
tection) or semiautomatically (Synch Break detec-
tion) depending on the LIN Header detection
mode. The detection mode is selected by the
LHDM bit in the SCICR3.

Additionally, an automatic resynchronization fea-
ture can be activated to compensate for any clock
deviation, for more details please refer to Section
0.1.9.5 LIN Baud Rate.

LIN Header Handling by a Slave
Depending on the LIN Header detection method
the LINSCI will signal the detection of a LIN Head-
er after the LIN Synch Break or after the Identifier
has been successfully received.

Note:
It is recommended to combine the Header detec-
tion function with Mute mode. Putting the LINSCI
in Mute mode allows the detection of Headers only
and prevents the reception of any other charac-
ters.

This mode can be used to wait for the next Header
without being interrupted by the data bytes of the
current message in case this message is not rele-
vant for the application.

Synch Break Detection (LHDM = 0):
When a LIN Synch Break is received:

– The RDRF bit in the SCISR register is set. It in-
dicates that the content of the shift register is
transferred to the SCIDR register, a value of
0x00 is expected for a Break.

– The LHDF flag in the SCICR3 register indicates
that a LIN Synch Break Field has been detected.

– An interrupt is generated if the LHIE bit in the
SCICR3 register is set and the I[1:0] bits are
cleared in the CCR register.

– Then the LIN Synch Field is received and meas-
ured.

– If automatic resynchronization is enabled (LA-
SE bit = 1), the LIN Synch Field is not trans-
ferred to the shift register: There is no need to
clear the RDRF bit.

– If automatic resynchronization is disabled (LA-
SE bit = 0), the LIN Synch Field is received as
a normal character and transferred to the
SCIDR register and RDRF is set.

Note:
In LIN slave mode, the FE bit detects all frame er-
ror which does not correspond to a break.

Identifier Detection (LHDM = 1):
This case is the same as the previous one except
that the LHDF and the RDRF flags are set only af-
ter the entire header has been received (this is
true whether automatic resynchronization is ena-
bled or not). This indicates that the LIN Identifier is
available in the SCIDR register.

Notes:
During LIN Synch Field measurement, the SCI
state machine is switched off: No characters are
transferred to the data register.

LIN Slave parity
In LIN Slave mode (LINE and LSLV bits are set)
LIN parity checking can be enabled by setting the
PCE bit.

In this case, the parity bits of the LIN Identifier
Field are checked. The identifier character is rec-
ognized as the third received character after a
break character (included):

The bits involved are the two MSB positions (7th
and 8th bits if M = 0; 8th and 9th bits if M = 1) of
the identifier character. The check is performed as
specified by the LIN specification:

LIN Synch LIN Synch Identifier

parity bits

Field Field Break

Identifier Field

parity bits

ID0

start bit stop bit

ID1 ID2 ID3 ID4 ID5 P0 P1

identifier bits

P1 ID1 ID3 ID4 ID5⊕ ⊕ ⊕=

P0 ID0= ID1 ID2 ID4⊕ ⊕ ⊕
M = 0

bso
lete Product(

s)
- O

bso
lete Product(

s)
138/225

ST72361

 O
LINSCI™ SERIAL COMMUNICATION INTERFACE (LIN Master Only) (Cont’d)

DATA REGISTER (SCIDR)
Read/Write

Reset Value: Undefined

Contains the Received or Transmitted data char-
acter, depending on whether it is read from or writ-
ten to.

The Data register performs a double function (read
and write) since it is composed of two registers,
one for transmission (TDR) and one for reception
(RDR).
The TDR register provides the parallel interface
between the internal bus and the output shift reg-
ister (see Figure 88 on page 153).
The RDR register provides the parallel interface
between the input shift register and the internal
bus (see Figure 88).

BAUD RATE REGISTER (SCIBRR)
Read/Write

Reset Value: 00 00 0000 (00h)

Bits 7:6 = SCP[1:0] First SCI Prescaler
These 2 prescaling bits allow several standard
clock division ranges:

Bits 5:3 = SCT[2:0] SCI Transmitter rate divisor
These 3 bits, in conjunction with the SCP1 and
SCP0 bits define the total division applied to the
bus clock to yield the transmit rate clock in conven-
tional Baud Rate Generator mode.

Note: This TR factor is used only when the ETPR
fine tuning factor is equal to 00h; otherwise, TR is
replaced by the (TR*ETPR) dividing factor.

Bits 2:0 = SCR[2:0] SCI Receiver rate divisor.
These 3 bits, in conjunction with the SCP1 and
SCP0 bits define the total division applied to the
bus clock to yield the receive rate clock in conven-
tional Baud Rate Generator mode.

Note: This RR factor is used only when the ERPR
fine tuning factor is equal to 00h; otherwise, RR is
replaced by the (RR*ERPR) dividing factor.

7 0

DR7 DR6 DR5 DR4 DR3 DR2 DR1 DR0

7 0

SCP1 SCP0 SCT2 SCT1 SCT0 SCR2 SCR1 SCR0

PR Prescaling factor SCP1 SCP0

1
0

0

3 1

4
1

0

13 1

TR dividing factor SCT2 SCT1 SCT0

1

0

0
0

2 1

4
1

0

8 1

16

1

0
0

32 1

64
1

0

128 1

RR dividing factor SCR2 SCR1 SCR0

1

0

0
0

2 1

4
1

0

8 1

16

1

0
0

32 1

64
1

0

128 1bso
lete Product(

s)
- O

bso
lete Product(

s)
165/225

ST72361

 O
I/O PORT PIN CHARACTERISTICS (Cont’d)

Figure 109. Typical VOL vs VDD (Standard I/Os)

Figure 110. Typical VOL vs VDD (High-sink I/Os)

3 4 5 6

Vdd(V)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

V
ol

(V
)

Iio
=

5m
A

-45°C

25°C

130°C

3 4 5 6

Vdd(V)

0.1

0.15

0.2

0.25

0.3

0.35

0.4

V
ol

(V
)

Iio
=

2m
A

-45°C

25°C

130°C

3 4 5 6

Vdd(V)

0.1

0.15

0.2

0.25

0.3

0.35

0.4

V
ol

(V
)

Iio
=

8m
A

-45°C

25°C

130°C

3 4 5 6

Vdd(V)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

V
ol

(V
)

Iio
=

20
m

A

-45°C

25°C

130°C

bso
lete Product(

s)
- O

bso
lete Product(

s)
196/225

ST72361

 O
COMMUNICATION INTERFACE CHARACTERISTICS (Cont’d)

Figure 117. SPI Slave Timing Diagram with CPHA = 11)

Figure 118. SPI Master Timing Diagram1)

Notes:
1. Measurement points are done at CMOS levels: 0.3 x VDD and 0.7 x VDD.
2. When no communication is on-going the data output line of the SPI (MOSI in master mode, MISO in slave mode) has
its alternate function capability released. In this case, the pin status depends on the I/O port configuration.

SS INPUT

S
C

K
IN

P
U

T CPHA = 0

MOSI INPUT

MISO OUTPUT

CPHA = 0

tw(SCKH)
tw(SCKL) tr(SCK)

tf(SCK)

ta(SO)

tsu(SI) th(SI)

MSB OUT BIT6 OUT LSB OUTSee

CPOL = 0

CPOL = 1

tsu(SS) th(SS)

tdis(SO)th(SO)

See
note 2note 2

tc(SCK)

Hz

tv(SO)

MSB IN LSB INBIT1 IN

SS INPUT

S
C

K
IN

P
U

T

CPHA = 0

MOSI OUTPUT

MISO INPUT

CPHA = 0

CPHA = 1

CPHA = 1

tc(SCK)

tw(SCKH)
tw(SCKL)

th(MI)tsu(MI)

tv(MO) th(MO)

MSB IN

MSB OUT

BIT6 IN

BIT6 OUT LSB OUT

LSB IN

See note 2 See note 2

CPOL = 0

CPOL = 1

CPOL = 0

CPOL = 1

tr(SCK)
tf(SCK)

bso
lete Product(

s)
- O

bso
lete Product(

s)
203/225

ST72361

 O
ADC CHARACTERISTICS (Cont’d)

Figure 119. RAIN Max vs fADC with CAIN = 0pF1)2) Figure 120. Recommended CAIN/RAIN Values3)

Figure 121. Typical Application with ADC

Notes:
1. CPARASITIC represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad ca-
pacitance (3pF). A high CPARASITIC value will downgrade conversion accuracy. To remedy this, fADC should be reduced.
2. Any added external serial resistor will downgrade the ADC accuracy (especially for resistance greater than 10kΩ). Data
based on characterization results, not tested in production.
3. This graph shows that depending on the input signal variation (fAIN), CAIN can be increased for stabilization time and
reduced to allow the use of a larger serial resistor (RAIN). It is valid for all fADC frequencies ≤ 4 MHz.

0

5

10

15

20

25

30

35

40

45

0 10 30 70

CPARASITIC (pF)

M
ax

. R
A

IN
 (

K
oh

m
)

4 MHz

2 MHz

1 MHz

0.1

1

10

100

1000

0.01 0.1 1 10

fAIN(KHz)

M
ax

. R
A

IN
 (

K
oh

m
)

Cain 10 nF

Cain 22 nF

Cain 47 nF

AINx

ST72XXXVDD

IL
±1μA

VT
0.6V

VT
0.6V CADC

6pF

VAIN

RAIN 10-Bit A/D
Conversion

2kΩ(max)

CAIN

bso
lete Product(

s)
- O

bso
lete Product(

s)
205/225

ST72361

 O
16 IMPORTANT NOTES

16.1 ALL DEVICES

16.1.1 RESET Pin Protection with LVD Enabled
As mentioned in note 2 below Figure 112 on page
199, when the LVD is enabled, it is recommended
not to connect a pull-up resistor or capacitor. A
10nF pull-down capacitor is required to filter noise
on the reset line.

16.1.2 Clearing Active Interrupts Outside
Interrupt Routine
When an active interrupt request occurs at the
same time as the related flag or interrupt mask is
being cleared, the CC register may be corrupted.

Concurrent interrupt context
The symptom does not occur when the interrupts
are handled normally, that is, when:

– The interrupt request is cleared (flag reset or in-
terrupt mask) within its own interrupt routine

– The interrupt request is cleared (flag reset or in-
terrupt mask) within any interrupt routine

– The interrupt request is cleared (flag reset or in-
terrupt mask) in any part of the code while this in-
terrupt is disabled

If these conditions are not met, the symptom can
be avoided by implementing the following se-
quence:

Perform SIM and RIM operation before and after
resetting an active interrupt request

 Example:

SIM

reset flag or interrupt mask

RIM

Nested interrupt context
The symptom does not occur when the interrupts
are handled normally, that is, when:

– The interrupt request is cleared (flag reset or in-
terrupt mask) within its own interrupt routine

– The interrupt request is cleared (flag reset or in-
terrupt mask) within any interrupt routine with
higher or identical priority level

– The interrupt request is cleared (flag reset or in-
terrupt mask) in any part of the code while this in-
terrupt is disabled

If these conditions are not met, the symptom can
be avoided by implementing the following se-
quence:

PUSH CC

SIM

reset flag or interrupt mask

POP CC

16.1.3 External Interrupt Missed
To avoid any risk of generating a parasitic inter-
rupt, the edge detector is automatically disabled
for one clock cycle during an access to either DDR
and OR. Any input signal edge during this period
will not be detected and will not generate an inter-
rupt.

This case can typically occur if the application re-
freshes the port configuration registers at intervals
during runtime.

Workaround
The workaround is based on software checking
the level on the interrupt pin before and after writ-
ing to the PxOR or PxDDR registers. If there is a
level change (depending on the sensitivity pro-
grammed for this pin) the interrupt routine is in-
voked using the call instruction with three extra
PUSH instructions before executing the interrupt
routine (this is to make the call compatible with the
IRET instruction at the end of the interrupt service
routine).

But detection of the level change does ensure that
edge occurs during the critical 1 cycle duration and
the interrupt has been missed. This may lead to
occurrence of same interrupt twice (one hardware
and another with software call).

To avoid this, a semaphore is set to '1' before
checking the level change. The semaphore is
changed to level '0' inside the interrupt routine.
When a level change is detected, the semaphore
status is checked and if it is '1' this means that the
last interrupt has been missed. In this case, the in-
terrupt routine is invoked with the call instruction.

There is another possible case, that is, if writing to
PxOR or PxDDR is done with global interrupts dis-
abled (interrupt mask bit set). In this case, the
semaphore is changed to '1' when the level
change is detected. Detecting a missed interrupt is
done after the global interrupts are enabled (inter-
rupt mask bit reset) and by checking the status of
the semaphore. If it is '1' this means that the last
interrupt was missed and the interrupt routine is in-
voked with the call instruction.

To implement the workaround, the following soft-
ware sequence is to be followed for writing into the
PxOR/PxDDR registers. The example is for Port
PF1 with falling edge interrupt sensitivity. The

bso
lete Product(

s)
- O

bso
lete Product(

s)
218/225

