



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Not For New Designs                                             |
|----------------------------|-----------------------------------------------------------------|
| Core Processor             | 8051                                                            |
| Core Size                  | 8-Bit                                                           |
| Speed                      | 25MHz                                                           |
| Connectivity               | SMBus (2-Wire/I²C), SPI, UART/USART                             |
| Peripherals                | Cap Sense, POR, PWM, Temp Sensor, WDT                           |
| Number of I/O              | 17                                                              |
| Program Memory Size        | 16KB (16K x 8)                                                  |
| Program Memory Type        | FLASH                                                           |
| EEPROM Size                | -                                                               |
| RAM Size                   | 512 x 8                                                         |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 3.6V                                                     |
| Data Converters            | A/D 16x10b                                                      |
| Oscillator Type            | Internal                                                        |
| Operating Temperature      | -40°C ~ 85°C (TA)                                               |
| Mounting Type              | Surface Mount                                                   |
| Package / Case             | 20-VFQFN Exposed Pad                                            |
| Supplier Device Package    | 20-QFN (4x4)                                                    |
| Purchase URL               | https://www.e-xfl.com/product-detail/silicon-labs/c8051f801-gmr |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| 15.2 Data Memory                                            | 93       |
|-------------------------------------------------------------|----------|
| 15.2.1 Internal RAM                                         | 00<br>Q3 |
| 15 2 1 1 General Purpose Registers                          | 94       |
| 15 2 1 2 Bit Addressable Locations                          | 94       |
| 15 2 1 3 Stack                                              | 94       |
| 16. In-System Device Identification                         |          |
| 17. Special Function Registers                              |          |
| 18 Interrunts                                               | 102      |
| 18.1 MCU Interrupt Sources and Vectors                      | 103      |
| 18.1.1. Interrupt Priorities                                | . 103    |
| 18.1.2. Interrupt Latency                                   | 103      |
| 18.2. Interrupt Register Descriptions                       | 104      |
| 18.3. INTO and INT1 External Interrupts                     | . 111    |
| 19. Flash Memory                                            | . 113    |
| 19.1. Programming The Flash Memory                          | . 113    |
| 19.1.1. Flash Lock and Key Functions                        | . 113    |
| 19.1.2. Flash Erase Procedure                               | . 113    |
| 19.1.3. Flash Write Procedure                               | . 114    |
| 19.2. Non-volatile Data Storage                             | 114      |
| 19.3. Security Options                                      | 114      |
| 19.4. Flash Write and Erase Guidelines                      | 115      |
| 19.4.1. VDD Maintenance and the VDD Monitor                 | 116      |
| 19.4.2. PSWE Maintenance                                    | 116      |
| 19.4.3. System Clock                                        | . 117    |
| 20. Power Management Modes                                  | . 120    |
| 20.1. Idle Mode                                             | . 120    |
| 20.2. Stop Mode                                             | . 121    |
| 20.3. Suspend Mode                                          | . 121    |
| 21. Reset Sources                                           | . 123    |
| 21.1. Power-On Reset                                        | . 124    |
| 21.2. Power-Fail Reset / VDD Monitor                        | . 125    |
| 21.3. External Reset                                        | . 126    |
| 21.4. Missing Clock Detector Reset                          | . 126    |
| 21.5. Comparator0 Reset                                     | . 127    |
| 21.6. PCA Watchdog Timer Reset                              | . 127    |
| 21.7. Flash Error Reset                                     | . 127    |
| 21.8. Software Reset                                        | . 127    |
| 22. Oscillators and Clock Selection                         | . 129    |
| 22.1. System Clock Selection                                | . 129    |
| 22.2. Programmable Internal High-Frequency (H-F) Oscillator | . 131    |
| 22.3. External Oscillator Drive Circuit                     | . 133    |
| 22.3.1. External Crystal Example                            | . 135    |
| 22.3.2. External RC Example                                 | . 136    |
| 22.3.3. External Capacitor Example                          | . 13/    |
| 23. Port input/Output                                       | . 138    |



|    | Table 18.1. Interrupt Summary                                                | 104 |
|----|------------------------------------------------------------------------------|-----|
| 19 | . Flash Memory                                                               |     |
|    | Table 19.1. Flash Security Summary                                           | 115 |
| 20 | . Power Management Modes                                                     |     |
| 21 | . Reset Sources                                                              |     |
| 22 | . Oscillators and Clock Selection                                            |     |
| 23 | . Port Input/Output                                                          |     |
|    | Table 23.1. Port I/O Assignment for Analog Functions                         | 141 |
|    | Table 23.2. Port I/O Assignment for Digital Functions                        | 142 |
|    | Table 23.3. Port I/O Assignment for External Digital Event Capture Functions | 142 |
| 24 | . Cyclic Redundancy Check Unit (CRC0)                                        |     |
|    | Table 24.1. Example 16-bit CRC Outputs                                       | 160 |
|    | Table 24.2. Example 32-bit CRC Outputs                                       | 161 |
| 25 | . Enhanced Serial Peripheral Interface (SPI0)                                |     |
|    | Table 25.1. SPI Slave Timing Parameters                                      | 179 |
| 26 | . SMBus                                                                      |     |
|    | Table 26.1. SMBus Clock Source Selection                                     | 184 |
|    | Table 26.2. Minimum SDA Setup and Hold Times                                 | 185 |
|    | Table 26.3. Sources for Hardware Changes to SMB0CN                           | 189 |
|    | Table 26.4. Hardware Address Recognition Examples (EHACK = 1)                | 190 |
|    | Table 26.5. SMBus Status Decoding With Hardware ACK Generation Disabled      |     |
|    | (EHACK = 0)                                                                  | 197 |
|    | Table 26.6. SMBus Status Decoding With Hardware ACK Generation Enabled       |     |
|    | (FHACK = 1)                                                                  | 199 |
| 27 | . UARTO                                                                      |     |
|    | Table 27.1 Timer Settings for Standard Baud Rates                            |     |
|    | Using The Internal 24 5 MHz Oscillator                                       | 208 |
|    | Table 27.2 Timer Settings for Standard Baud Rates                            | 200 |
|    | Using an External 22 1184 MHz Oscillator                                     | 208 |
| 28 | Timers                                                                       | 200 |
| 29 | Programmable Counter Array                                                   |     |
| 20 | Table 29.1 PCA Timebase Input Ontions                                        | 226 |
|    | Table 29.2 PCA0CPM and PCA0PW/M Bit Settings for PCA Capture/Compare M       | 0d- |
|    | 1,2,3,4,5,6                                                                  | 228 |
|    | Table 29.3 Watchdog Timer Timeout Intervals1                                 | 227 |
| 30 | C2 Interface                                                                 | 201 |
| 00 |                                                                              |     |



## List of Registers

| SFR | Definition 8.1 | . ADC0CF: ADC0 Configuration                               | . 50 |
|-----|----------------|------------------------------------------------------------|------|
| SFR | Definition 8.2 | . ADC0H: ADC0 Data Word MSB                                | . 51 |
| SFR | Definition 8.3 | . ADC0L: ADC0 Data Word LSB                                | . 51 |
| SFR | Definition 8.4 | . ADC0CN: ADC0 Control                                     | . 52 |
| SFR | Definition 8.5 | . ADC0GTH: ADC0 Greater-Than Data High Byte                | . 53 |
| SFR | Definition 8.6 | . ADC0GTL: ADC0 Greater-Than Data Low Byte                 | . 53 |
| SFR | Definition 8.7 | . ADC0LTH: ADC0 Less-Than Data High Byte                   | . 54 |
| SFR | Definition 8.8 | . ADC0LTL: ADC0 Less-Than Data Low Byte                    | . 54 |
| SFR | Definition 8.9 | . ADC0MX: AMUX0 Channel Select                             | . 57 |
| SFR | Definition 10. | 1. REF0CN: Voltage Reference Control                       | . 62 |
| SFR | Definition 11. | 1. REG0CN: Voltage Regulator Control                       | . 64 |
| SFR | Definition 12. | 1. CPT0CN: Comparator0 Control                             | . 67 |
| SFR | Definition 12. | 2. CPT0MD: Comparator0 Mode Selection                      | . 68 |
| SFR | Definition 12. | 3. CPT0MX: Comparator0 MUX Selection                       | . 70 |
| SFR | Definition 13. | 1. CS0CN: Capacitive Sense Control                         | . 75 |
| SFR | Definition 13. | 2. CS0CF: Capacitive Sense Configuration                   | . 76 |
| SFR | Definition 13. | 3. CS0DH: Capacitive Sense Data High Byte                  | . 77 |
| SFR | Definition 13. | 4. CS0DL: Capacitive Sense Data Low Byte                   | . 77 |
| SFR | Definition 13. | 5. CS0SS: Capacitive Sense Auto-Scan Start Channel         | . 78 |
| SFR | Definition 13. | 6. CS0SE: Capacitive Sense Auto-Scan End Channel           | . 78 |
| SFR | Definition 13. | 7. CS0THH: Capacitive Sense Comparator Threshold High Byte | . 79 |
| SFR | Definition 13. | 8. CS0THL: Capacitive Sense Comparator Threshold Low Byte  | . 79 |
| SFR | Definition 13. | 9. CS0MX: Capacitive Sense Mux Channel Select              | . 81 |
| SFR | Definition 14. | 1. DPL: Data Pointer Low Byte                              | . 88 |
| SFR | Definition 14. | 2. DPH: Data Pointer High Byte                             | . 88 |
| SFR | Definition 14. | 3. SP: Stack Pointer                                       | . 89 |
| SFR | Definition 14. | 4. ACC: Accumulator                                        | . 89 |
| SFR | Definition 14. | 5. B: B Register                                           | . 90 |
| SFR | Definition 14. | 6. PSW: Program Status Word                                | . 91 |
| SFR | Definition 16. | 1. HWID: Hardware Identification Byte                      | . 95 |
| SFR | Definition 16. | 2. DERIVID: Derivative Identification Byte                 | . 96 |
| SFR | Definition 16. | 3. REVID: Hardware Revision Identification Byte            | . 96 |
| SFR | Definition 18. | 1. IE: Interrupt Enable                                    | 105  |
| SFR | Definition 18. | 2. IP: Interrupt Priority                                  | 106  |
| SFR | Definition 18. | 3. EIE1: Extended Interrupt Enable 1                       | 107  |
| SFR | Definition 18. | 4. EIE2: Extended Interrupt Enable 2                       | 108  |
| SFR | Definition 18. | 5. EIP1: Extended Interrupt Priority 1                     | 109  |
| SFR | Definition 18. | 6. EIP2: Extended Interrupt Priority 2                     | 110  |
| SFR | Definition 18. | 7. IT01CF: INT0/INT1 Configuration                         | 112  |
| SFR | Definition 19. | 1. PSCTL: Program Store R/W Control                        | 118  |
| SFR | Definition 19. | 2. FLKEY: Flash Lock and Key                               | 119  |
| SFR | Definition 20. | 1. PCON: Power Control                                     | 122  |
| SFR | Definition 21. | 1. VDM0CN: VDD Monitor Control                             | 126  |





Figure 1.1. C8051F800, C8051F806, C8051F812, C8051F818 Block Diagram





### 6. SOIC-16 Package Specifications

Figure 6.1. SOIC-16 Package Drawing

| Dimension | Min  | Nom      | Max  | Dimension | Min  | Nom      | Max  |
|-----------|------|----------|------|-----------|------|----------|------|
| A         |      |          | 1.75 | L         | 0.40 |          | 1.27 |
| A1        | 0.10 |          | 0.25 | L2        |      | 0.25 BSC |      |
| A2        | 1.25 |          | _    | h         | 0.25 |          | 0.50 |
| b         | 0.31 |          | 0.51 | θ         | 0°   |          | 8°   |
| С         | 0.17 |          | 0.25 | aaa       |      | 0.10     |      |
| D         |      | 9.90 BSC |      | bbb       |      | 0.20     |      |
| E         |      | 6.00 BSC |      | CCC       |      | 0.10     |      |
| E1        |      | 3.90 BSC |      | ddd       |      | 0.25     |      |
| е         |      | 1.27 BSC |      |           |      |          |      |

#### Table 6.1. SOIC-16 Package Dimensions

Notes:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to the JEDEC Solid State Outline MS-012, Variation AC.

 Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.



#### Table 7.9. ADC0 Electrical Characteristics

 $V_{DD}$  = 3.0 V, VREF = 2.40 V (REFSL=0), –40 to +85 °C unless otherwise specified.

| Parameter                       | Conditions                   | Min          | Тур       | Max        | Units  |
|---------------------------------|------------------------------|--------------|-----------|------------|--------|
| DC Accuracy                     |                              | I            |           | <u> </u>   |        |
| Resolution                      |                              |              | 10        |            | bits   |
| Integral Nonlinearity           |                              |              | ±0.5      | ±1         | LSB    |
| Differential Nonlinearity       | Guaranteed Monotonic         |              | ±0.5      | ±1         | LSB    |
| Offset Error                    |                              | -2           | 0         | 2          | LSB    |
| Full Scale Error                |                              | -2           | 0         | 2          | LSB    |
| Offset Temperature Coefficient  |                              |              | 45        |            | ppm/°C |
| Dynamic performance (10 kHz ६   | sine-wave single-ended input | t, 1 dB belo | w Full Sc | ale, 200:  | ksps)  |
| Signal-to-Noise Plus Distortion |                              | 54           | 60        |            | dB     |
| Total Harmonic Distortion       | Up to the 5th harmonic       |              | 75        |            | dB     |
| Spurious-Free Dynamic Range     |                              |              | -90       |            | dB     |
| Conversion Rate                 | <u> </u>                     |              |           | ·          |        |
| SAR Conversion Clock            | 1                            |              | —         | 8.33       | MHz    |
| Conversion Time in SAR Clocks   | 10-bit Mode                  | 13           | —         |            | clocks |
|                                 | 8-bit Mode                   | 11           | —         | _          | clocks |
| Track/Hold Acquisition Time     | V <sub>DD</sub> >= 2.0 V     | 300          | —         |            | ns     |
|                                 | V <sub>DD</sub> < 2.0 V      | 2.0          | —         | —          | μs     |
| Throughput Rate                 |                              | _            | —         | 500        | ksps   |
| Analog Inputs                   | <u> </u>                     |              |           |            |        |
| ADC Input Voltage Range         | 1                            | 0            | —         | VREF       | V      |
| Sampling Capacitance            | 1x Gain                      |              | 5         |            | pF     |
|                                 | 0.5x Gain                    | _            | 3         | —          | pF     |
| Input Multiplexer Impedance     |                              |              | 5         |            | kΩ     |
| Power Specifications            | <u> </u>                     |              | L         | . <u> </u> |        |
| Power Supply Current            | Operating Mode, 500 ksps     |              | 630       | 1000       | μA     |
| Power Supply Rejection          |                              |              | -70       |            | dB     |



#### Table 7.13. Comparator Electrical Characteristics

 $V_{DD}$  = 3.0 V, -40 to +85 °C unless otherwise noted.

| Parameter                                         | Conditions              | Min   | Тур  | Мах                    | Units |
|---------------------------------------------------|-------------------------|-------|------|------------------------|-------|
| Response Time:                                    | CP0+ - CP0- = 100 mV    |       | 220  | —                      | ns    |
| Mode 0, Vcm <sup>*</sup> = 1.5 V                  | CP0+ - CP0- = -100 mV   |       | 225  | —                      | ns    |
| Response Time:                                    | CP0+ - CP0- = 100 mV    |       | 340  | —                      | ns    |
| Mode 1, Vcm <sup>*</sup> = 1.5 V                  | CP0+ - CP0- = -100 mV   | —     | 380  | —                      | ns    |
| Response Time:                                    | CP0+ - CP0- = 100 mV    | —     | 510  | —                      | ns    |
| Mode 2, Vcm <sup>*</sup> = 1.5 V                  | CP0+ - CP0- = -100 mV   |       | 945  | —                      | ns    |
| Response Time:                                    | CP0+ - CP0- = 100 mV    | —     | 1500 | —                      | ns    |
| Mode 3, Vcm <sup>*</sup> = 1.5 V                  | CP0+ - CP0- = -100 mV   |       | 5000 | —                      | ns    |
| Common-Mode Rejection Ratio                       |                         | —     | 1    | 4                      | mV/V  |
| Positive Hysteresis 1                             | Mode 2, CP0HYP1–0 = 00b |       | 0    | 1                      | mV    |
| Positive Hysteresis 2                             | Mode 2, CP0HYP1–0 = 01b | 2     | 5    | 10                     | mV    |
| Positive Hysteresis 3                             | Mode 2, CP0HYP1–0 = 10b | 7     | 10   | 20                     | mV    |
| Positive Hysteresis 4                             | Mode 2, CP0HYP1–0 = 11b | 10    | 20   | 30                     | mV    |
| Negative Hysteresis 1                             | Mode 2, CP0HYN1–0 = 00b |       | 0    | 1                      | mV    |
| Negative Hysteresis 2                             | Mode 2, CP0HYN1–0 = 01b | 2     | 5    | 10                     | mV    |
| Negative Hysteresis 3                             | Mode 2, CP0HYN1–0 = 10b | 7     | 10   | 20                     | mV    |
| Negative Hysteresis 4                             | Mode 2, CP0HYN1–0 = 11b | 10    | 20   | 30                     | mV    |
| Inverting or Non-Inverting Input<br>Voltage Range |                         | -0.25 | _    | V <sub>DD</sub> + 0.25 | V     |
| Input Offset Voltage                              |                         | -7.5  |      | 7.5                    | mV    |
| Power Specifications                              | •                       |       |      |                        |       |
| Power Supply Rejection                            |                         |       | 0.1  | —                      | mV/V  |
| Powerup Time                                      |                         | —     | 10   | —                      | μs    |
| Supply Current at DC                              | Mode 0                  | —     | 20   | —                      | μA    |
|                                                   | Mode 1                  | —     | 8    | —                      | μA    |
|                                                   | Mode 2                  | —     | 3    | —                      | μA    |
|                                                   | Mode 3                  | —     | 0.5  | —                      | μA    |
| Note: Vcm is the common-mode vo                   | Itage on CP0+ and CP0   |       |      |                        |       |



### SFR Definition 8.7. ADC0LTH: ADC0 Less-Than Data High Byte

| Bit      | 7              | 6                                                      | 5        | 4 | 3 | 2 | 1 | 0 |  |  |
|----------|----------------|--------------------------------------------------------|----------|---|---|---|---|---|--|--|
| Nam      | e ADC0LTH[7:0] |                                                        |          |   |   |   |   |   |  |  |
| Type R/W |                |                                                        |          |   |   |   |   |   |  |  |
| Rese     | et O           | 0                                                      | 0        | 0 | 0 | 0 | 0 | 0 |  |  |
| SFR A    | Address = 0xC6 |                                                        |          |   |   |   |   |   |  |  |
| Bit      | Name           |                                                        | Function |   |   |   |   |   |  |  |
| 7:0      | ADC0LTH[7:0]   | ADC0LTH[7:0] ADC0 Less-Than Data Word High-Order Bits. |          |   |   |   |   |   |  |  |

## SFR Definition 8.8. ADC0LTL: ADC0 Less-Than Data Low Byte

| Bit      | 7              | 6                                                     | 5        | 4 | 3 | 2 | 1 | 0 |  |  |
|----------|----------------|-------------------------------------------------------|----------|---|---|---|---|---|--|--|
| Nam      | e ADC0LTL[7:0] |                                                       |          |   |   |   |   |   |  |  |
| Type R/W |                |                                                       |          |   |   |   |   |   |  |  |
| Rese     | et O           | 0                                                     | 0        | 0 | 0 | 0 | 0 | 0 |  |  |
| SFR A    | Address = 0xC5 |                                                       |          |   |   |   |   |   |  |  |
| Bit      | Name           |                                                       | Function |   |   |   |   |   |  |  |
| 7:0      | ADC0LTL[7:0]   | ADC0LTL[7:0] ADC0 Less-Than Data Word Low-Order Bits. |          |   |   |   |   |   |  |  |



#### 12.1. Comparator Multiplexer

C8051F80x-83x devices include an analog input multiplexer to connect Port I/O pins to the comparator inputs. The Comparator0 inputs are selected in the CPT0MX register (SFR Definition 12.3). The CMX0P3–CMX0P0 bits select the Comparator0 positive input; the CMX0N3–CMX0N0 bits select the Comparator0 negative input. **Important Note About Comparator Inputs:** The Port pins selected as comparator inputs should be configured as analog inputs in their associated Port configuration register, and configured to be skipped by the Crossbar (for details on Port configuration, see Section "23.6. Special Function Registers for Accessing and Configuring Port I/O" on page 152).



Figure 12.3. Comparator Input Multiplexer Block Diagram



### SFR Definition 18.7. IT01CF: INT0/INT1 Configuration

| Bit   | 7     | 6 | 5          | 4 | 3     | 2 | 1          | 0 |
|-------|-------|---|------------|---|-------|---|------------|---|
| Name  | IN1PL |   | IN1SL[2:0] |   | IN0PL |   | IN0SL[2:0] |   |
| Туре  | R/W   |   | R/W        |   | R/W   |   | R/W        |   |
| Reset | 0     | 0 | 0          | 0 | 0     | 0 | 0          | 1 |

#### SFR Address = 0xE4

| Bit | Name       | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | IN1PL      | INT1 Polarity.<br>0: INT1 input is active low.<br>1: INT1 input is active high.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6:4 | IN1SL[2:0] | <b>INT1</b> Port Pin Selection Bits.<br>These bits select which Port pin is assigned to INT1. Note that this pin assignment is independent of the Crossbar; INT1 will monitor the assigned Port pin without disturbing the peripheral that has been assigned the Port pin via the Crossbar. The Crossbar will not assign the Port pin to a peripheral if it is configured to skip the selected pin.<br>000: Select P0.0<br>001: Select P0.1<br>010: Select P0.2<br>011: Select P0.3<br>100: Select P0.4<br>101: Select P0.5<br>110: Select P0.6<br>111: Select P0.7     |
| 3   | INOPL      | INTO Polarity.<br>0: INTO input is active low.<br>1: INTO input is active high.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2:0 | IN0SL[2:0] | INTO Port Pin Selection Bits.<br>These bits select which Port pin is assigned to INTO. Note that this pin assignment is<br>independent of the Crossbar; INTO will monitor the assigned Port pin without disturb-<br>ing the peripheral that has been assigned the Port pin via the Crossbar. The Crossbar<br>will not assign the Port pin to a peripheral if it is configured to skip the selected pin.<br>000: Select P0.0<br>001: Select P0.1<br>010: Select P0.2<br>011: Select P0.3<br>100: Select P0.4<br>101: Select P0.5<br>110: Select P0.6<br>111: Select P0.7 |



### SFR Definition 20.1. PCON: Power Control

| Bit   | 7 | 6 | 5    | 4    | 3   | 2 | 1 | 0 |
|-------|---|---|------|------|-----|---|---|---|
| Name  |   |   | STOP | IDLE |     |   |   |   |
| Туре  |   |   |      | R/W  | R/W |   |   |   |
| Reset | 0 | 0 | 0    | 0    | 0   | 0 | 0 | 0 |

SFR Address = 0x87

| Bit | Name    | Function                                                                                                                                      |
|-----|---------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 7:2 | GF[5:0] | General Purpose Flags 5–0.                                                                                                                    |
|     |         | These are general purpose flags for use under software control.                                                                               |
| 1   | STOP    | Stop Mode Select.                                                                                                                             |
|     |         | Setting this bit will place the CIP-51 in Stop mode. This bit will always be read as 0.                                                       |
|     |         | 1: CPU goes into Stop mode (internal oscillator stopped).                                                                                     |
| 0   | IDLE    | IDLE: Idle Mode Select.                                                                                                                       |
|     |         | Setting this bit will place the CIP-51 in Idle mode. This bit will always be read as 0.                                                       |
|     |         | 1: CPU goes into Idle mode. (Shuts off clock to CPU, but clock to Timers, Interrupts, Serial Ports, and Analog Peripherals are still active.) |



### 21. Reset Sources

Reset circuitry allows the controller to be easily placed in a predefined default condition. On entry to this reset state, the following occur:

- CIP-51 halts program execution
- Special Function Registers (SFRs) are initialized to their defined reset values
- External Port pins are forced to a known state
- Interrupts and timers are disabled.

All SFRs are reset to the predefined values noted in the SFR detailed descriptions. The contents of internal data memory are unaffected during a reset; any previously stored data is preserved. However, since the stack pointer SFR is reset, the stack is effectively lost, even though the data on the stack is not altered.

The Port I/O latches are reset to 0xFF (all logic ones) in open-drain mode. Weak pullups are enabled during and after the reset. For  $V_{DD}$  Monitor and power-on resets, the  $\overrightarrow{RST}$  pin is driven low until the device exits the reset state.

On exit from the reset state, the program counter (PC) is reset, and the system clock defaults to the internal oscillator. The Watchdog Timer is enabled with the system clock divided by 12 as its clock source. Program execution begins at location 0x0000.



Figure 21.1. Reset Sources



| Port                                                                                                                                                                                                                                                                                       |                | P0   |             |              |              |             |              |              | P1          |             |      |       |                |                | P2             |                       |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------|-------------|--------------|--------------|-------------|--------------|--------------|-------------|-------------|------|-------|----------------|----------------|----------------|-----------------------|--------|
| Pin Number                                                                                                                                                                                                                                                                                 | 0              | 1    | 2           | 3            | 4            | 5           | 6            | 7            | 0           | 1           | 2    | 3     | 4 <sup>1</sup> | 5 <sup>1</sup> | 6 <sup>1</sup> | <b>7</b> <sup>1</sup> | 0      |
| Special<br>Function<br>Signals                                                                                                                                                                                                                                                             | VREF           | AGND | XTAL1       | XTAL2        |              |             | CNVSTR       |              |             |             |      |       |                |                |                |                       |        |
| TX0                                                                                                                                                                                                                                                                                        |                |      |             |              |              |             |              |              |             |             |      |       |                |                |                |                       | † I    |
| RX0                                                                                                                                                                                                                                                                                        |                |      |             |              |              |             |              |              |             |             |      |       |                |                |                |                       |        |
|                                                                                                                                                                                                                                                                                            |                |      |             |              |              |             |              |              |             |             |      |       |                |                |                |                       |        |
| MISO                                                                                                                                                                                                                                                                                       |                |      |             |              |              |             |              |              |             |             |      |       |                |                |                |                       | ar     |
| MOSI                                                                                                                                                                                                                                                                                       |                |      |             |              |              |             |              |              |             |             |      |       |                |                |                |                       | ssk    |
| NSS <sup>2</sup>                                                                                                                                                                                                                                                                           |                |      |             |              |              |             |              |              |             |             |      |       |                |                |                |                       | 5<br>0 |
| SDA                                                                                                                                                                                                                                                                                        |                |      |             |              |              |             |              |              |             |             |      |       |                |                |                |                       | 5 to   |
| SCL SCL                                                                                                                                                                                                                                                                                    |                |      |             |              |              |             |              |              |             |             | able |       |                |                |                |                       |        |
| CP0                                                                                                                                                                                                                                                                                        |                |      |             |              |              |             |              |              |             |             |      | vail: |                |                |                |                       |        |
| CP0A                                                                                                                                                                                                                                                                                       |                |      |             |              |              |             |              |              |             |             | Jna  |       |                |                |                |                       |        |
| SYSCLK                                                                                                                                                                                                                                                                                     | SYSCLK         |      |             |              |              |             |              |              |             |             |      |       |                |                | al             |                       |        |
| CEX0                                                                                                                                                                                                                                                                                       |                |      |             |              |              |             |              |              |             |             |      |       |                |                |                |                       | ign    |
| CEX1                                                                                                                                                                                                                                                                                       |                |      |             |              |              |             |              |              |             |             |      |       |                |                |                |                       | 0      |
| CEX2                                                                                                                                                                                                                                                                                       |                |      |             |              |              |             |              |              |             |             |      |       |                |                |                |                       |        |
| ECI                                                                                                                                                                                                                                                                                        |                |      |             |              |              |             |              |              |             |             |      |       |                |                |                |                       |        |
| ТО                                                                                                                                                                                                                                                                                         |                |      |             |              |              |             |              |              |             |             |      |       |                |                |                |                       |        |
| T1                                                                                                                                                                                                                                                                                         |                |      |             |              |              |             |              |              |             |             |      |       |                |                |                |                       |        |
| Pin Skip                                                                                                                                                                                                                                                                                   | 0              | 0    | 0           | 0            | 0            | 0           | 0            | 0            | 0           | 0           | 0    | 0     | 0              | 0              | 0              | 0                     |        |
| Settings                                                                                                                                                                                                                                                                                   |                |      |             | P0S          | SKIF         | )           |              |              |             |             |      | P1S   | SKIF           | )              |                |                       |        |
| In this example, the crossbar is configured to assign the UART TX0 and RX0 signals, the SPI signals, and the PCA signals. Note that the SPI signals are assigned as multiple signals, and there are no pins skipped using the P0SKIP or P1SKIP registers.                                  |                |      |             |              |              |             |              |              |             |             |      |       |                |                |                |                       |        |
| 1 <sup>st</sup> TX0 is assigned to P0.4<br>2 <sup>nd</sup> RX0 is assigned to P0.5<br>3 <sup>rd</sup> SCK, MISO, MOSI, and NSS are assigned to P0.0, P0.1, P0.2, and<br>P0.3, respectively.<br>4 <sup>th</sup> CEX0, CEX1, and CEX2 are assigned to P0.6, P0.7, and P1.0,<br>respectively. |                |      |             |              |              |             |              |              |             |             |      |       |                |                |                |                       |        |
| All unassigned functions.                                                                                                                                                                                                                                                                  | d pi           | ns c | an          | be ı         | isec         | l as        | GP           | 10 d         | or fo       | r ot        | her  | non   | -cro           | osst           | bar            |                       |        |
| Notes:<br>1. P1.4-P1.7 a<br>2. NSS is only                                                                                                                                                                                                                                                 | are i<br>/ pir | not  | ava<br>d ou | ilab<br>t wł | le oi<br>nen | n 16<br>the | 8-pir<br>SPI | n pa<br>is i | cka<br>n 4- | ges<br>wire | e mo | ode.  |                |                |                |                       |        |

Figure 23.5. Priority Crossbar Decoder Example 1—No Skipped Pins



#### SFR Definition 23.8. P0MDIN: Port 0 Input Mode

| Bit   | 7           | 6 | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |  |
|-------|-------------|---|---|---|---|---|---|---|--|--|--|--|
| Name  | P0MDIN[7:0] |   |   |   |   |   |   |   |  |  |  |  |
| Туре  | R/W         |   |   |   |   |   |   |   |  |  |  |  |
| Reset | 1           | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |  |  |  |

SFR Address = 0xF1

| Bit | Name        | Function                                                                                                                                                                                                                                                                                                                                                                                          |
|-----|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0 | P0MDIN[7:0] | Analog Configuration Bits for P0.7–P0.0 (respectively).                                                                                                                                                                                                                                                                                                                                           |
|     |             | <ul> <li>Port pins configured for analog mode have their weak pullup, digital driver, and digital receiver disabled. In order for the P0.n pin to be in analog mode, there MUST be a '1' in the Port Latch register corresponding to that pin.</li> <li>0: Corresponding P0.n pin is configured for analog mode.</li> <li>1: Corresponding P0.n pin is not configured for analog mode.</li> </ul> |

### SFR Definition 23.9. P0MDOUT: Port 0 Output Mode

| Bit   | 7            | 6 | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |
|-------|--------------|---|---|---|---|---|---|---|--|--|--|
| Name  | P0MDOUT[7:0] |   |   |   |   |   |   |   |  |  |  |
| Туре  | R/W          |   |   |   |   |   |   |   |  |  |  |
| Reset | 0            | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |

SFR Address = 0xA4

| Bit | Name         | Function                                                                                                                                                                    |
|-----|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0 | P0MDOUT[7:0] | Output Configuration Bits for P0.7–P0.0 (respectively).                                                                                                                     |
|     |              | These bits are ignored if the corresponding bit in register P0MDIN is logic 0.<br>0: Corresponding P0.n Output is open-drain.<br>1: Corresponding P0.n Output is push-pull. |













overflow after 25 ms (and SMBTOE set), the Timer 3 interrupt service routine can be used to reset (disable and re-enable) the SMBus in the event of an SCL low timeout.

#### 26.3.5. SCL High (SMBus Free) Timeout

The SMBus specification stipulates that if the SCL and SDA lines remain high for more that 50  $\mu$ s, the bus is designated as free. When the SMBFTE bit in SMB0CF is set, the bus will be considered free if SCL and SDA remain high for more than 10 SMBus clock source periods (as defined by the timer configured for the SMBus clock source). If the SMBus is waiting to generate a Master START, the START will be generated following this timeout. A clock source is required for free timeout detection, even in a slave-only implementation.

#### 26.4. Using the SMBus

The SMBus can operate in both Master and Slave modes. The interface provides timing and shifting control for serial transfers; higher level protocol is determined by user software. The SMBus interface provides the following application-independent features:

- Byte-wise serial data transfers
- Clock signal generation on SCL (Master Mode only) and SDA data synchronization
- Timeout/bus error recognition, as defined by the SMB0CF configuration register
- START/STOP timing, detection, and generation
- Bus arbitration
- Interrupt generation
- Status information
- Optional hardware recognition of slave address and automatic acknowledgement of address/data

SMBus interrupts are generated for each data byte or slave address that is transferred. When hardware acknowledgement is disabled, the point at which the interrupt is generated depends on whether the hardware is acting as a data transmitter or receiver. When a transmitter (i.e., sending address/data, receiving an ACK), this interrupt is generated after the ACK cycle so that software may read the received ACK value; when receiving data (i.e., receiving address/data, sending an ACK), this interrupt is generated before the ACK cycle so that software may define the outgoing ACK value. If hardware acknowledgement is enabled, these interrupts are always generated after the ACK cycle. See Section 26.5 for more details on transmission sequences.

Interrupts are also generated to indicate the beginning of a transfer when a master (START generated), or the end of a transfer when a slave (STOP detected). Software should read the SMB0CN (SMBus Control register) to find the cause of the SMBus interrupt. The SMB0CN register is described in Section 26.4.2; Table 26.5 provides a quick SMB0CN decoding reference.

#### 26.4.1. SMBus Configuration Register

The SMBus Configuration register (SMB0CF) is used to enable the SMBus Master and/or Slave modes, select the SMBus clock source, and select the SMBus timing and timeout options. When the ENSMB bit is set, the SMBus is enabled for all master and slave events. Slave events may be disabled by setting the INH bit. With slave events inhibited, the SMBus interface will still monitor the SCL and SDA pins; however, the interface will NACK all received addresses and will not generate any slave interrupts. When the INH bit is set, all slave events will be inhibited following the next START (interrupts will continue for the duration of the current transfer).



| Bit        | Set by Hardware When:                                                                                          | Cleared by Hardware When:                                                      |
|------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| MASTED     | A START is generated.                                                                                          | A STOP is generated.                                                           |
| WASTER     |                                                                                                                | <ul> <li>Arbitration is lost.</li> </ul>                                       |
|            | <ul> <li>START is generated.</li> </ul>                                                                        | A START is detected.                                                           |
|            | <ul> <li>SMB0DAT is written before the start of an</li> </ul>                                                  | <ul> <li>Arbitration is lost.</li> </ul>                                       |
| TAMODE     | SMBus frame.                                                                                                   | <ul> <li>SMB0DAT is not written before the start of an SMBus frame.</li> </ul> |
| STA        | <ul> <li>A START followed by an address byte is received.</li> </ul>                                           | <ul> <li>Must be cleared by software.</li> </ul>                               |
|            | A STOP is detected while addressed as a                                                                        | A pending STOP is generated.                                                   |
| STO        | slave.                                                                                                         |                                                                                |
|            | <ul> <li>Arbitration is lost due to a detected STOP.</li> </ul>                                                |                                                                                |
|            | A byte has been received and an ACK                                                                            | After each ACK cycle.                                                          |
| ACKRQ      | hardware ACK is not enabled)                                                                                   |                                                                                |
|            | <ul> <li>A repeated START is detected as a</li> </ul>                                                          | <ul> <li>Each time SL is cleared</li> </ul>                                    |
|            | MASTER when STA is low (unwanted repeated START).                                                              |                                                                                |
| ARBLOST    | <ul> <li>SCL is sensed low while attempting to<br/>generate a STOP or repeated START<br/>condition.</li> </ul> |                                                                                |
|            | <ul> <li>SDA is sensed low while transmitting a 1<br/>(excluding ACK bits).</li> </ul>                         |                                                                                |
| ACK        | The incoming ACK value is low                                                                                  | The incoming ACK value is high                                                 |
|            | (ACKNOWLEDGE).                                                                                                 | (NOT ACKNOWLEDGE).                                                             |
|            | A START has been generated.                                                                                    | Must be cleared by software.                                                   |
|            | Lost arbitration.                                                                                              |                                                                                |
| <u>e</u> i | <ul> <li>A byte has been transmitted and an ACK/NACK received.</li> </ul>                                      |                                                                                |
| 51         | A byte has been received.                                                                                      |                                                                                |
|            | <ul> <li>A START or repeated START followed by a<br/>slave address + R/W has been received.</li> </ul>         |                                                                                |
|            | <ul> <li>A STOP has been received.</li> </ul>                                                                  |                                                                                |

Table 26.3. Sources for Hardware Changes to SMB0CN

#### 26.4.3. Hardware Slave Address Recognition

The SMBus hardware has the capability to automatically recognize incoming slave addresses and send an ACK without software intervention. Automatic slave address recognition is enabled by setting the EHACK bit in register SMB0ADM to 1. This will enable both automatic slave address recognition and automatic hardware ACK generation for received bytes (as a master or slave). More detail on automatic hardware ACK generation can be found in Section 26.4.2.2.

The registers used to define which address(es) are recognized by the hardware are the SMBus Slave Address register (SFR Definition 26.3) and the SMBus Slave Address Mask register (SFR Definition 26.4). A single address or range of addresses (including the General Call Address 0x00) can be specified using these two registers. The most-significant seven bits of the two registers are used to define which addresses will be ACKed. A 1 in bit positions of the slave address mask SLVM[6:0] enable a comparison between the received slave address and the hardware's slave address SLV[6:0] for those bits. A 0 in a bit of the slave address mask means that bit will be treated as a "don't care" for comparison purposes. In this



# Table 26.6. SMBus Status Decoding With Hardware ACK Generation Enabled (EHACK = 1)(Continued)

| 0                 | Valu             | es F  | Rea     | d   |                                                                                             |                                                        | Va<br>V | lues<br>Vrite | sto<br>e | atus<br>bected         |
|-------------------|------------------|-------|---------|-----|---------------------------------------------------------------------------------------------|--------------------------------------------------------|---------|---------------|----------|------------------------|
| €PoM              | Status<br>Vector | ACKRQ | ARBLOST | ACK | Current SMbus State                                                                         | Typical Response Options                               | STA     | STO           | ACK      | Next Sta<br>Vector Exp |
| Slave Transmitter |                  | 0     | 0       | 0   | A slave byte was transmitted;<br>NACK received.                                             | No action required (expecting STOP condition).         | 0       | 0             | Х        | 0001                   |
|                   | 0100             | 0     | 0       | 1   | A slave byte was transmitted;<br>ACK received.                                              | Load SMB0DAT with next data byte to transmit.          | 0       | 0             | Х        | 0100                   |
|                   |                  | 0     | 1       | х   | A Slave byte was transmitted;<br>error detected.                                            | No action required (expecting Master to end transfer). | 0       | 0             | Х        | 0001                   |
|                   | 0101             | 0     | х       | х   | An illegal STOP or bus error<br>was detected while a Slave<br>Transmission was in progress. | Clear STO.                                             | 0       | 0             | Х        |                        |
|                   | 0010             | 0     | 0       | v   | A slave address + R/W was                                                                   | If Write, Set ACK for first data byte.                 | 0       | 0             | 1        | 0000                   |
| iver              |                  | Ū     | U       | ^   | received; ACK sent.                                                                         | If Read, Load SMB0DAT with data byte                   | 0       | 0             | Х        | 0100                   |
|                   |                  |       |         |     | Lost arbitration as master;                                                                 | If Write, Set ACK for first data byte.                 | 0       | 0             | 1        | 0000                   |
|                   |                  | 0     | 1       | Х   | slave address + R/W received;<br>ACK sent.                                                  | If Read, Load SMB0DAT with data byte                   | 0       | 0             | Х        | 0100                   |
| ece               |                  |       |         |     |                                                                                             | Reschedule failed transfer                             | 1       | 0             | Х        | 1110                   |
| Slave R           | 0001             | 0     | 0       | х   | A STOP was detected while<br>addressed as a Slave Trans-<br>mitter or Slave Receiver.       | Clear STO.                                             | 0       | 0             | Х        |                        |
|                   |                  | 0     | 1       | х   | Lost arbitration while attempt-<br>ing a STOP.                                              | No action required (transfer complete/aborted).        | 0       | 0             | 0        | _                      |
|                   | 0000             | 0     | 0       | v   | A slave byte was received.                                                                  | Set ACK for next data byte;<br>Read SMB0DAT.           | 0       | 0             | 1        | 0000                   |
|                   | 0000             | U     | 0       | ^   |                                                                                             | Set NACK for next data byte;<br>Read SMB0DAT.          | 0       | 0             | 0        | 0000                   |
| ion               | 0010             | 0     | 1       | х   | Lost arbitration while attempt-                                                             | Abort failed transfer.                                 | 0       | 0             | Х        |                        |
| Jdit              | 0010             | Ŭ     |         |     | ing a repeated START.                                                                       | Reschedule failed transfer.                            | 1       | 0             | Х        | 1110                   |
| So                | 0001             | 0     | 1       | х   | Lost arbitration due to a                                                                   | Abort failed transfer.                                 | 0       | 0             | Х        | —                      |
| ror               |                  |       | Ľ       |     | detected STOP.                                                                              | Reschedule failed transfer.                            | 1       | 0             | Х        | 1110                   |
| ц                 | 0000             | 0     | 1       | x   | Lost arbitration while transmit-                                                            | Abort failed transfer.                                 | 0       | 0             | Х        |                        |
| Buŝ               | 0000             | 0     |         |     | ting a data byte as master.                                                                 | Reschedule failed transfer.                            | 1       | 0             | Х        | 1110                   |



## 27. UART0

UART0 is an asynchronous, full duplex serial port offering modes 1 and 3 of the standard 8051 UART. Enhanced baud rate support allows a wide range of clock sources to generate standard baud rates (details in Section "27.1. Enhanced Baud Rate Generation" on page 202). Received data buffering allows UART0 to start reception of a second incoming data byte before software has finished reading the previous data byte.

UART0 has two associated SFRs: Serial Control Register 0 (SCON0) and Serial Data Buffer 0 (SBUF0). The single SBUF0 location provides access to both transmit and receive registers. Writes to SBUF0 always access the Transmit register. Reads of SBUF0 always access the buffered Receive register; it is not possible to read data from the Transmit register.

With UART0 interrupts enabled, an interrupt is generated each time a transmit is completed (TI0 is set in SCON0), or a data byte has been received (RI0 is set in SCON0). The UART0 interrupt flags are not cleared by hardware when the CPU vectors to the interrupt service routine. They must be cleared manually by software, allowing software to determine the cause of the UART0 interrupt (transmit complete or receive complete).







NOTES:

