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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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Figure 1.7. C8051F824, C8051F827, C8051F830, C8051F833 Block Diagram
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Table 7.6. Flash Electrical Characteristics

Parameter Conditions Min Typ Max Units

Flash Size (Note 1) C8051F80x and C8051F810/1
C8051F812/3/4/5/6/7/8/9 and C8051F82x
C8051F830/1/2/3/4/5

16384
8192
4096

bytes
bytes
bytes

Endurance (Erase/Write) 10000 — — cycles

Erase Cycle Time 25 MHz Clock 15 20 26 ms

Write Cycle Time 25 MHz Clock 15 20 26 µs

Clock Speed during Flash 
Write/Erase Operations

1 — — MHz

Note: Includes Security Lock Byte.

Table 7.7. Internal High-Frequency Oscillator Electrical Characteristics
VDD = 1.8 to 3.6 V; TA = –40 to +85 °C unless otherwise specified. Use factory-calibrated settings.

Parameter Conditions Min Typ Max Units

Oscillator Frequency IFCN = 11b 24 24.5 25 MHz
Oscillator Supply Current 25 °C, VDD = 3.0 V,

OSCICN.7 = 1,
OCSICN.5 = 0

— 350 650 µA

Table 7.8. Capacitive Sense Electrical Characteristics
VDD = 1.8 to 3.6 V; TA = –40 to +85 °C unless otherwise specified.

Parameter Conditions Min Typ Max Units

Conversion Time Single Conversion 26 38 50 µs

Capacitance per Code — 1 — fF

External Capacitive Load — — 45 pF

Quantization Noise1 RMS
Peak-to-Peak

—
—

3
20

—
—

fF
fF

Supply Current CS module bias current, 25 °C
CS module alone, maximum code 
output, 25 °C
Wake-on-CS Threshold2, 25 °C

—
—

—

40
75

150

60
105

165

µA
µA

µA

Notes:
1. RMS Noise is equivalent to one standard deviation. Peak-to-peak noise encompasses ±3.3 standard 

deviations.
2. Includes only current from regulator, CS module, and MCU in suspend mode.
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SFR Address = 0xBC

SFR Definition 8.1. ADC0CF: ADC0 Configuration

Bit 7 6 5 4 3 2 1 0

Name AD0SC[4:0] AD0LJST AD08BE AMP0GN0

Type R/W R/W R/W R/W

Reset 1 1 1 1 1 0 0 1

Bit Name Function

7:3 AD0SC[4:0] ADC0 SAR Conversion Clock Period Bits.

SAR Conversion clock is derived from system clock by the following equation, where 
AD0SC refers to the 5-bit value held in bits AD0SC4–0. SAR Conversion clock 
requirements are given in the ADC specification table.

2 AD0LJST ADC0 Left Justify Select.

0: Data in ADC0H:ADC0L registers are right-justified.
1: Data in ADC0H:ADC0L registers are left-justified.
Note: The AD0LJST bit is only valid for 10-bit mode (AD08BE = 0).

1 AD08BE 8-Bit Mode Enable.

0: ADC operates in 10-bit mode (normal).
1: ADC operates in 8-bit mode.
Note: When AD08BE is set to 1, the AD0LJST bit is ignored.

0 AMP0GN0 ADC Gain Control Bit.

0: Gain = 0.5
1: Gain = 1

AD0SC
SYSCLK
CLKSAR
----------------------- 1–=
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SFR Address = 0x97

SFR Address = 0x96

SFR Definition 13.7. CS0THH: Capacitive Sense Comparator Threshold High Byte

Bit 7 6 5 4 3 2 1 0

Name CS0THH[7:0]

Type R/W R/W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Description

7:0 CS0THH[7:0] CS0 Comparator Threshold High Byte.

High byte of the 16-bit value compared to the Capacitive Sense conversion result.

SFR Definition 13.8. CS0THL: Capacitive Sense Comparator Threshold Low Byte

Bit 7 6 5 4 3 2 1 0

Name CS0THL[7:0]

Type R/W R/W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Description

7:0 CS0THL[7:0] CS0 Comparator Threshold Low Byte.

Low byte of the 16-bit value compared to the Capacitive Sense conversion result.
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XRL direct, #data Exclusive-OR immediate to direct byte 3 3
CLR A Clear A 1 1
CPL A Complement A 1 1
RL A Rotate A left 1 1
RLC A Rotate A left through Carry 1 1
RR A Rotate A right 1 1
RRC A Rotate A right through Carry 1 1
SWAP A Swap nibbles of A 1 1

Data Transfer

MOV A, Rn Move Register to A 1 1
MOV A, direct Move direct byte to A 2 2
MOV A, @Ri Move indirect RAM to A 1 2
MOV A, #data Move immediate to A 2 2
MOV Rn, A Move A to Register 1 1
MOV Rn, direct Move direct byte to Register 2 2
MOV Rn, #data Move immediate to Register 2 2
MOV direct, A Move A to direct byte 2 2
MOV direct, Rn Move Register to direct byte 2 2
MOV direct, direct Move direct byte to direct byte 3 3
MOV direct, @Ri Move indirect RAM to direct byte 2 2
MOV direct, #data Move immediate to direct byte 3 3
MOV @Ri, A Move A to indirect RAM 1 2
MOV @Ri, direct Move direct byte to indirect RAM 2 2
MOV @Ri, #data Move immediate to indirect RAM 2 2
MOV DPTR, #data16 Load DPTR with 16-bit constant 3 3
MOVC A, @A+DPTR Move code byte relative DPTR to A 1 3
MOVC A, @A+PC Move code byte relative PC to A 1 3
MOVX A, @Ri Move external data (8-bit address) to A 1 3
MOVX @Ri, A Move A to external data (8-bit address) 1 3
MOVX A, @DPTR Move external data (16-bit address) to A 1 3
MOVX @DPTR, A Move A to external data (16-bit address) 1 3
PUSH direct Push direct byte onto stack 2 2
POP direct Pop direct byte from stack 2 2
XCH A, Rn Exchange Register with A 1 1
XCH A, direct Exchange direct byte with A 2 2
XCH A, @Ri Exchange indirect RAM with A 1 2
XCHD A, @Ri Exchange low nibble of indirect RAM with A 1 2

Boolean Manipulation

CLR C Clear Carry 1 1
CLR bit Clear direct bit 2 2
SETB C Set Carry 1 1
SETB bit Set direct bit 2 2
CPL C Complement Carry 1 1
CPL bit Complement direct bit 2 2

Table 14.1. CIP-51 Instruction Set Summary (Continued)

Mnemonic Description Bytes Clock 
Cycles
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Table 17.2. Special Function Registers

SFRs are listed in alphabetical order. All undefined SFR locations are reserved

Register Address Description Page

ACC 0xE0 Accumulator 89

ADC0CF 0xBC ADC0 Configuration 50

ADC0CN 0xE8 ADC0 Control 52

ADC0GTH 0xC4 ADC0 Greater-Than Compare High 53

ADC0GTL 0xC3 ADC0 Greater-Than Compare Low 53

ADC0H 0xBE ADC0 High 51

ADC0L 0xBD ADC0 Low 51

ADC0LTH 0xC6 ADC0 Less-Than Compare Word High 54

ADC0LTL 0xC5 ADC0 Less-Than Compare Word Low 54

ADC0MX 0xBB AMUX0 Multiplexer Channel Select 57

B 0xF0 B Register 90

CKCON 0x8E Clock Control 210

CLKSEL 0xA9 Clock Select 210

CPT0CN 0x9B Comparator0 Control 67

CPT0MD 0x9D Comparator0 Mode Selection 68

CPT0MX 0x9F Comparator0 MUX Selection 70

CRC0AUTO 0xD2 CRC0 Automatic Control Register 165

CRC0CN 0xCE CRC0 Control 163

CRC0CNT 0xD3 CRC0 Automatic Flash Sector Count 165

CRC0DATA 0xDE CRC0 Data Output 164

CRC0FLIP 0xCF CRC0 Bit Flip 166

CRC0IN 0xDD CRC Data Input 164

CS0THH 0x97 CS0 Digital Compare Threshold High 79

CS0THL 0x96 CS0 Digital Compare Threshold High 79

CS0CN 0xB0 CS0 Control 75

CS0DH 0xAC CS0 Data High 77

CS0DL 0xAB CS0 Data Low 77
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18.1.  MCU Interrupt Sources and Vectors
The C8051F80x-83x MCUs support 15 interrupt sources. Software can simulate an interrupt by setting an
interrupt-pending flag to logic 1. If interrupts are enabled for the flag, an interrupt request will be generated
and the CPU will vector to the ISR address associated with the interrupt-pending flag. MCU interrupt
sources, associated vector addresses, priority order and control bits are summarized in Table 18.1. Refer
to the datasheet section associated with a particular on-chip peripheral for information regarding valid
interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).

18.1.1. Interrupt Priorities

Each interrupt source can be individually programmed to one of two priority levels: low or high. A low prior-
ity interrupt service routine can be preempted by a high priority interrupt. A high priority interrupt cannot be
preempted. Each interrupt has an associated interrupt priority bit in an SFR (IP or EIP1) used to configure
its priority level. Low priority is the default. If two interrupts are recognized simultaneously, the interrupt with
the higher priority is serviced first. If both interrupts have the same priority level, a fixed priority order is
used to arbitrate, given in Table 18.1.

18.1.2. Interrupt Latency

Interrupt response time depends on the state of the CPU when the interrupt occurs. Pending interrupts are
sampled and priority decoded each system clock cycle. Therefore, the fastest possible response time is 5
system clock cycles: 1 clock cycle to detect the interrupt and 4 clock cycles to complete the LCALL to the
ISR. If an interrupt is pending when a RETI is executed, a single instruction is executed before an LCALL
is made to service the pending interrupt. Therefore, the maximum response time for an interrupt (when no
other interrupt is currently being serviced or the new interrupt is of greater priority) occurs when the CPU is
performing an RETI instruction followed by a DIV as the next instruction. In this case, the response time is
18 system clock cycles: 1 clock cycle to detect the interrupt, 5 clock cycles to execute the RETI, 8 clock
cycles to complete the DIV instruction and 4 clock cycles to execute the LCALL to the ISR. If the CPU is
executing an ISR for an interrupt with equal or higher priority, the new interrupt will not be serviced until the
current ISR completes, including the RETI and following instruction.
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features of the C8051F80x-83x devices.

19.4.  Flash Write and Erase Guidelines
Any system which contains routines which write or erase Flash memory from software involves some risk
that the write or erase routines will execute unintentionally if the CPU is operating outside its specified
operating range of VDD, system clock frequency, or temperature. This accidental execution of Flash modi-
fying code can result in alteration of Flash memory contents causing a system failure that is only recover-
able by re-Flashing the code in the device.

To help prevent the accidental modification of Flash by firmware, the VDD Monitor must be enabled and
enabled as a reset source on C8051F80x-83x devices for the Flash to be successfully modified. If either
the VDD Monitor or the VDD Monitor reset source is not enabled, a Flash Error Device Reset will be
generated when the firmware attempts to modify the Flash. 

Table 19.1. Flash Security Summary

Action C2 Debug 
Interface

User Firmware executing from: 

an unlocked page a locked page

Read, Write or Erase unlocked pages                      
(except page with Lock Byte)

Permitted Permitted Permitted

Read, Write or Erase locked pages                        
(except page with Lock Byte)

Not Permitted FEDR Permitted

Read or Write page containing Lock Byte                      
(if no pages are locked)

Permitted Permitted Permitted

Read or Write page containing Lock Byte                        
(if any page is locked)

Not Permitted FEDR Permitted

Read contents of Lock Byte
(if no pages are locked)

Permitted Permitted Permitted

Read contents of Lock Byte
(if any page is locked)

Not Permitted FEDR Permitted

Erase page containing Lock Byte                                      
(if no pages are locked)

Permitted FEDR FEDR

Erase page containing Lock Byte—Unlock all 
pages (if any page is locked)

Only by C2DE FEDR FEDR

Lock additional pages                                               
(change 1s to 0s in the Lock Byte)

Not Permitted FEDR FEDR

Unlock individual pages
(change 0s to 1s in the Lock Byte)

Not Permitted FEDR FEDR

Read, Write or Erase Reserved Area Not Permitted FEDR FEDR

C2DE—C2 Device Erase (Erases all Flash pages including the page containing the Lock Byte)
FEDR—Not permitted; Causes Flash Error Device Reset (FERROR bit in RSTSRC is 1 after reset)

 All prohibited operations that are performed via the C2 interface are ignored (do not cause device 
reset).

 Locking any Flash page also locks the page containing the Lock Byte.

 Once written to, the Lock Byte cannot be modified except by performing a C2 Device Erase. 

 If user code writes to the Lock Byte, the Lock does not take effect until the next device reset.
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21.2.  Power-Fail Reset / VDD Monitor

When a power-down transition or power irregularity causes VDD to drop below VRST, the power supply
monitor will drive the RST pin low and hold the CIP-51 in a reset state (see Figure 21.2). When VDD returns
to a level above VRST, the CIP-51 will be released from the reset state. Even though internal data memory
contents are not altered by the power-fail reset, it is impossible to determine if VDD dropped below the level
required for data retention. If the PORSF flag reads 1, the data may no longer be valid. The VDD monitor is
enabled and selected as a reset source after power-on resets. Its defined state (enabled/disabled) is not
altered by any other reset source. For example, if the VDD monitor is disabled by code and a software reset
is performed, the VDD monitor will still be disabled after the reset. 

Important Note: If the VDD monitor is being turned on from a disabled state, it should be enabled before it
is selected as a reset source. Selecting the VDD monitor as a reset source before it is enabled and stabi-
lized may cause a system reset. In some applications, this reset may be undesirable. If this is not desirable
in the application, a delay should be introduced between enabling the monitor and selecting it as a reset
source. The procedure for enabling the VDD monitor and configuring it as a reset source from a disabled
state is shown below:

1. Enable the VDD monitor (VDMEN bit in VDM0CN = 1).

2. If necessary, wait for the VDD monitor to stabilize.

3. Select the VDD monitor as a reset source (PORSF bit in RSTSRC = 1).

See Figure 21.2 for VDD monitor timing; note that the power-on-reset delay is not incurred after a VDD

monitor reset. See Section “7. Electrical Characteristics” on page 39 for complete electrical characteristics
of the VDD monitor.
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24.1.  16-bit CRC Algorithm
The C8051F80x-83x CRC unit calculates the 16-bit CRC MSB-first, using a poly of 0x1021. The following
describes the 16-bit CRC algorithm performed by the hardware:

1. XOR the most-significant byte of the current CRC result with the input byte. If this is the first iteration of 
the CRC unit, the current CRC result will be the set initial value (0x0000 or 0xFFFF).

2. If the MSB of the CRC result is set, left-shift the CRC result, and then XOR the CRC result with the 
polynomial (0x1021).

3. If the MSB of the CRC result is not set, left-shift the CRC result.

4. Repeat at Step 2 for the number of input bits (8).

For example, the 16-bit C8051F80x-83x CRC algorithm can be described by the following code:

unsigned short UpdateCRC (unsigned short CRC_acc, unsigned char CRC_input){
unsigned char i;                    // loop counter
#define POLY 0x1021
// Create the CRC "dividend" for polynomial arithmetic (binary arithmetic
// with no carries)
CRC_acc = CRC_acc ^ (CRC_input << 8);
// "Divide" the poly into the dividend using CRC XOR subtraction
// CRC_acc holds the "remainder" of each divide
// Only complete this division for 8 bits since input is 1 byte
for (i = 0; i < 8; i++) 
{

// Check if the MSB is set (if MSB is 1, then the POLY can "divide"
// into the "dividend")
if ((CRC_acc & 0x8000) == 0x8000) 
{

// if so, shift the CRC value, and XOR "subtract" the poly
CRC_acc = CRC_acc << 1;
CRC_acc ^= POLY;

} 
else 
{

// if not, just shift the CRC value
CRC_acc = CRC_acc << 1;

}
}
return CRC_acc; // Return the final remainder (CRC value)

}

Table 24.1 lists example input values and the associated outputs using the 16-bit C8051F80x-83x CRC
algorithm (an initial value of 0xFFFF is used):

Table 24.1. Example 16-bit CRC Outputs

Input Output

0x63 0xBD35
0xAA, 0xBB, 0xCC 0x6CF6

0x00, 0x00, 0xAA, 0xBB, 0xCC 0xB166
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SFR Address = 0xCE

SFR Definition 24.1. CRC0CN: CRC0 Control

Bit 7 6 5 4 3 2 1 0

Name CRC0SEL CRC0INIT CRC0VAL CRC0PNT[1:0]

Type R/W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:5 Unused Read = 000b; Write = Don’t Care.

4 CRC0SEL CRC0 Polynomial Select Bit.

This bit selects the CRC0 polynomial and result length (32-bit or 16-bit).
0: CRC0 uses the 32-bit polynomial 0x04C11DB7 for calculating the CRC result.
1: CRC0 uses the 16-bit polynomial 0x1021 for calculating the CRC result.

3 CRC0INIT CRC0 Result Initialization Bit.

Writing a 1 to this bit initializes the entire CRC result based on CRC0VAL.

2 CRC0VAL CRC0 Set Value Initialization Bit.

This bit selects the set value of the CRC result.
0: CRC result is set to 0x00000000 on write of 1 to CRC0INIT.
1: CRC result is set to 0xFFFFFFFF on write of 1 to CRC0INIT. 

1:0 CRC0PNT[1:0] CRC0 Result Pointer.

Specifies the byte of the CRC result to be read/written on the next access to 
CRC0DAT. The value of these bits will auto-increment upon each read or write.
For CRC0SEL = 0:
00: CRC0DAT accesses bits 7–0 of the 32-bit CRC result.
01: CRC0DAT accesses bits 15–8 of the 32-bit CRC result.
10: CRC0DAT accesses bits 23–16 of the 32-bit CRC result.
11: CRC0DAT accesses bits 31–24 of the 32-bit CRC result.
For CRC0SEL = 1:
00: CRC0DAT accesses bits 7–0 of the 16-bit CRC result.
01: CRC0DAT accesses bits 15–8 of the 16-bit CRC result.
10: CRC0DAT accesses bits 7–0 of the 16-bit CRC result. 
11: CRC0DAT accesses bits 15–8 of the 16-bit CRC result.
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Figure 25.4. 4-Wire Single Master Mode and 4-Wire Slave Mode Connection Diagram

25.3.  SPI0 Slave Mode Operation
When SPI0 is enabled and not configured as a master, it will operate as a SPI slave. As a slave, bytes are
shifted in through the MOSI pin and out through the MISO pin by a master device controlling the SCK sig-
nal. A bit counter in the SPI0 logic counts SCK edges. When 8 bits have been shifted through the shift reg-
ister, the SPIF flag is set to logic 1, and the byte is copied into the receive buffer. Data is read from the
receive buffer by reading SPI0DAT. A slave device cannot initiate transfers. Data to be transferred to the
master device is pre-loaded into the shift register by writing to SPI0DAT. Writes to SPI0DAT are double-
buffered, and are placed in the transmit buffer first. If the shift register is empty, the contents of the transmit
buffer will immediately be transferred into the shift register. When the shift register already contains data,
the SPI will load the shift register with the transmit buffer’s contents after the last SCK edge of the next (or
current) SPI transfer.

When configured as a slave, SPI0 can be configured for 4-wire or 3-wire operation. The default, 4-wire
slave mode, is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 1. In 4-wire mode, the
NSS signal is routed to a port pin and configured as a digital input. SPI0 is enabled when NSS is logic 0,
and disabled when NSS is logic 1. The bit counter is reset on a falling edge of NSS. Note that the NSS sig-
nal must be driven low at least 2 system clocks before the first active edge of SCK for each byte transfer.
Figure 25.4 shows a connection diagram between two slave devices in 4-wire slave mode and a master
device.

3-wire slave mode is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 0. NSS is not
used in this mode, and is not mapped to an external port pin through the crossbar. Since there is no way of
uniquely addressing the device in 3-wire slave mode, SPI0 must be the only slave device present on the
bus. It is important to note that in 3-wire slave mode there is no external means of resetting the bit counter
that determines when a full byte has been received. The bit counter can only be reset by disabling and re-
enabling SPI0 with the SPIEN bit. Figure 25.3 shows a connection diagram between a slave device in 3-
wire slave mode and a master device.
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Figure 25.5. Master Mode Data/Clock Timing

Figure 25.6. Slave Mode Data/Clock Timing (CKPHA = 0)
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Table 25.1. SPI Slave Timing Parameters

Parameter Description Min Max Units

Master Mode Timing (See Figure 25.8 and Figure 25.9)

TMCKH SCK High Time 1 x TSYSCLK — ns

TMCKL SCK Low Time 1 x TSYSCLK — ns

TMIS MISO Valid to SCK Shift Edge 1 x TSYSCLK + 20 — ns

TMIH SCK Shift Edge to MISO Change 0 — ns

Slave Mode Timing (See Figure 25.10 and Figure 25.11)

TSE NSS Falling to First SCK Edge 2 x TSYSCLK — ns

TSD Last SCK Edge to NSS Rising 2 x TSYSCLK — ns

TSEZ NSS Falling to MISO Valid — 4 x TSYSCLK ns

TSDZ NSS Rising to MISO High-Z — 4 x TSYSCLK ns

TCKH SCK High Time 5 x TSYSCLK — ns

TCKL SCK Low Time 5 x TSYSCLK — ns

TSIS MOSI Valid to SCK Sample Edge 2 x TSYSCLK — ns

TSIH SCK Sample Edge to MOSI Change 2 x TSYSCLK — ns

TSOH SCK Shift Edge to MISO Change — 4 x TSYSCLK ns

TSLH Last SCK Edge to MISO Change 
(CKPHA = 1 ONLY)

6 x TSYSCLK 8 x TSYSCLK ns

Note: TSYSCLK is equal to one period of the device system clock (SYSCLK).
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overflow after 25 ms (and SMBTOE set), the Timer 3 interrupt service routine can be used to reset (disable
and re-enable) the SMBus in the event of an SCL low timeout.

26.3.5. SCL High (SMBus Free) Timeout

The SMBus specification stipulates that if the SCL and SDA lines remain high for more that 50 µs, the bus
is designated as free. When the SMBFTE bit in SMB0CF is set, the bus will be considered free if SCL and
SDA remain high for more than 10 SMBus clock source periods (as defined by the timer configured for the
SMBus clock source). If the SMBus is waiting to generate a Master START, the START will be generated
following this timeout. A clock source is required for free timeout detection, even in a slave-only implemen-
tation.

26.4.  Using the SMBus
The SMBus can operate in both Master and Slave modes. The interface provides timing and shifting con-
trol for serial transfers; higher level protocol is determined by user software. The SMBus interface provides
the following application-independent features:

 Byte-wise serial data transfers

 Clock signal generation on SCL (Master Mode only) and SDA data synchronization

 Timeout/bus error recognition, as defined by the SMB0CF configuration register

 START/STOP timing, detection, and generation

 Bus arbitration

 Interrupt generation

 Status information

 Optional hardware recognition of slave address and automatic acknowledgement of address/data

SMBus interrupts are generated for each data byte or slave address that is transferred. When hardware
acknowledgement is disabled, the point at which the interrupt is generated depends on whether the hard-
ware is acting as a data transmitter or receiver. When a transmitter (i.e., sending address/data, receiving
an ACK), this interrupt is generated after the ACK cycle so that software may read the received ACK value;
when receiving data (i.e., receiving address/data, sending an ACK), this interrupt is generated before the
ACK cycle so that software may define the outgoing ACK value. If hardware acknowledgement is enabled,
these interrupts are always generated after the ACK cycle. See Section 26.5 for more details on transmis-
sion sequences.

Interrupts are also generated to indicate the beginning of a transfer when a master (START generated), or
the end of a transfer when a slave (STOP detected). Software should read the SMB0CN (SMBus Control
register) to find the cause of the SMBus interrupt. The SMB0CN register is described in Section 26.4.2;
Table 26.5 provides a quick SMB0CN decoding reference.

26.4.1. SMBus Configuration Register

The SMBus Configuration register (SMB0CF) is used to enable the SMBus Master and/or Slave modes,
select the SMBus clock source, and select the SMBus timing and timeout options. When the ENSMB bit is
set, the SMBus is enabled for all master and slave events. Slave events may be disabled by setting the
INH bit. With slave events inhibited, the SMBus interface will still monitor the SCL and SDA pins; however,
the interface will NACK all received addresses and will not generate any slave interrupts. When the INH bit
is set, all slave events will be inhibited following the next START (interrupts will continue for the duration of
the current transfer).
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26.5.  SMBus Transfer Modes
The SMBus interface may be configured to operate as master and/or slave. At any particular time, it will be
operating in one of the following four modes: Master Transmitter, Master Receiver, Slave Transmitter, or
Slave Receiver. The SMBus interface enters Master Mode any time a START is generated, and remains in
Master Mode until it loses an arbitration or generates a STOP. An SMBus interrupt is generated at the end
of all SMBus byte frames. Note that the position of the ACK interrupt when operating as a receiver
depends on whether hardware ACK generation is enabled. As a receiver, the interrupt for an ACK occurs
before the ACK with hardware ACK generation disabled, and after the ACK when hardware ACK genera-
tion is enabled. As a transmitter, interrupts occur after the ACK, regardless of whether hardware ACK gen-
eration is enabled or not.

26.5.1. Write Sequence (Master)

During a write sequence, an SMBus master writes data to a slave device. The master in this transfer will be
a transmitter during the address byte, and a transmitter during all data bytes. The SMBus interface gener-
ates the START condition and transmits the first byte containing the address of the target slave and the
data direction bit. In this case the data direction bit (R/W) will be logic 0 (WRITE). The master then trans-
mits one or more bytes of serial data. After each byte is transmitted, an acknowledge bit is generated by
the slave. The transfer is ended when the STO bit is set and a STOP is generated. Note that the interface
will switch to Master Receiver Mode if SMB0DAT is not written following a Master Transmitter interrupt.
Figure 26.5 shows a typical master write sequence. Two transmit data bytes are shown, though any num-
ber of bytes may be transmitted. Notice that all of the “data byte transferred” interrupts occur after the ACK
cycle in this mode, regardless of whether hardware ACK generation is enabled.

Figure 26.5. Typical Master Write Sequence

A AAS W PData Byte Data ByteSLA

S = START
P = STOP
A = ACK
W = WRITE
SLA = Slave Address

Received by SMBus 
Interface

Transmitted by 
SMBus Interface

Interrupts with Hardware ACK Disabled (EHACK = 0)

Interrupts with Hardware ACK Enabled (EHACK = 1)
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0100

0 0 0
A slave byte was transmitted; 
NACK received.

No action required (expecting 
STOP condition).

0 0 X 0001

0 0 1
A slave byte was transmitted; 
ACK received.

Load SMB0DAT with next data 
byte to transmit.

0 0 X 0100

0 1 X
A Slave byte was transmitted; 
error detected.

No action required (expecting 
Master to end transfer).

0 0 X 0001

0101 0 X X
An illegal STOP or bus error 
was detected while a Slave 
Transmission was in progress.

Clear STO.
0 0 X —

S
la

v
e 

R
ec

e
iv

er

0010

0 0 X
A slave address + R/W was 
received; ACK sent.

If Write, Set ACK for first data 
byte.

0 0 1 0000

If Read, Load SMB0DAT with 
data byte

0 0 X 0100

0 1 X
Lost arbitration as master; 
slave address + R/W received; 
ACK sent.

If Write, Set ACK for first data 
byte.

0 0 1 0000

If Read, Load SMB0DAT with 
data byte

0 0 X 0100

Reschedule failed transfer 1 0 X 1110

0001

0 0 X
A STOP was detected while 
addressed as a Slave Trans-
mitter or Slave Receiver.

Clear STO.
0 0 X —

0 1 X
Lost arbitration while attempt-
ing a STOP.

No action required (transfer 
complete/aborted).

0 0 0 —

0000 0 0 X A slave byte was received.

Set ACK for next data byte;
Read SMB0DAT.

0 0 1 0000

Set NACK for next data byte;
Read SMB0DAT.

0 0 0 0000

B
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s 
E

rr
o

r 
C
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0010 0 1 X
Lost arbitration while attempt-
ing a repeated START.

Abort failed transfer. 0 0 X —

Reschedule failed transfer. 1 0 X 1110

0001 0 1 X
Lost arbitration due to a 
detected STOP. 

Abort failed transfer. 0 0 X —

Reschedule failed transfer. 1 0 X 1110

0000 0 1 X
Lost arbitration while transmit-
ting a data byte as master.

Abort failed transfer. 0 0 X —

Reschedule failed transfer. 1 0 X 1110

Table 26.6. SMBus Status Decoding With Hardware ACK Generation Enabled (EHACK = 1)  
(Continued)
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SFR Address = 0x89

SFR Definition 28.3. TMOD: Timer Mode

Bit 7 6 5 4 3 2 1 0

Name GATE1 C/T1 T1M[1:0] GATE0 C/T0 T0M[1:0]

Type R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7 GATE1 Timer 1 Gate Control.

0: Timer 1 enabled when TR1 = 1 irrespective of INT1 logic level.
1: Timer 1 enabled only when TR1 = 1 AND INT1 is active as defined by bit IN1PL in 
register IT01CF (see SFR Definition 18.7).

6 C/T1 Counter/Timer 1 Select. 

0: Timer: Timer 1 incremented by clock defined by T1M bit in register CKCON.
1: Counter: Timer 1 incremented by high-to-low transitions on external pin (T1).

5:4 T1M[1:0] Timer 1 Mode Select. 

These bits select the Timer 1 operation mode.
00: Mode 0, 13-bit Counter/Timer
01: Mode 1, 16-bit Counter/Timer
10: Mode 2, 8-bit Counter/Timer with Auto-Reload
11: Mode 3, Timer 1 Inactive

3 GATE0 Timer 0 Gate Control.

0: Timer 0 enabled when TR0 = 1 irrespective of INT0 logic level.
1: Timer 0 enabled only when TR0 = 1 AND INT0 is active as defined by bit IN0PL in 
register IT01CF (see SFR Definition 18.7).

2 C/T0 Counter/Timer 0 Select. 

0: Timer: Timer 0 incremented by clock defined by T0M bit in register CKCON.
1: Counter: Timer 0 incremented by high-to-low transitions on external pin (T0).

1:0 T0M[1:0] Timer 0 Mode Select. 

These bits select the Timer 0 operation mode.
00: Mode 0, 13-bit Counter/Timer
01: Mode 1, 16-bit Counter/Timer
10: Mode 2, 8-bit Counter/Timer with Auto-Reload
11: Mode 3, Two 8-bit Counter/Timers
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SFR Address = 0xCC

SFR Address = 0xCD

SFR Definition 28.11. TMR2L: Timer 2 Low Byte

Bit 7 6 5 4 3 2 1 0

Name TMR2L[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 TMR2L[7:0] Timer 2 Low Byte.

In 16-bit mode, the TMR2L register contains the low byte of the 16-bit Timer 2. In 8-
bit mode, TMR2L contains the 8-bit low byte timer value.

SFR Definition 28.12. TMR2H Timer 2 High Byte

Bit 7 6 5 4 3 2 1 0

Name TMR2H[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 TMR2H[7:0] Timer 2 Low Byte.

In 16-bit mode, the TMR2H register contains the high byte of the 16-bit Timer 2. In 8-
bit mode, TMR2H contains the 8-bit high byte timer value.
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NOTES:


