

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	17
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VFQFN Exposed Pad
Supplier Device Package	20-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f802-gmr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Registers

SFR	Definition 8.1	. ADC0CF: ADC0 Configuration	. 50
SFR	Definition 8.2	. ADC0H: ADC0 Data Word MSB	. 51
SFR	Definition 8.3	. ADC0L: ADC0 Data Word LSB	. 51
SFR	Definition 8.4	. ADC0CN: ADC0 Control	. 52
SFR	Definition 8.5	. ADC0GTH: ADC0 Greater-Than Data High Byte	. 53
SFR	Definition 8.6	. ADC0GTL: ADC0 Greater-Than Data Low Byte	. 53
SFR	Definition 8.7	. ADC0LTH: ADC0 Less-Than Data High Byte	. 54
SFR	Definition 8.8	. ADC0LTL: ADC0 Less-Than Data Low Byte	. 54
		. ADC0MX: AMUX0 Channel Select	
SFR	Definition 10.	1. REF0CN: Voltage Reference Control	. 62
SFR	Definition 11.	1. REG0CN: Voltage Regulator Control	. 64
		1. CPT0CN: Comparator0 Control	
		2. CPT0MD: Comparator0 Mode Selection	
		3. CPT0MX: Comparator0 MUX Selection	
SFR	Definition 13.	1. CS0CN: Capacitive Sense Control	. 75
		2. CS0CF: Capacitive Sense Configuration	
		3. CS0DH: Capacitive Sense Data High Byte	
		4. CS0DL: Capacitive Sense Data Low Byte	
		5. CS0SS: Capacitive Sense Auto-Scan Start Channel	
		6. CS0SE: Capacitive Sense Auto-Scan End Channel	
		7. CS0THH: Capacitive Sense Comparator Threshold High Byte	
		8. CS0THL: Capacitive Sense Comparator Threshold Low Byte	
		9. CS0MX: Capacitive Sense Mux Channel Select	
		1. DPL: Data Pointer Low Byte	
		2. DPH: Data Pointer High Byte	
		3. SP: Stack Pointer	
		4. ACC: Accumulator	
		5. B: B Register	
		6. PSW: Program Status Word	
		1. HWID: Hardware Identification Byte	
		2. DERIVID: Derivative Identification Byte	
		3. REVID: Hardware Revision Identification Byte	
		1. IE: Interrupt Enable	
		2. IP: Interrupt Priority	
		3. EIE1: Extended Interrupt Enable 1	
		4. EIE2: Extended Interrupt Enable 2	
		5. EIP1: Extended Interrupt Priority 1	
		6. EIP2: Extended Interrupt Priority 2	
		7. IT01CF: INT0/INT1 Configuration	
		1. PSCTL: Program Store R/W Control	
		2. FLKEY: Flash Lock and Key	
		1. PCON: Power Control	
SFR	Definition 21.	1. VDM0CN: VDD Monitor Control	126

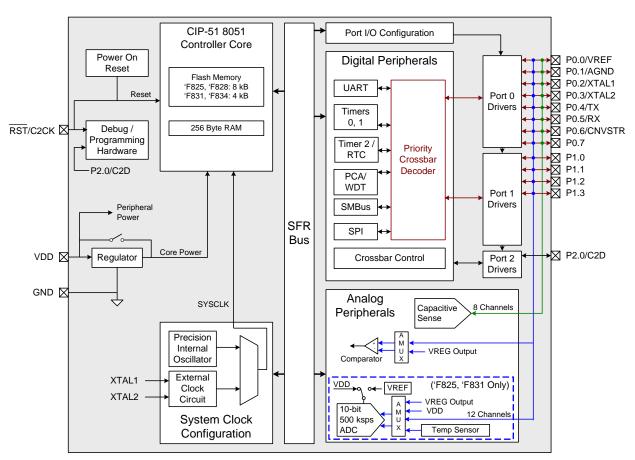


Figure 1.8. C8051F825, C8051F828, C8051F831, C8051F834 Block Diagram

Name	Pin QSOP-24	Pin QFN-20	Pin SOIC-16	Туре	Description
P0.5	21	16	14	D I/O or A In	Port 0.5.
P0.6/	20	15	13	D I/O or A In	Port 0.6.
CNVSTR				D In	ADC0 External Convert Start or IDA0 Update Source Input.
P0.7	19	14	12	D I/O or A In	Port 0.7.
P1.0	18	13	11	D I/O or A In	Port 1.0.
P1.1	17	12	10	D I/O or A In	Port 1.1.
P1.2	16	11	9	D I/O or A In	Port 1.2.
P1.3	15	10	8	D I/O or A In	Port 1.3.
P1.4	14	9		D I/O or A In	Port 1.4.
P1.5	11	8		D I/O or A In	Port 1.5.
P1.6	10	7		D I/O or A In	Port 1.6.
P1.7	9	6		D I/O or A In	Port 1.7.
NC	1, 12, 13, 24				No Connection.

 Table 3.1. Pin Definitions for the C8051F80x-83x (Continued)

Table 7.6. Flash Electrical Characteristics

Parameter	Conditions	Min	Тур	Max	Units			
Flash Size (Note 1)	C8051F80x and C8051F810/1		16384		bytes			
	C8051F812/3/4/5/6/7/8/9 and C8051F82x		8192		bytes			
	C8051F830/1/2/3/4/5		4096		bytes			
Endurance (Erase/Write)		10000			cycles			
Erase Cycle Time	25 MHz Clock	15	20	26	ms			
Write Cycle Time	25 MHz Clock	15	20	26	μs			
Clock Speed during Flash Write/Erase Operations		1	—	—	MHz			
Note: Includes Security Lock By	Note: Includes Security Lock Byte.							

Table 7.7. Internal High-Frequency Oscillator Electrical Characteristics

 V_{DD} = 1.8 to 3.6 V; T_A = -40 to +85 °C unless otherwise specified. Use factory-calibrated settings.

Parameter	Conditions	Min	Тур	Max	Units
Oscillator Frequency	IFCN = 11b	24	24.5	25	MHz
Oscillator Supply Current	25 °C, V _{DD} = 3.0 V, OSCICN.7 = 1, OCSICN.5 = 0		350	650	μA

Table 7.8. Capacitive Sense Electrical Characteristics

 V_{DD} = 1.8 to 3.6 V; T_A = -40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Conversion Time	Single Conversion	26	38	50	μs
Capacitance per Code			1		fF
External Capacitive Load		—	_	45	pF
Quantization Noise ¹	RMS		3		fF
	Peak-to-Peak	—	20	—	fF
Supply Current	CS module bias current, 25 °C		40	60	μA
	CS module alone, maximum code output, 25 °C	—	75	105	μA
	Wake-on-CS Threshold ² , 25 °C	—	150	165	μA

Notes:

1. RMS Noise is equivalent to one standard deviation. Peak-to-peak noise encompasses ±3.3 standard deviations.

2. Includes only current from regulator, CS module, and MCU in suspend mode.

8.1. Output Code Formatting

The ADC measures the input voltage with reference to GND. The registers ADC0H and ADC0L contain the high and low bytes of the output conversion code from the ADC at the completion of each conversion. Data can be right-justified or left-justified, depending on the setting of the AD0LJST bit. Conversion codes are represented as 10-bit unsigned integers. Inputs are measured from 0 to VREF x 1023/1024. Example codes are shown below for both right-justified and left-justified data. Unused bits in the ADC0H and ADC0L registers are set to 0.

	Right-Justified ADC0H:ADC0L (AD0LJST = 0)	Left-Justified ADC0H:ADC0L (AD0LJST = 1)
VREF x 1023/1024	0x03FF	0xFFC0
VREF x 512/1024	0x0200	0x8000
VREF x 256/1024	0x0100	0x4000
0	0x0000	0x0000

8.2. 8-Bit Mode

Setting the ADC08BE bit in register ADC0CF to 1 will put the ADC in 8-bit mode. In 8-bit mode, only the 8 MSBs of data are converted, and the ADC0H register holds the results. The AD0LJST bit is ignored for 8-bit mode. 8-bit conversions take two fewer SAR clock cycles than 10-bit conversions, so the conversion is completed faster, and a 500 ksps sampling rate can be achieved with a slower SAR clock.

8.3. Modes of Operation

ADC0 has a maximum conversion speed of 500 ksps. The ADC0 conversion clock is a divided version of the system clock, determined by the AD0SC bits in the ADC0CF register.

8.3.1. Starting a Conversion

A conversion can be initiated in one of six ways, depending on the programmed states of the ADC0 Start of Conversion Mode bits (AD0CM2–0) in register ADC0CN. Conversions may be initiated by one of the following:

- 1. Writing a 1 to the AD0BUSY bit of register ADC0CN
- 2. A Timer 0 overflow (i.e., timed continuous conversions)
- 3. A Timer 2 overflow
- 4. A Timer 1 overflow
- 5. A rising edge on the CNVSTR input signal

Writing a 1 to AD0BUSY provides software control of ADC0 whereby conversions are performed "ondemand". During conversion, the AD0BUSY bit is set to logic 1 and reset to logic 0 when the conversion is complete. The falling edge of AD0BUSY triggers an interrupt (when enabled) and sets the ADC0 interrupt flag (AD0INT). When polling for ADC conversion completions, the ADC0 interrupt flag (AD0INT) should be used. Converted data is available in the ADC0 data registers, ADC0H:ADC0L, when bit AD0INT is logic 1. When Timer 2 overflows are used as the conversion source, Low Byte overflows are used if Timer 2/3 is in 8-bit mode; High byte overflows are used if Timer 2 is in 16-bit mode. See Section "28. Timers" on page 209 for timer configuration.

Important Note About Using CNVSTR: The CNVSTR input pin also functions as a Port I/O pin. When the CNVSTR input is used as the ADC0 conversion source, the associated pin should be skipped by the Digital Crossbar. See Section "23. Port Input/Output" on page 138 for details on Port I/O configuration.

8.4.1. Window Detector Example

Figure 8.4 shows two example window comparisons for right-justified data. with ADC0LTH:ADC0LTL = 0x0080 (128d) and ADC0GTH:ADC0GTL = 0x0040 (64d). The input voltage can range from 0 to VREF x (1023/1024) with respect to GND, and is represented by a 10-bit unsigned integer value. In the left example, an AD0WINT interrupt will be generated if the ADC0 conversion word (ADC0H:ADC0L) is within the range defined by ADC0GTH:ADC0GTL and ADC0LTH:ADC0LTL (if 0x0040 < ADC0H:ADC0L < 0x0080). In the right example, and AD0WINT interrupt will be generated if the ADC0 conversion word is outside of the range defined by the ADC0GT and ADC0LT registers (if ADC0H:ADC0L < 0x0040 or ADC0H:ADC0L > 0x0080). Figure 8.5 shows an example using left-justified data with the same comparison values.

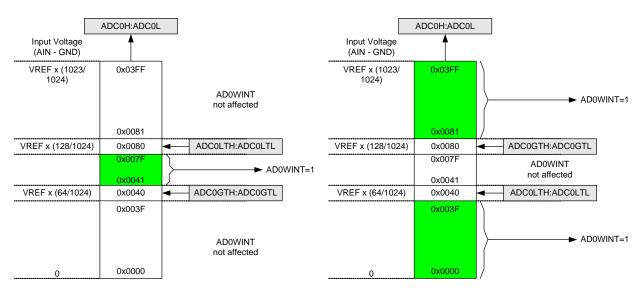


Figure 8.4. ADC Window Compare Example: Right-Justified Data

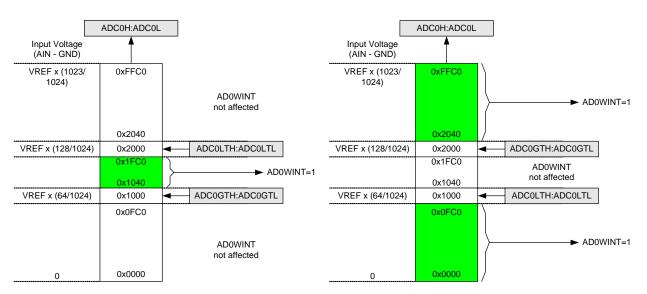
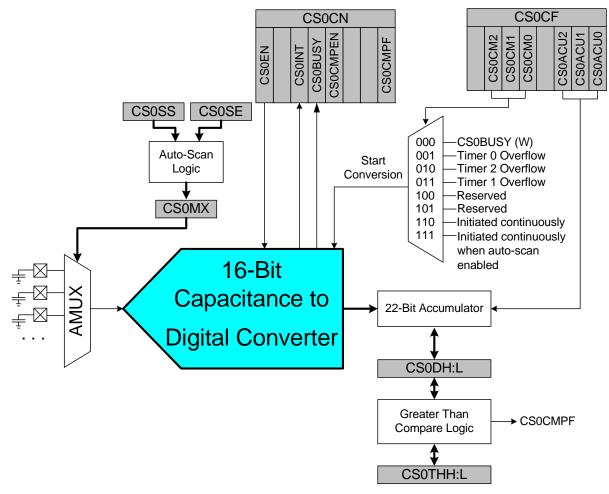



Figure 8.5. ADC Window Compare Example: Left-Justified Data

13. Capacitive Sense (CS0)

The Capacitive Sense subsystem included on the C8051F800/1/3/4/6/7/9, C8051F810/2/3/5/6/8/9, C8051F821/2/4/5/7/8, C8051F830/1/3/4 uses a capacitance-to-digital circuit to determine the capacitance on a port pin. The module can take measurements from different port pins using the module's analog multiplexer. The multiplexer supports up to 16 channels. See SFR Definition 13.9. "CSOMX: Capacitive Sense Mux Channel Select" on page 81 for channel availability for specific part numbers. The module is enabled only when the CS0EN bit (CS0CN) is set to 1. Otherwise the module is in a low-power shutdown state. The module can be configured to take measurements on one port pin or a group of port pins, using auto-scan. An accumulator can be configured to accumulate multiple conversions on an input channel. Interrupts can be generated when CS0 completes a conversion or when the measured value crosses a threshold defined in CS0THH:L.

Mnemonic	Description	Bytes	Clock Cycles
Arithmetic Operations	S	I	I
ADD A, Rn	Add register to A	1	1
ADD A, direct	Add direct byte to A	2	2
ADD A, @Ri	Add indirect RAM to A	1	2
ADD A, #data	Add immediate to A	2	2
ADDC A, Rn	Add register to A with carry	1	1
ADDC A, direct	Add direct byte to A with carry	2	2
ADDC A, @Ri	Add indirect RAM to A with carry	1	2
ADDC A, #data	Add immediate to A with carry	2	2
SUBB A, Rn	Subtract register from A with borrow	1	1
SUBB A, direct	Subtract direct byte from A with borrow	2	2
SUBB A, @Ri	Subtract indirect RAM from A with borrow	1	2
SUBB A, #data	Subtract immediate from A with borrow	2	2
INC A	Increment A	1	1
INC Rn	Increment register	1	1
INC direct	Increment direct byte	2	2
INC @Ri	Increment indirect RAM	1	2
DEC A	Decrement A	1	1
DEC Rn	Decrement register	1	1
DEC direct	Decrement direct byte	2	2
DEC @Ri	Decrement indirect RAM	1	2
INC DPTR	Increment Data Pointer	1	1
MUL AB	Multiply A and B	1	4
DIV AB	Divide A by B	1	8
DA A	Decimal adjust A	1	1
Logical Operations	,		
ANL A, Rn	AND Register to A	1	1
ANL A, direct	AND direct byte to A	2	2
ANL A, @Ri	AND indirect RAM to A	1	2
ANL A, #data	AND immediate to A	2	2
ANL direct, A	AND A to direct byte	2	2
ANL direct, #data	AND immediate to direct byte	3	3
ORL A, Rn	OR Register to A	1	1
ORL A, direct	OR direct byte to A	2	2
ORL A, @Ri	OR indirect RAM to A	1	2
ORL A, #data	OR immediate to A	2	2
ORL direct, A	OR A to direct byte	2	2
ORL direct, #data	OR immediate to direct byte	3	3
XRL A, Rn	Exclusive-OR Register to A	1	1
XRL A, direct	Exclusive-OR direct byte to A	2	2
XRL A, @Ri	Exclusive-OR indirect RAM to A	1	2
XRL A, #data	Exclusive-OR immediate to A	2	2
XRL direct, A	Exclusive-OR A to direct byte	2	2

Table 14.1. CIP-51 Instruction Set Summary

SFR Definition 18.5. EIP1: Extended Interrupt Priority 1

Bit	7	6	5	4	3	2	1	0
Name	Reserved	Reserved	PCP0	PPCA0	PADC0	PWADC0	PMAT	PSMB0
Туре	W	W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xF3

Bit	Name	Function
7:6	Reserved	Must write 0.
5	PCP0	Comparator0 (CP0) Interrupt Priority Control.
		This bit sets the priority of the CP0 rising edge or falling edge interrupt.
		0: CP0 interrupt set to low priority level.
		1: CP0 interrupt set to high priority level.
4	PPCA0	Programmable Counter Array (PCA0) Interrupt Priority Control.
		This bit sets the priority of the PCA0 interrupt.
		0: PCA0 interrupt set to low priority level.
	B4B00	1: PCA0 interrupt set to high priority level.
3	PADC0	ADC0 Conversion Complete Interrupt Priority Control.
		This bit sets the priority of the ADC0 Conversion Complete interrupt.
		0: ADC0 Conversion Complete interrupt set to low priority level.1: ADC0 Conversion Complete interrupt set to high priority level.
2	PWADC0	
2	PWADCU	ADC0 Window Comparator Interrupt Priority Control. This bit sets the priority of the ADC0 Window interrupt.
		0: ADC0 Window interrupt set to low priority level.
		1: ADC0 Window interrupt set to high priority level.
1	PMAT	Port Match Interrupt Priority Control.
	1 101/31	This bit sets the priority of the Port Match Event interrupt.
		0: Port Match interrupt set to low priority level.
		1: Port Match interrupt set to high priority level.
0	PSMB0	SMBus (SMB0) Interrupt Priority Control.
		This bit sets the priority of the SMB0 interrupt.
		0: SMB0 interrupt set to low priority level.
		1: SMB0 interrupt set to high priority level.

SFR Definition 21.1. VDM0CN: V_{DD} Monitor Control

Bit	7	6	5	4	3	2	1	0
Name	VDMEN	VDDSTAT						
Туре	R/W	R	R	R	R	R	R	R
Reset	Varies	Varies	Varies	Varies	Varies	Varies	Varies	Varies

SFR Address = 0xFF

Bit	Name	Function
7	VDMEN	V _{DD} Monitor Enable.
		This bit turns the V _{DD} monitor circuit on/off. The V _{DD} Monitor cannot generate system resets until it is also selected as a reset source in register RSTSRC (SFR Definition 21.2). Selecting the V _{DD} monitor as a reset source before it has stabilized may generate a system reset. In systems where this reset would be undesirable, a delay should be introduced between enabling the V _{DD} Monitor and selecting it as a reset source. After a power-on reset, the VDD monitor is enabled, and this bit will read 1. The state of this bit is sticky through any other reset source. 0: V _{DD} Monitor Disabled. 1: V _{DD} Monitor Enabled.
6	VDDSTAT	V _{DD} Status.
		This bit indicates the current power supply status (V_{DD} Monitor output). 0: V_{DD} is at or below the V_{DD} monitor threshold. 1: V_{DD} is above the V_{DD} monitor threshold.
5:0	Unused	Read = Varies; Write = Don't care.

21.3. External Reset

The external RST pin provides a means for external circuitry to force the device into a reset state. Asserting an active-low signal on the RST pin generates a reset; an external pullup and/or decoupling of the RST pin may be necessary to avoid erroneous noise-induced resets. See Section "7. Electrical Characteristics" on page 39 for complete RST pin specifications. The PINRSF flag (RSTSRC.0) is set on exit from an external reset.

21.4. Missing Clock Detector Reset

The Missing Clock Detector (MCD) is a one-shot circuit that is triggered by the system clock. If the system clock remains high or low for more than the MCD timeout, the one-shot will time out and generate a reset. After a MCD reset, the MCDRSF flag (RSTSRC.2) will read 1, signifying the MCD as the reset source; otherwise, this bit reads 0. Writing a 1 to the MCDRSF bit enables the Missing Clock Detector; writing a 0 disables it. The state of the RST pin is unaffected by this reset.

SFR Definition 23.16. P2MDOUT: Port 2 Output Mode

Bit	7	6	5	4	3	2	1	0
Name								P2MDOUT[0]
Туре	R	R	R	R	R	R	R	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xA6

Bit	Name	Function
7:1	Unused	Read = 0000000b; Write = Don't Care
0	P2MDOUT[0]	Output Configuration Bits for P2.0.
		0: P2.0 Output is open-drain. 1: P2.0 Output is push-pull.

24.3. Preparing for a CRC Calculation

To prepare CRC0 for a CRC calculation, software should select the desired polynomial and set the initial value of the result. Two polynomials are available: 0x1021 (16-bit) and 0x04C11DB7 (32-bit). The CRC0 result may be initialized to one of two values: 0x00000000 or 0xFFFFFFFF. The following steps can be used to initialize CRC0.

- 1. Select a polynomial (Set CRC0SEL to 0 for 32-bit or 1 for 16-bit).
- 2. Select the initial result value (Set CRC0VAL to 0 for 0x0000000 or 1 for 0xFFFFFFF).
- 3. Set the result to its initial value (Write 1 to CRC0INIT).

24.4. Performing a CRC Calculation

Once CRC0 is initialized, the input data stream is sequentially written to CRC0IN, one byte at a time. The CRC0 result is automatically updated after each byte is written. The CRC engine may also be configured to automatically perform a CRC on one or more Flash sectors. The following steps can be used to automatically perform a CRC on Flash memory.

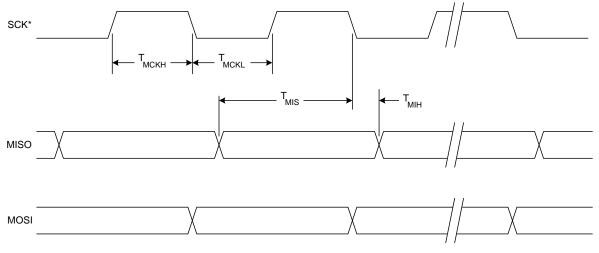
- 1. Prepare CRC0 for a CRC calculation as shown above.
- 2. Write the index of the starting page to CRC0AUTO.
- 3. Set the AUTOEN bit in CRC0AUTO.
- 4. Write the number of Flash sectors to perform in the CRC calculation to CRC0CNT.

Note: Each Flash sector is 512 bytes.

- 5. Write any value to CRC0CN (or OR its contents with 0x00) to initiate the CRC calculation. The CPU will not execute code any additional code until the CRC operation completes.
- 6. Clear the AUTOEN bit in CRC0AUTO.
- 7. Read the CRC result using the procedure below.

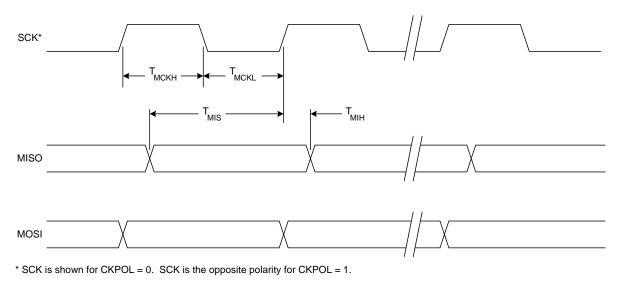
24.5. Accessing the CRC0 Result

The internal CRC0 result is 32-bits (CRC0SEL = 0b) or 16-bits (CRC0SEL = 1b). The CRC0PNT bits select the byte that is targeted by read and write operations on CRC0DAT and increment after each read or write. The calculation result will remain in the internal CR0 result register until it is set, overwritten, or additional data is written to CRC0IN.


SFR Definition 25.2. SPI0CN: SPI0 Control

Bit	7	6	5	4	3	2	1	0
Name	SPIF	WCOL	MODF	RXOVRN	NSSM	D[1:0]	TXBMT	SPIEN
Туре	R/W	R/W	R/W	R/W	R/W		R	R/W
Reset	0	0	0	0	0	1	1	0

SFR Address = 0xF8; Bit-Addressable


Bit	Name	Function
7	SPIF	SPI0 Interrupt Flag.
		This bit is set to logic 1 by hardware at the end of a data transfer. If SPI interrupts are enabled, an interrupt will be generated. This bit is not automatically cleared by hardware, and must be cleared by software.
6	WCOL	Write Collision Flag.
		This bit is set to logic 1 if a write to SPI0DAT is attempted when TXBMT is 0. When this occurs, the write to SPI0DAT will be ignored, and the transmit buffer will not be written. If SPI interrupts are enabled, an interrupt will be generated. This bit is not automatically cleared by hardware, and must be cleared by software.
5	MODF	Mode Fault Flag.
		This bit is set to logic 1 by hardware when a master mode collision is detected (NSS is low, MSTEN = 1, and NSSMD[1:0] = 01). If SPI interrupts are enabled, an interrupt will be generated. This bit is not automatically cleared by hardware, and must be cleared by software.
4	RXOVRN	Receive Overrun Flag (valid in slave mode only).
		This bit is set to logic 1 by hardware when the receive buffer still holds unread data from a previous transfer and the last bit of the current transfer is shifted into the SPI0 shift register. If SPI interrupts are enabled, an interrupt will be generated. This bit is not automatically cleared by hardware, and must be cleared by software.
3:2	NSSMD[1:0]	Slave Select Mode.
		Selects between the following NSS operation modes: (See Section 25.2 and Section 25.3). 00: 3-Wire Slave or 3-Wire Master Mode. NSS signal is not routed to a port pin. 01: 4-Wire Slave or Multi-Master Mode (Default). NSS is an input to the device. 1x: 4-Wire Single-Master Mode. NSS signal is mapped as an output from the device and will assume the value of NSSMD0.
1	TXBMT	Transmit Buffer Empty.
		This bit will be set to logic 0 when new data has been written to the transmit buffer. When data in the transmit buffer is transferred to the SPI shift register, this bit will be set to logic 1, indicating that it is safe to write a new byte to the transmit buffer.
0	SPIEN	SPI0 Enable.
		0: SPI disabled. 1: SPI enabled.

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

Figure 25.9. SPI Master Timing (CKPHA = 1)

SMBCS1	SMBCS0	SMBus Clock Source
0	0	Timer 0 Overflow
0	1	Timer 1 Overflow
1	0	Timer 2 High Byte Overflow
1	1	Timer 2 Low Byte Overflow

Table 26.1. SMBus Clock Source Selection

The SMBCS1–0 bits select the SMBus clock source, which is used only when operating as a master or when the Free Timeout detection is enabled. When operating as a master, overflows from the selected source determine the absolute minimum SCL low and high times as defined in Equation 26.1. Note that the selected clock source may be shared by other peripherals so long as the timer is left running at all times. For example, Timer 1 overflows may generate the SMBus and UART baud rates simultaneously. Timer configuration is covered in Section "28. Timers" on page 209.

$$T_{HighMin} = T_{LowMin} = \frac{1}{f_{ClockSourceOverflow}}$$

Equation 26.1. Minimum SCL High and Low Times

The selected clock source should be configured to establish the minimum SCL High and Low times as per Equation 26.1. When the interface is operating as a master (and SCL is not driven or extended by any other devices on the bus), the typical SMBus bit rate is approximated by Equation 26.2.

$$BitRate = \frac{f_{ClockSourceOverflow}}{3}$$

Equation 26.2. Typical SMBus Bit Rate

Figure 26.4 shows the typical SCL generation described by Equation 26.2. Notice that T_{HIGH} is typically twice as large as T_{LOW} . The actual SCL output may vary due to other devices on the bus (SCL may be extended low by slower slave devices, or driven low by contending master devices). The bit rate when operating as a master will never exceed the limits defined by equation Equation 26.1.

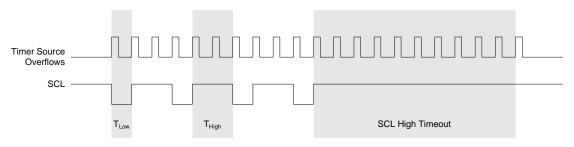


Figure 26.4. Typical SMBus SCL Generation

Setting the EXTHOLD bit extends the minimum setup and hold times for the SDA line. The minimum SDA setup time defines the absolute minimum time that SDA is stable before SCL transitions from low-to-high. The minimum SDA hold time defines the absolute minimum time that the current SDA value remains stable after SCL transitions from high-to-low. EXTHOLD should be set so that the minimum setup and hold times meet the SMBus Specification requirements of 250 ns and 300 ns, respectively. Table 26.2 shows the minimum setup.

SFR Definition 28.6. TH0: Timer 0 High Byte

Bit	7	6	5	4	3	2	1	0	
Name	ame TH0[7:0]								
Туре	R/W								
Rese	t 0	0 0 0 0 0 0 0							
SFR A	ddress = 0x8	С							
Bit	Name		Function						
7:0	TH0[7:0]	Timer 0 Hig	jh Byte.						
		The TH0 reg	gister is the l	high byte of	the 16-bit Tir	mer 0.			

SFR Definition 28.7. TH1: Timer 1 High Byte

Bit	7	6	5	4	3	2	1	0
Name	TH1[7:0]							
Туре		R/W						
Reset	0	0	0	0	0	0	0	0
SFR Ad	dress = 0x8l)						
Bit	Name				Function			

Bit	Name	Function				
7:0	TH1[7:0]	Timer 1 High Byte.				
		The TH1 register is the high byte of the 16-bit Timer 1.				

SFR Definition 28.11. TMR2L: Timer 2 Low Byte

Bit	7	6	5	4	3	2	1	0
Name	TMR2L[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0

Bit	Name	Function
7:0	TMR2L[7:0]	Timer 2 Low Byte.
		In 16-bit mode, the TMR2L register contains the low byte of the 16-bit Timer 2. In 8- bit mode, TMR2L contains the 8-bit low byte timer value.

SFR Definition 28.12. TMR2H Timer 2 High Byte

Bit	7	6	5	4	3	2	1	0
Name	TMR2H[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xCD

Bit	Name	Function
7:0	TMR2H[7:0]	Timer 2 Low Byte.
		In 16-bit mode, the TMR2H register contains the high byte of the 16-bit Timer 2. In 8- bit mode, TMR2H contains the 8-bit high byte timer value.

SFR Definition 29.1. PCA0CN: PCA0 Control

Bit	7	6	5	4	3	2	1	0
Name	CF	CR				CCF2	CCF1	CCF0
Туре	R/W	R/W	R	R	R	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xD8; Bit-Addressable

Bit	Name	Function			
7	CF	PCA Counter/Timer Overflow Flag.			
		Set by hardware when the PCA Counter/Timer overflows from 0xFFFF to 0x0000. When the Counter/Timer Overflow (CF) interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by software.			
6	CR	PCA Counter/Timer Run Control.			
		This bit enables/disables the PCA Counter/Timer.			
		0: PCA Counter/Timer disabled.			
		1: PCA Counter/Timer enabled.			
5:3	Unused	Read = 000b, Write = Don't care.			
2	CCF2	PCA Module 2 Capture/Compare Flag.			
		This bit is set by hardware when a match or capture occurs. When the CCF2 interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service rou- tine. This bit is not automatically cleared by hardware and must be cleared by software.			
1	CCF1	PCA Module 1 Capture/Compare Flag.			
		This bit is set by hardware when a match or capture occurs. When the CCF1 interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service rou- tine. This bit is not automatically cleared by hardware and must be cleared by software.			
0	CCF0	PCA Module 0 Capture/Compare Flag.			
		This bit is set by hardware when a match or capture occurs. When the CCF0 interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service rou- tine. This bit is not automatically cleared by hardware and must be cleared by software.			

DOCUMENT CHANGE LIST

Revision 0.2 to Revision 1.0

- Updated Electrical Specification Tables to reflect production characterization data.
- Added Minimum SYSCLK specification for writing or erasing Flash.
- Added caution for going into suspend with wake source active (Section 20.3)
- Corrected VDM0CN reset values to "Varies".
- Removed mention of IDAC in Pinout table.

