
Silicon Labs - C8051F803-GS Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Not For New Designs

Core Processor 8051

Core Size 8-Bit

Speed 25MHz

Connectivity SMBus (2-Wire/I²C), SPI, UART/USART

Peripherals Cap Sense, POR, PWM, Temp Sensor, WDT

Number of I/O 13

Program Memory Size 16KB (16K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 512 x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V

Data Converters A/D 12x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 16-SOIC (0.154", 3.90mm Width)

Supplier Device Package 16-SOIC

Purchase URL https://www.e-xfl.com/product-detail/silicon-labs/c8051f803-gs

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/c8051f803-gs-4393828
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

C8051F80x-83x

Rev. 1.0 5

23.1. Port I/O Modes of Operation.. 139
23.1.1. Port Pins Configured for Analog I/O.. 139
23.1.2. Port Pins Configured For Digital I/O.. 139
23.1.3. Interfacing Port I/O to 5 V Logic .. 140

23.2. Assigning Port I/O Pins to Analog and Digital Functions............................... 140
23.2.1. Assigning Port I/O Pins to Analog Functions .. 140
23.2.2. Assigning Port I/O Pins to Digital Functions.. 141
23.2.3. Assigning Port I/O Pins to External Digital Event Capture Functions ... 142

23.3. Priority Crossbar Decoder ... 143
23.4. Port I/O Initialization .. 147
23.5. Port Match ... 150
23.6. Special Function Registers for Accessing and Configuring Port I/O 152

24. Cyclic Redundancy Check Unit (CRC0)... 159
24.1. 16-bit CRC Algorithm... 160
24.2. 32-bit CRC Algorithm... 161
24.3. Preparing for a CRC Calculation ... 162
24.4. Performing a CRC Calculation .. 162
24.5. Accessing the CRC0 Result .. 162
24.6. CRC0 Bit Reverse Feature.. 166

25. Enhanced Serial Peripheral Interface (SPI0) ... 167
25.1. Signal Descriptions.. 168

25.1.1. Master Out, Slave In (MOSI)... 168
25.1.2. Master In, Slave Out (MISO)... 168
25.1.3. Serial Clock (SCK) .. 168
25.1.4. Slave Select (NSS) ... 168

25.2. SPI0 Master Mode Operation .. 168
25.3. SPI0 Slave Mode Operation.. 170
25.4. SPI0 Interrupt Sources .. 171
25.5. Serial Clock Phase and Polarity .. 171
25.6. SPI Special Function Registers ... 173

26. SMBus... 180
26.1. Supporting Documents .. 181
26.2. SMBus Configuration... 181
26.3. SMBus Operation .. 181

26.3.1. Transmitter Vs. Receiver... 182
26.3.2. Arbitration.. 182
26.3.3. Clock Low Extension... 182
26.3.4. SCL Low Timeout.. 182
26.3.5. SCL High (SMBus Free) Timeout ... 183

26.4. Using the SMBus... 183
26.4.1. SMBus Configuration Register.. 183
26.4.2. SMB0CN Control Register .. 187

26.4.2.1. Software ACK Generation .. 187
26.4.2.2. Hardware ACK Generation ... 187

26.4.3. Hardware Slave Address Recognition .. 189

C8051F80x-83x

Rev. 1.0 21

Figure 1.6. C8051F805, C8051F811, C8051F817, C8051F823 Block Diagram

System Clock
Configuration

Debug /
Programming

Hardware

CIP-51 8051
Controller Core

Flash Memory
‘F805, ‘F811: 16 kB
‘F817, ‘F823: 8 kB

256 Byte RAM

External
Clock
Circuit

Precision
Internal

Oscillator

XTAL2

Power On
Reset

Reset

P2.0/C2D

256 Byte XRAM

XTAL1

Regulator
Core PowerVDD

GND

Peripheral
Power

10-bit
500 ksps
ADC

A
M
U
X Temp Sensor

Comparator

+
-

VDD

VDD

VREF

SFR
Bus

(‘F805, ‘F817 Only)

RST/C2CK

SYSCLK

Digital Peripherals

UART

Timers
0, 1

PCA/
WDT

SMBus

Priority
Crossbar
Decoder

Crossbar Control

Port I/O Configuration

SPI

Port 0
Drivers

P0.0/VREF
P0.1/AGND
P0.2/XTAL1
P0.3/XTAL2
P0.4/TX
P0.5/RX
P0.6/CNVSTR
P0.7

Port 1
Drivers

P1.0
P1.1
P1.2
P1.3

Port 2
Drivers

P2.0/C2D

Timer 2 /
RTC

A
M
U
X

Analog Peripherals

VREG Output

VREG Output

12 Channels

C8051F80x-83x

49 Rev. 1.0

8.3.3. Settling Time Requirements

A minimum tracking time is required before each conversion to ensure that an accurate conversion is per-
formed. This tracking time is determined by any series impedance, including the AMUX0 resistance, the
the ADC0 sampling capacitance, and the accuracy required for the conversion. In delayed tracking mode,
three SAR clocks are used for tracking at the start of every conversion. For many applications, these three
SAR clocks will meet the minimum tracking time requirements.

Figure 8.3 shows the equivalent ADC0 input circuit. The required ADC0 settling time for a given settling
accuracy (SA) may be approximated by Equation 8.1. See Table 7.9 for ADC0 minimum settling time
requirements as well as the mux impedance and sampling capacitor values.

Equation 8.1. ADC0 Settling Time Requirements
Where:
SA is the settling accuracy, given as a fraction of an LSB (for example, 0.25 to settle within 1/4 LSB)
t is the required settling time in seconds
RTOTAL is the sum of the AMUX0 resistance and any external source resistance.
n is the ADC resolution in bits (10).

Figure 8.3. ADC0 Equivalent Input Circuits

t
2

n

SA
------- 
  RTOTALCSAMPLE×ln=

RMUX

CSAMPLE

RCInput= RMUX * CSAMPLE

MUX Select

Input Pin

Note: See electrical specification tables for RMUX and CSAMPLE parameters.

C8051F80x-83x

Rev. 1.0 50

SFR Address = 0xBC

SFR Definition 8.1. ADC0CF: ADC0 Configuration

Bit 7 6 5 4 3 2 1 0

Name AD0SC[4:0] AD0LJST AD08BE AMP0GN0

Type R/W R/W R/W R/W

Reset 1 1 1 1 1 0 0 1

Bit Name Function

7:3 AD0SC[4:0] ADC0 SAR Conversion Clock Period Bits.

SAR Conversion clock is derived from system clock by the following equation, where
AD0SC refers to the 5-bit value held in bits AD0SC4–0. SAR Conversion clock
requirements are given in the ADC specification table.

2 AD0LJST ADC0 Left Justify Select.

0: Data in ADC0H:ADC0L registers are right-justified.
1: Data in ADC0H:ADC0L registers are left-justified.
Note: The AD0LJST bit is only valid for 10-bit mode (AD08BE = 0).

1 AD08BE 8-Bit Mode Enable.

0: ADC operates in 10-bit mode (normal).
1: ADC operates in 8-bit mode.
Note: When AD08BE is set to 1, the AD0LJST bit is ignored.

0 AMP0GN0 ADC Gain Control Bit.

0: Gain = 0.5
1: Gain = 1

AD0SC
SYSCLK
CLKSAR
----------------------- 1–=

C8051F80x-83x

57 Rev. 1.0

SFR Address = 0xBB

SFR Definition 8.9. ADC0MX: AMUX0 Channel Select

Bit 7 6 5 4 3 2 1 0

Name AMX0P[3:0]

Type R R R R/W

Reset 0 0 0 1 1 1 1 1

Bit Name Function

7:5 Unused Read = 000b; Write = Don’t Care.

4:0 AMX0P[4:0] AMUX0 Positive Input Selection.

20-Pin and 24-Pin Devices 16-Pin Devices

00000: P0.0 P0.0

00001: P0.1 P0.1

00010: P0.2 P0.2

00011: P0.3 P0.3

00100: P0.4 P0.4

00101: P0.5 P0.5

00110: P0.6 P0.6

00111: P0.7 P0.7

01000 P1.0 P1.0

01001 P1.1 P1.1

01010 P1.2 P1.2

01011 P1.3 P1.3

01100 P1.4 Reserved.

01101 P1.5 Reserved.

01110 P1.6 Reserved.

01111 P1.7 Reserved.

10000: Temp Sensor Temp Sensor

10001: VREG Output VREG Output

10010: VDD VDD

10011: GND GND

10100 – 11111: no input selected

C8051F80x-83x

78 Rev. 1.0

SFR Address = 0xB9

SFR Address = 0xBA

SFR Definition 13.5. CS0SS: Capacitive Sense Auto-Scan Start Channel

Bit 7 6 5 4 3 2 1 0

Name CS0SS[4:0]

Type R R R R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Description

7:5 Unused Read = 000b; Write = Don’t care

4:0 CS0SS[4:0] Starting Channel for Auto-Scan.

Sets the first CS0 channel to be selected by the mux for Capacitive Sense conver-
sion when auto-scan is enabled and active.

When auto-scan is enabled, a write to CS0SS will also update CS0MX.

SFR Definition 13.6. CS0SE: Capacitive Sense Auto-Scan End Channel

Bit 7 6 5 4 3 2 1 0

Name CS0SE[4:0]

Type R R R R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Description

7:5 Unused Read = 000b; Write = Don’t care

4:0 CS0SE[4:0] Ending Channel for Auto-Scan.

Sets the last CS0 channel to be selected by the mux for Capacitive Sense conver-
sion when auto-scan is enabled and active.

C8051F80x-83x

Rev. 1.0 82

14. CIP-51 Microcontroller

The MCU system controller core is the CIP-51 microcontroller. The CIP-51 is fully compatible with the
MCS-51™ instruction set; standard 803x/805x assemblers and compilers can be used to develop soft-
ware. The MCU family has a superset of all the peripherals included with a standard 8051. The CIP-51
also includes on-chip debug hardware (see description in Section 30), and interfaces directly with the ana-
log and digital subsystems providing a complete data acquisition or control-system solution in a single inte-
grated circuit.

The CIP-51 Microcontroller core implements the standard 8051 organization and peripherals as well as
additional custom peripherals and functions to extend its capability (see Figure 14.1 for a block diagram).
The CIP-51 includes the following features:

Performance
The CIP-51 employs a pipelined architecture that greatly increases its instruction throughput over the stan-
dard 8051 architecture. In a standard 8051, all instructions except for MUL and DIV take 12 or 24 system
clock cycles to execute, and usually have a maximum system clock of 12 MHz. By contrast, the CIP-51
core executes 70% of its instructions in one or two system clock cycles, with no instructions taking more
than eight system clock cycles.

Figure 14.1. CIP-51 Block Diagram

Fully Compatible with MCS-51 Instruction Set
25 MIPS Peak Throughput with 25 MHz Clock
0 to 25 MHz Clock Frequency
Extended Interrupt Handler

Reset Input
Power Management Modes
On-chip Debug Logic
Program and Data Memory Security

DATA BUS

TMP1 TMP2

PRGM. ADDRESS REG.

PC INCREMENTER

ALU
PSW

DATA BUS

D
A

T
A

 B
U

S

MEMORY
INTERFACE

MEM_ADDRESSD8

PIPELINE

BUFFER

DATA POINTER

INTERRUPT
INTERFACE

SYSTEM_IRQs

EMULATION_IRQ

MEM_CONTROL

CONTROL
LOGIC

A16

PROGRAM COUNTER (PC)

STOP

CLOCK

RESET

IDLE
POWER CONTROL

REGISTER

D
A

T
A

 B
U

S

SFR
BUS

INTERFACE

SFR_ADDRESS

SFR_CONTROL

SFR_WRITE_DATA

SFR_READ_DATA

D8

D8

B REGISTER

D
8

D
8

ACCUMULATOR

D
8

D8

D8

D8

D
8

D
8

D
8

D8

MEM_WRITE_DATA

MEM_READ_DATA

D
8

SRAM
ADDRESS
REGISTER

SRAM

D
8

STACK POINTER

D
8

C8051F80x-83x

83 Rev. 1.0

With the CIP-51's maximum system clock at 25 MHz, it has a peak throughput of 25 MIPS. The CIP-51 has
a total of 109 instructions. The table below shows the total number of instructions that require each execu-
tion time.

14.1. Instruction Set
The instruction set of the CIP-51 System Controller is fully compatible with the standard MCS-51™ instruc-
tion set. Standard 8051 development tools can be used to develop software for the CIP-51. All CIP-51
instructions are the binary and functional equivalent of their MCS-51™ counterparts, including opcodes,
addressing modes and effect on PSW flags. However, instruction timing is different than that of the stan-
dard 8051.

14.1.1. Instruction and CPU Timing

In many 8051 implementations, a distinction is made between machine cycles and clock cycles, with
machine cycles varying from 2 to 12 clock cycles in length. However, the CIP-51 implementation is based
solely on clock cycle timing. All instruction timings are specified in terms of clock cycles.

Due to the pipelined architecture of the CIP-51, most instructions execute in the same number of clock
cycles as there are program bytes in the instruction. Conditional branch instructions take one less clock
cycle to complete when the branch is not taken as opposed to when the branch is taken. Table 14.1 is the
CIP-51 Instruction Set Summary, which includes the mnemonic, number of bytes, and number of clock
cycles for each instruction.

Clocks to Execute 1 2 2/3 3 3/4 4 4/5 5 8

Number of Instructions 26 50 5 14 6 3 2 2 1

C8051F80x-83x

85 Rev. 1.0

XRL direct, #data Exclusive-OR immediate to direct byte 3 3
CLR A Clear A 1 1
CPL A Complement A 1 1
RL A Rotate A left 1 1
RLC A Rotate A left through Carry 1 1
RR A Rotate A right 1 1
RRC A Rotate A right through Carry 1 1
SWAP A Swap nibbles of A 1 1

Data Transfer

MOV A, Rn Move Register to A 1 1
MOV A, direct Move direct byte to A 2 2
MOV A, @Ri Move indirect RAM to A 1 2
MOV A, #data Move immediate to A 2 2
MOV Rn, A Move A to Register 1 1
MOV Rn, direct Move direct byte to Register 2 2
MOV Rn, #data Move immediate to Register 2 2
MOV direct, A Move A to direct byte 2 2
MOV direct, Rn Move Register to direct byte 2 2
MOV direct, direct Move direct byte to direct byte 3 3
MOV direct, @Ri Move indirect RAM to direct byte 2 2
MOV direct, #data Move immediate to direct byte 3 3
MOV @Ri, A Move A to indirect RAM 1 2
MOV @Ri, direct Move direct byte to indirect RAM 2 2
MOV @Ri, #data Move immediate to indirect RAM 2 2
MOV DPTR, #data16 Load DPTR with 16-bit constant 3 3
MOVC A, @A+DPTR Move code byte relative DPTR to A 1 3
MOVC A, @A+PC Move code byte relative PC to A 1 3
MOVX A, @Ri Move external data (8-bit address) to A 1 3
MOVX @Ri, A Move A to external data (8-bit address) 1 3
MOVX A, @DPTR Move external data (16-bit address) to A 1 3
MOVX @DPTR, A Move A to external data (16-bit address) 1 3
PUSH direct Push direct byte onto stack 2 2
POP direct Pop direct byte from stack 2 2
XCH A, Rn Exchange Register with A 1 1
XCH A, direct Exchange direct byte with A 2 2
XCH A, @Ri Exchange indirect RAM with A 1 2
XCHD A, @Ri Exchange low nibble of indirect RAM with A 1 2

Boolean Manipulation

CLR C Clear Carry 1 1
CLR bit Clear direct bit 2 2
SETB C Set Carry 1 1
SETB bit Set direct bit 2 2
CPL C Complement Carry 1 1
CPL bit Complement direct bit 2 2

Table 14.1. CIP-51 Instruction Set Summary (Continued)

Mnemonic Description Bytes Clock
Cycles

C8051F80x-83x

105 Rev. 1.0

SFR Address = 0xA8; Bit-Addressable

SFR Definition 18.1. IE: Interrupt Enable

Bit 7 6 5 4 3 2 1 0

Name EA ESPI0 ET2 ES0 ET1 EX1 ET0 EX0

Type R/W R/W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7 EA Enable All Interrupts.
Globally enables/disables all interrupts. It overrides individual interrupt mask settings.
0: Disable all interrupt sources.
1: Enable each interrupt according to its individual mask setting.

6 ESPI0 Enable Serial Peripheral Interface (SPI0) Interrupt.
This bit sets the masking of the SPI0 interrupts.
0: Disable all SPI0 interrupts.
1: Enable interrupt requests generated by SPI0.

5 ET2 Enable Timer 2 Interrupt.
This bit sets the masking of the Timer 2 interrupt.
0: Disable Timer 2 interrupt.
1: Enable interrupt requests generated by the TF2L or TF2H flags.

4 ES0 Enable UART0 Interrupt.
This bit sets the masking of the UART0 interrupt.
0: Disable UART0 interrupt.
1: Enable UART0 interrupt.

3 ET1 Enable Timer 1 Interrupt.
This bit sets the masking of the Timer 1 interrupt.
0: Disable all Timer 1 interrupt.
1: Enable interrupt requests generated by the TF1 flag.

2 EX1 Enable External Interrupt 1.
This bit sets the masking of External Interrupt 1.
0: Disable external interrupt 1.
1: Enable interrupt requests generated by the INT1 input.

1 ET0 Enable Timer 0 Interrupt.
This bit sets the masking of the Timer 0 interrupt.
0: Disable all Timer 0 interrupt.
1: Enable interrupt requests generated by the TF0 flag.

0 EX0 Enable External Interrupt 0.
This bit sets the masking of External Interrupt 0.
0: Disable external interrupt 0.
1: Enable interrupt requests generated by the INT0 input.

C8051F80x-83x

Rev. 1.0 113

19. Flash Memory

On-chip, re-programmable Flash memory is included for program code and non-volatile data storage. The
Flash memory can be programmed in-system through the C2 interface or by software using the MOVX
write instruction. Once cleared to logic 0, a Flash bit must be erased to set it back to logic 1. Flash bytes
would typically be erased (set to 0xFF) before being reprogrammed. The write and erase operations are
automatically timed by hardware for proper execution; data polling to determine the end of the write/erase
operations is not required. Code execution is stalled during Flash write/erase operations. Refer to
Table 7.6 for complete Flash memory electrical characteristics.

19.1. Programming The Flash Memory
The simplest means of programming the Flash memory is through the C2 interface using programming
tools provided by Silicon Laboratories or a third party vendor. This is the only means for programming a
non-initialized device. For details on the C2 commands to program Flash memory, see Section “30. C2
Interface” on page 244.

The Flash memory can be programmed by software using the MOVX write instruction with the address and
data byte to be programmed provided as normal operands. Before programming Flash memory using
MOVX, Flash programming operations must be enabled by: (1) setting the PSWE Program Store Write
Enable bit (PSCTL.0) to logic 1 (this directs the MOVX writes to target Flash memory); and (2) Writing the
Flash key codes in sequence to the Flash Lock register (FLKEY). The PSWE bit remains set until cleared
by software. For detailed guidelines on programming Flash from firmware, please see Section “19.4. Flash
Write and Erase Guidelines” on page 115.

Note: A minimum SYSCLK frequency is required for writing or erasing Flash memory, as detailed in “7. Electrical
Characteristics” on page 39.

To ensure the integrity of the Flash contents, the on-chip VDD Monitor must be enabled and enabled as a
reset source in any system that includes code that writes and/or erases Flash memory from software. Fur-
thermore, there should be no delay between enabling the VDD Monitor and enabling the VDD Monitor as a
reset source. Any attempt to write or erase Flash memory while the VDD Monitor is disabled, or not
enabled as a reset source, will cause a Flash Error device reset.

19.1.1. Flash Lock and Key Functions

Flash writes and erases by user software are protected with a lock and key function. The Flash Lock and
Key Register (FLKEY) must be written with the correct key codes, in sequence, before Flash operations
may be performed. The key codes are: 0xA5, 0xF1. The timing does not matter, but the codes must be
written in order. If the key codes are written out of order, or the wrong codes are written, Flash writes and
erases will be disabled until the next system reset. Flash writes and erases will also be disabled if a Flash
write or erase is attempted before the key codes have been written properly. The Flash lock resets after
each write or erase; the key codes must be written again before a following Flash operation can be per-
formed. The FLKEY register is detailed in SFR Definition 19.2.

19.1.2. Flash Erase Procedure

The Flash memory is organized in 512-byte pages. The erase operation applies to an entire page (setting
all bytes in the page to 0xFF). To erase an entire 512-byte page, perform the following steps:

1. Save current interrupt state and disable interrupts.

2. Set the PSEE bit (register PSCTL).

3. Set the PSWE bit (register PSCTL).

4. Write the first key code to FLKEY: 0xA5.

5. Write the second key code to FLKEY: 0xF1.

6. Using the MOVX instruction, write a data byte to any location within the 512-byte page to be erased.

7. Clear the PSWE and PSEE bits.

C8051F80x-83x

Rev. 1.0 133

22.3. External Oscillator Drive Circuit
The external oscillator circuit may drive an external crystal, ceramic resonator, capacitor, or RC network. A
CMOS clock may also provide a clock input. For a crystal or ceramic resonator configuration, the crys-
tal/resonator must be wired across the XTAL1 and XTAL2 pins as shown in Option 1 of Figure 22.1. A
10 MΩ resistor also must be wired across the XTAL2 and XTAL1 pins for the crystal/resonator configura-
tion. In RC, capacitor, or CMOS clock configuration, the clock source should be wired to the XTAL2 pin as
shown in Option 2, 3, or 4 of Figure 22.1. The type of external oscillator must be selected in the OSCXCN
register, and the frequency control bits (XFCN) must be selected appropriately (see SFR Definition 22.4).

Important Note on External Oscillator Usage: Port pins must be configured when using the external
oscillator circuit. When the external oscillator drive circuit is enabled in crystal/resonator mode, Port pins
P0.2 and P0.3 are used as XTAL1 and XTAL2 respectively. When the external oscillator drive circuit is
enabled in capacitor, RC, or CMOS clock mode, Port pin P0.3 is used as XTAL2. The Port I/O Crossbar
should be configured to skip the Port pins used by the oscillator circuit; see Section “23.3. Priority Crossbar
Decoder” on page 143 for Crossbar configuration. Additionally, when using the external oscillator circuit in
crystal/resonator, capacitor, or RC mode, the associated Port pins should be configured as analog inputs.
In CMOS clock mode, the associated pin should be configured as a digital input. See Section “23.4. Port
I/O Initialization” on page 147 for details on Port input mode selection.

C8051F80x-83x

166 Rev. 1.0

24.6. CRC0 Bit Reverse Feature
CRC0 includes hardware to reverse the bit order of each bit in a byte as shown in Figure 24.1. Each byte
of data written to CRC0FLIP is read back bit reversed. For example, if 0xC0 is written to CRC0FLIP, the
data read back is 0x03. Bit reversal is a useful mathematical function used in algorithms such as the FFT.

SFR Address = 0xCF

SFR Definition 24.6. CRC0FLIP: CRC Bit Flip

Bit 7 6 5 4 3 2 1 0

Name CRC0FLIP[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 CRC0FLIP[7:0] CRC0 Bit Flip.

Any byte written to CRC0FLIP is read back in a bit-reversed order, i.e. the written
LSB becomes the MSB. For example:
If 0xC0 is written to CRC0FLIP, the data read back will be 0x03.
If 0x05 is written to CRC0FLIP, the data read back will be 0xA0.

C8051F80x-83x

Rev. 1.0 180

26. SMBus

The SMBus I/O interface is a two-wire, bi-directional serial bus. The SMBus is compliant with the System

Management Bus Specification, version 1.1, and compatible with the I2C serial bus. Reads and writes to
the interface by the system controller are byte oriented with the SMBus interface autonomously controlling
the serial transfer of the data. Data can be transferred at up to 1/20th of the system clock as a master or
slave (this can be faster than allowed by the SMBus specification, depending on the system clock used). A
method of extending the clock-low duration is available to accommodate devices with different speed
capabilities on the same bus.

The SMBus interface may operate as a master and/or slave, and may function on a bus with multiple mas-
ters. The SMBus provides control of SDA (serial data), SCL (serial clock) generation and synchronization,
arbitration logic, and START/STOP control and generation. The SMBus peripheral can be fully driven by
software (i.e., software accepts/rejects slave addresses, and generates ACKs), or hardware slave address
recognition and automatic ACK generation can be enabled to minimize software overhead. A block dia-
gram of the SMBus peripheral and the associated SFRs is shown in Figure 26.1.

Figure 26.1. SMBus Block Diagram

Data Path
Control

SMBUS CONTROL LOGIC

C
R
O
S
S
B
A
R

SCL
FILTER

N

SDA
Control

SCL
Control

Interrupt
Request

Port I/O

SMB0CN
S
T
A

A
C
K
R
Q

A
R
B
L
O
S
T

A
C
K

S
I

T
X
M
O
D
E

M
A
S
T
E
R

S
T
O

01

00

10

11

T0 Overflow

T1 Overflow

TMR2H Overflow

TMR2L Overflow

SMB0CF
E
N
S
M
B

I
N
H

B
U
S
Y

E
X
T
H
O
L
D

S
M
B
T
O
E

S
M
B
F
T
E

S
M
B
C
S
1

S
M
B
C
S
0

01234567
SMB0DAT SDA

FILTER

N
SMB0ADR

S
L
V
4

S
L
V
2

S
L
V
1

S
L
V
0

G
C

S
L
V
5

S
L
V
6

S
L
V
3

SMB0ADM

S
L
V
M
4

S
L
V
M
2

S
L
V
M
1

S
L
V
M
0

E
H
A
C
K

S
L
V
M
5

S
L
V
M
6

S
L
V
M
3

Arbitration
SCL Synchronization

Hardware ACK Generation

SCL Generation (Master Mode)
SDA Control
Hardware Slave Address Recognition

IRQ Generation

C8051F80x-83x

191 Rev. 1.0

SFR Address = 0xD7

SFR Address = 0xD6

SFR Definition 26.3. SMB0ADR: SMBus Slave Address

Bit 7 6 5 4 3 2 1 0

Name SLV[6:0] GC

Type R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:1 SLV[6:0] SMBus Hardware Slave Address.

Defines the SMBus Slave Address(es) for automatic hardware acknowledgement.
Only address bits which have a 1 in the corresponding bit position in SLVM[6:0]
are checked against the incoming address. This allows multiple addresses to be
recognized.

0 GC General Call Address Enable.

When hardware address recognition is enabled (EHACK = 1), this bit will deter-
mine whether the General Call Address (0x00) is also recognized by hardware.
0: General Call Address is ignored.
1: General Call Address is recognized.

SFR Definition 26.4. SMB0ADM: SMBus Slave Address Mask

Bit 7 6 5 4 3 2 1 0

Name SLVM[6:0] EHACK

Type R/W R/W

Reset 1 1 1 1 1 1 1 0

Bit Name Function

7:1 SLVM[6:0] SMBus Slave Address Mask.

Defines which bits of register SMB0ADR are compared with an incoming address
byte, and which bits are ignored. Any bit set to 1 in SLVM[6:0] enables compari-
sons with the corresponding bit in SLV[6:0]. Bits set to 0 are ignored (can be either
0 or 1 in the incoming address).

0 EHACK Hardware Acknowledge Enable.

Enables hardware acknowledgement of slave address and received data bytes.
0: Firmware must manually acknowledge all incoming address and data bytes.
1: Automatic Slave Address Recognition and Hardware Acknowledge is Enabled.

C8051F80x-83x

Rev. 1.0 200

S
la

ve
 T

ra
n

s
m

it
te

r

0100

0 0 0
A slave byte was transmitted;
NACK received.

No action required (expecting
STOP condition).

0 0 X 0001

0 0 1
A slave byte was transmitted;
ACK received.

Load SMB0DAT with next data
byte to transmit.

0 0 X 0100

0 1 X
A Slave byte was transmitted;
error detected.

No action required (expecting
Master to end transfer).

0 0 X 0001

0101 0 X X
An illegal STOP or bus error
was detected while a Slave
Transmission was in progress.

Clear STO.
0 0 X —

S
la

v
e

R
ec

e
iv

er

0010

0 0 X
A slave address + R/W was
received; ACK sent.

If Write, Set ACK for first data
byte.

0 0 1 0000

If Read, Load SMB0DAT with
data byte

0 0 X 0100

0 1 X
Lost arbitration as master;
slave address + R/W received;
ACK sent.

If Write, Set ACK for first data
byte.

0 0 1 0000

If Read, Load SMB0DAT with
data byte

0 0 X 0100

Reschedule failed transfer 1 0 X 1110

0001

0 0 X
A STOP was detected while
addressed as a Slave Trans-
mitter or Slave Receiver.

Clear STO.
0 0 X —

0 1 X
Lost arbitration while attempt-
ing a STOP.

No action required (transfer
complete/aborted).

0 0 0 —

0000 0 0 X A slave byte was received.

Set ACK for next data byte;
Read SMB0DAT.

0 0 1 0000

Set NACK for next data byte;
Read SMB0DAT.

0 0 0 0000

B
u

s
E

rr
o

r
C

o
n

d
it

io
n

0010 0 1 X
Lost arbitration while attempt-
ing a repeated START.

Abort failed transfer. 0 0 X —

Reschedule failed transfer. 1 0 X 1110

0001 0 1 X
Lost arbitration due to a
detected STOP.

Abort failed transfer. 0 0 X —

Reschedule failed transfer. 1 0 X 1110

0000 0 1 X
Lost arbitration while transmit-
ting a data byte as master.

Abort failed transfer. 0 0 X —

Reschedule failed transfer. 1 0 X 1110

Table 26.6. SMBus Status Decoding With Hardware ACK Generation Enabled (EHACK = 1)
(Continued)

M
o

d
e

Values Read

Current SMbus State Typical Response Options

Values to
Write

N
ex

t
S

ta
tu

s

V
ec

to
r

E
x

p
ec

te
d

S
ta

tu
s

V
e

c
to

r

A
C

K
R

Q

A
R

B
L

O
S

T

A
C

K

S
TA

S
T

O

A
C

K

C8051F80x-83x

Rev. 1.0 203

27.2. Operational Modes
UART0 provides standard asynchronous, full duplex communication. The UART mode (8-bit or 9-bit) is
selected by the S0MODE bit (SCON0.7). Typical UART connection options are shown in Figure 27.3.

Figure 27.3. UART Interconnect Diagram

27.2.1. 8-Bit UART

8-Bit UART mode uses a total of 10 bits per data byte: one start bit, eight data bits (LSB first), and one stop
bit. Data are transmitted LSB first from the TX0 pin and received at the RX0 pin. On receive, the eight data
bits are stored in SBUF0 and the stop bit goes into RB80 (SCON0.2).

Data transmission begins when software writes a data byte to the SBUF0 register. The TI0 Transmit Inter-
rupt Flag (SCON0.1) is set at the end of the transmission (the beginning of the stop-bit time). Data recep-
tion can begin any time after the REN0 Receive Enable bit (SCON0.4) is set to logic 1. After the stop bit is
received, the data byte will be loaded into the SBUF0 receive register if the following conditions are met:
RI0 must be logic 0, and if MCE0 is logic 1, the stop bit must be logic 1. In the event of a receive data over-
run, the first received 8 bits are latched into the SBUF0 receive register and the following overrun data bits
are lost.

If these conditions are met, the eight bits of data is stored in SBUF0, the stop bit is stored in RB80 and the
RI0 flag is set. If these conditions are not met, SBUF0 and RB80 will not be loaded and the RI0 flag will not
be set. An interrupt will occur if enabled when either TI0 or RI0 is set.

Figure 27.4. 8-Bit UART Timing Diagram

OR

RS-232
C8051xxxx

RS-232
LEVEL
XLTR

TX

RX

C8051xxxx
RX

TX

MCU
RX

TX

D1D0 D2 D3 D4 D5 D6 D7
START

BIT
MARK

STOP
BIT

BIT TIMES

BIT SAMPLING

SPACE

C8051F80x-83x

214 Rev. 1.0

Figure 28.3. T0 Mode 3 Block Diagram

TL0
(8 bits)

TMOD

0

1

 T
C

O
N

TF0
TR0

TR1
TF1

IE1
IT1
IE0
IT0

Interrupt

Interrupt

0

1SYSCLK

Pre-scaled Clock
TR1 TH0

(8 bits)

T
1
M
1

T
1
M
0

C
/
T
1

G
A
T
E
1

G
A
T
E
0

C
/
T
0

T
0
M
1

T
0
M
0

TR0

GATE0

IN0PL XOR
INT0

T0

Crossbar

T0M

C8051F80x-83x

245 Rev. 1.0

C2 Address: 0x00

C2 Address: 0x01

C2 Register Definition 30.2. DEVICEID: C2 Device ID

Bit 7 6 5 4 3 2 1 0

Name DEVICEID[7:0]

Type R/W

Reset 1 1 1 0 0 0 0 1

Bit Name Function

7:0 DEVICEID[7:0] Device ID.

This read-only register returns the 8-bit device ID: 0x23 (C8051F80x-83x).

C2 Register Definition 30.3. REVID: C2 Revision ID

Bit 7 6 5 4 3 2 1 0

Name REVID[7:0]

Type R/W

Reset Varies Varies Varies Varies Varies Varies Varies Varies

Bit Name Function

7:0 REVID[7:0] Revision ID.

This read-only register returns the 8-bit revision ID. For example: 0x00 = Revision A.

C8051F80x-83x

Rev. 1.0 246

C2 Address: 0x02

C2 Address: 0xBF

C2 Register Definition 30.4. FPCTL: C2 Flash Programming Control

Bit 7 6 5 4 3 2 1 0

Name FPCTL[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 FPCTL[7:0] C2 Flash Programming Control Register.

This register is used to enable Flash programming via the C2 interface. To enable C2
Flash programming, the following codes must be written in order: 0x02, 0x01. Once
C2 Flash programming is enabled, a system reset must be issued to resume normal
operation.

C2 Register Definition 30.5. FPDAT: C2 Flash Programming Data

Bit 7 6 5 4 3 2 1 0

Name FPDAT[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 FPDAT[7:0] C2 Flash Programming Data Register.

This register is used to pass Flash commands, addresses, and data during C2 Flash
accesses. Valid commands are listed below.

Code Command

0x06 Flash Block Read

0x07 Flash Block Write

0x08 Flash Page Erase

0x03 Device Erase

