E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Last Time Buy
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I²C), SPI, UART/USART
Peripherals	Cap Sense, POR, PWM, WDT
Number of I/O	17
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-SSOP (0.154", 3.90mm Width)
Supplier Device Package	24-QSOP
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f806-gur

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

C8051F80x-83x

Figure 1.1. C8051F800, C8051F806, C8051F812, C8051F818 Block Diagram

Table 7.3. Port I/O DC Electrical Characteristics

 V_{DD} = 1.8 to 3.6 V, –40 to +85 °C unless otherwise specified.

Parameters	Conditions	Min	Тур	Max	Units
Output High Voltage	I _{OH} = –3 mA, Port I/O push-pull	V _{DD} – 0.7			V
	I _{OH} = –10 μA, Port I/O push-pull	V _{DD} - 0.1	—	—	V
	I _{OH} = –10 mA, Port I/O push-pull	—	V _{DD} - 0.8	—	V
Output Low Voltage	I _{OL} = 8.5 mA	—	_	0.6	V
	I _{OL} = 10 μA	—	—	0.1	V
	I _{OL} = 25 mA	—	1.0	—	V
Input High Voltage		0.75 x V _{DD}		_	V
Input Low Voltage		—	_	0.6	V
Input Leakage	Weak Pullup Off	-1		1	μA
Current	Weak Pullup On, V _{IN} = 0 V	—	15	50	μA

Table 7.4. Reset Electrical Characteristics

 V_{DD} = 1.8 to 3.6 V, -40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
RST Output Low Voltage	I _{OL} = 8.5 mA, V _{DD} = 1.8 V to 3.6 V	—		0.6	V
RST Input High Voltage		0.75 x V _{DD}		—	V
RST Input Low Voltage		—		$0.3 \times V_{DD}$	V_{DD}
RST Input Pullup Current	RST = 0.0 V	_	25	50	μA
V _{DD} POR Ramp Time		_		1	ms
V_{DD} Monitor Threshold (V_{RST})		1.7	1.75	1.8	V
Missing Clock Detector Timeout	Time from last system clock rising edge to reset initiation	100	500	1000	μs
Reset Time Delay	Delay between release of any reset source and code execution at location 0x0000	_	_	30	μs
Minimum RST Low Time to Generate a System Reset		15		—	μs
V _{DD} Monitor Turn-on Time	$V_{DD} = V_{RST} - 0.1 V$	_	50	_	μs
V _{DD} Monitor Supply Current			20	30	μA

Table 7.5. Internal Voltage Regulator Electrical Characteristics

 V_{DD} = 3.0 V, -40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Input Voltage Range		1.8	_	3.6	V
Bias Current		_	50	65	μA

Table 7.13. Comparator Electrical Characteristics

 V_{DD} = 3.0 V, -40 to +85 °C unless otherwise noted.

Parameter	Conditions	Min	Тур	Мах	Units
Response Time:	CP0+ - CP0- = 100 mV		220	—	ns
Mode 0, Vcm [*] = 1.5 V	CP0+ - CP0- = -100 mV		225	—	ns
Response Time:	CP0+ - CP0- = 100 mV		340	—	ns
Mode 1, Vcm [*] = 1.5 V	CP0+ - CP0- = -100 mV	—	380	—	ns
Response Time:	CP0+ - CP0- = 100 mV	—	510	—	ns
Mode 2, Vcm [*] = 1.5 V	CP0+ - CP0- = -100 mV		945	—	ns
Response Time:	CP0+ - CP0- = 100 mV	—	1500	—	ns
Mode 3, Vcm [*] = 1.5 V	CP0+ - CP0- = -100 mV		5000	—	ns
Common-Mode Rejection Ratio		—	1	4	mV/V
Positive Hysteresis 1	Mode 2, CP0HYP1–0 = 00b		0	1	mV
Positive Hysteresis 2	Mode 2, CP0HYP1–0 = 01b	2	5	10	mV
Positive Hysteresis 3	Mode 2, CP0HYP1–0 = 10b	7	10	20	mV
Positive Hysteresis 4	Mode 2, CP0HYP1–0 = 11b	10	20	30	mV
Negative Hysteresis 1	Mode 2, CP0HYN1–0 = 00b		0	1	mV
Negative Hysteresis 2	Mode 2, CP0HYN1–0 = 01b	2	5	10	mV
Negative Hysteresis 3	Mode 2, CP0HYN1–0 = 10b	7	10	20	mV
Negative Hysteresis 4	Mode 2, CP0HYN1–0 = 11b	10	20	30	mV
Inverting or Non-Inverting Input Voltage Range		-0.25	_	V _{DD} + 0.25	V
Input Offset Voltage		-7.5		7.5	mV
Power Specifications	•				
Power Supply Rejection			0.1	—	mV/V
Powerup Time		—	10	—	μs
Supply Current at DC	Mode 0	—	20	—	μA
	Mode 1	—	8	—	μA
	Mode 2	—	3	—	μA
	Mode 3	—	0.5	—	μA
Note: Vcm is the common-mode vo	Itage on CP0+ and CP0				

8. 10-Bit ADC (ADC0)

ADC0 on the C8051F800/1/2/3/4/5, C8051F812/3/4/5/6/7, C8051F824/5/6, and C8051F830/1/2 is a 500 ksps, 10-bit successive-approximation-register (SAR) ADC with integrated track-and-hold, a gain stage programmable to 1x or 0.5x, and a programmable window detector. The ADC is fully configurable under software control via Special Function Registers. The ADC may be configured to measure various different signals using the analog multiplexer described in Section "8.5. ADC0 Analog Multiplexer" on page 56. The voltage reference for the ADC is selected as described in Section "9. Temperature Sensor" on page 58. The ADC0 subsystem is enabled only when the AD0EN bit in the ADC0 Control register (ADC0CN) is set to logic 1. The ADC0 subsystem is in low power shutdown when this bit is logic 0.

Figure 8.1. ADC0 Functional Block Diagram

C8051F80x-83x

Figure 9.2. Temperature Sensor Error with 1-Point Calibration at 0 °C

SFR Definition 13.7. CS0THH: Capacitive Sense Comparator Threshold High Byte

Bit	7	6	5	4	3	2	1	0
Name	CS0THH[7:0]							
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0x97

Bit	Name	Description
7:0	CS0THH[7:0]	CS0 Comparator Threshold High Byte.
		High byte of the 16-bit value compared to the Capacitive Sense conversion result.

SFR Definition 13.8. CS0THL: Capacitive Sense Comparator Threshold Low Byte

Bit	7	6	5	4	3	2	1	0
Name	CS0THL[7:0]							
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0x96

Bit	Name	Description			
7:0	CS0THL[7:0]	CS0 Comparator Threshold Low Byte.			
		Low byte of the 16-bit value compared to the Capacitive Sense conversion result.			

Mnemonic	Description	Bytes	Clock Cycles
XRL direct, #data	Exclusive-OR immediate to direct byte	3	3
CLR A	Clear A	1	1
CPL A	Complement A	1	1
RL A	Rotate A left	1	1
RLC A	Rotate A left through Carry	1	1
RR A	Rotate A right	1	1
RRC A	Rotate A right through Carry	1	1
SWAP A	Swap nibbles of A	1	1
Data Transfer			
MOV A, Rn	Move Register to A	1	1
MOV A, direct	Move direct byte to A	2	2
MOV A, @Ri	Move indirect RAM to A	1	2
MOV A, #data	Move immediate to A	2	2
MOV Rn, A	Move A to Register	1	1
MOV Rn, direct	Move direct byte to Register	2	2
MOV Rn, #data	Move immediate to Register	2	2
MOV direct, A	Move A to direct byte	2	2
MOV direct, Rn	Move Register to direct byte	2	2
MOV direct, direct	Move direct byte to direct byte	3	3
MOV direct, @Ri	Move indirect RAM to direct byte	2	2
MOV direct, #data	Move immediate to direct byte	3	3
MOV @Ri, A	Move A to indirect RAM	1	2
MOV @Ri, direct	Move direct byte to indirect RAM	2	2
MOV @Ri, #data	Move immediate to indirect RAM	2	2
MOV DPTR, #data16	Load DPTR with 16-bit constant	3	3
MOVC A, @A+DPTR	Move code byte relative DPTR to A	1	3
MOVC A, @A+PC	Move code byte relative PC to A	1	3
MOVX A, @Ri	Move external data (8-bit address) to A	1	3
MOVX @Ri, A	Move A to external data (8-bit address)	1	3
MOVX A, @DPTR	Move external data (16-bit address) to A	1	3
MOVX @DPTR, A	Move A to external data (16-bit address)	1	3
PUSH direct	Push direct byte onto stack	2	2
POP direct	Pop direct byte from stack	2	2
XCH A, Rn	Exchange Register with A	1	1
XCH A, direct	Exchange direct byte with A	2	2
XCH A, @Ri	Exchange indirect RAM with A	1	2
XCHD A, @Ri	Exchange low nibble of indirect RAM with A	1	2
Boolean Manipulation			
CLR C	Clear Carry	1	1
CLR bit	Clear direct bit	2	2
SETB C	Set Carry	1	1
SETB bit	Set direct bit	2	2
CPL C	Complement Carry	1	1
CPL bit	Complement direct bit	2	2

 Table 14.1. CIP-51 Instruction Set Summary (Continued)

SFR Definition 18.3. EIE1: Extended Interrupt Enable 1

Bit	7	6	5	4	3	2	1	0
Name	Reserved	Reserved	ECP0	EADC0	EPCA0	EWADC0	EMAT	ESMB0
Туре	W	W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xE6

Name	Function
Reserved	Must write 0.
Reserved	Reserved.
	Must write 0.
ECP0	Enable Comparator0 (CP0) Interrupt.
	0: Disable CP0 interrupts.
	1: Enable interrupt requests generated by the CP0RIF and CP0FIF flags.
EADC0	Enable ADC0 Conversion Complete Interrupt.
	This bit sets the masking of the ADC0 Conversion Complete interrupt.
	1: Enable interrupt requests generated by the AD0INT flag.
EPCA0	Enable Programmable Counter Array (PCA0) Interrupt.
	This bit sets the masking of the PCA0 interrupts.
	1: Enable interrupt requests generated by PCA0.
EWADC0	Enable Window Comparison ADC0 interrupt.
	This bit sets the masking of ADC0 Window Comparison interrupt.
	1: Enable interrupt requests generated by ADC0 Window Compare flag (AD0WINT).
EMAT	Enable Port Match Interrupts.
	This bit sets the masking of the Port Match event interrupt.
	1: Enable interrupt requests generated by a Port Match.
ESMB0	Enable SMBus (SMB0) Interrupt.
	This bit sets the masking of the SMB0 interrupt.
	1: Enable interrupt requests generated by SMB0.
	Reserved Reserved ECP0 EADC0 EPCA0 EWADC0

SFR Definition 18.7. IT01CF: INT0/INT1 Configuration

Bit	7	6	5	4	3	2	1	0
Name	IN1PL	IN1SL[2:0]			IN0PL	IN0SL[2:0]		
Туре	R/W	R/W			R/W		R/W	
Reset	0	0	0	0	0	0	0	1

SFR Address = 0xE4

Bit	Name	Function
7	IN1PL	INT1 Polarity. 0: INT1 input is active low. 1: INT1 input is active high.
6:4	IN1SL[2:0]	INT1 Port Pin Selection Bits. These bits select which Port pin is assigned to INT1. Note that this pin assignment is independent of the Crossbar; INT1 will monitor the assigned Port pin without disturbing the peripheral that has been assigned the Port pin via the Crossbar. The Crossbar will not assign the Port pin to a peripheral if it is configured to skip the selected pin. 000: Select P0.0 001: Select P0.1 010: Select P0.2 011: Select P0.3 100: Select P0.4 101: Select P0.5 110: Select P0.6 111: Select P0.7
3	INOPL	INTO Polarity. 0: INTO input is active low. 1: INTO input is active high.
2:0	INOSL[2:0]	INTO Port Pin Selection Bits. These bits select which Port pin is assigned to INTO. Note that this pin assignment is independent of the Crossbar; INTO will monitor the assigned Port pin without disturbing the peripheral that has been assigned the Port pin via the Crossbar. The Crossbar will not assign the Port pin to a peripheral if it is configured to skip the selected pin. 000: Select P0.0 001: Select P0.1 010: Select P0.2 011: Select P0.3 100: Select P0.4 101: Select P0.5 110: Select P0.6 111: Select P0.7

8. Restore previous interrupt state.

Steps 4–6 must be repeated for each 512-byte page to be erased.

Note: Flash security settings may prevent erasure of some Flash pages, such as the reserved area and the page containing the lock bytes. For a summary of Flash security settings and restrictions affecting Flash erase operations, please see Section "19.3. Security Options" on page 114.

19.1.3. Flash Write Procedure

A write to Flash memory can clear bits to logic 0 but cannot set them; only an erase operation can set bits to logic 1 in Flash. A byte location to be programmed should be erased before a new value is written.

The recommended procedure for writing a single byte in Flash is as follows:

- 1. Save current interrupt state and disable interrupts.
- 2. Ensure that the Flash byte has been erased (has a value of 0xFF).
- 3. Set the PSWE bit (register PSCTL).
- 4. Clear the PSEE bit (register PSCTL).
- 5. Write the first key code to FLKEY: 0xA5.
- 6. Write the second key code to FLKEY: 0xF1.
- 7. Using the MOVX instruction, write a single data byte to the desired location within the 512-byte sector.
- 8. Clear the PSWE bit.
- 9. Restore previous interrupt state.

Steps 5–7 must be repeated for each byte to be written.

Note: Flash security settings may prevent writes to some areas of Flash, such as the reserved area. For a summary of Flash security settings and restrictions affecting Flash write operations, please see Section "19.3. Security Options" on page 114.

19.2. Non-volatile Data Storage

The Flash memory can be used for non-volatile data storage as well as program code. This allows data such as calibration coefficients to be calculated and stored at run time. Data is written using the MOVX write instruction and read using the MOVC instruction.

Note: MOVX read instructions always target XRAM.

19.3. Security Options

The CIP-51 provides security options to protect the Flash memory from inadvertent modification by software as well as to prevent the viewing of proprietary program code and constants. The Program Store Write Enable (bit PSWE in register PSCTL) and the Program Store Erase Enable (bit PSEE in register PSCTL) bits protect the Flash memory from accidental modification by software. PSWE must be explicitly set to 1 before software can modify the Flash memory; both PSWE and PSEE must be set to 1 before software can erase Flash memory. Additional security features prevent proprietary program code and data constants from being read or altered across the C2 interface.

A Security Lock Byte located at the last byte of Flash user space offers protection of the Flash program memory from access (reads, writes, and erases) by unprotected code or the C2 interface. The Flash security mechanism allows the user to lock all Flash pages, starting at page 0, by writing a non-0xFF value to the lock byte. Note that writing a non-0xFF value to the lock byte will lock all pages of FLASH from reads, writes, and erases, including the page containing the lock byte.

The level of Flash security depends on the Flash access method. The three Flash access methods that can be restricted are reads, writes, and erases from the C2 debug interface, user firmware executing on unlocked pages, and user firmware executing on locked pages. Table 19.1 summarizes the Flash security

19.4.3. System Clock

- 1. If operating from an external crystal, be advised that crystal performance is susceptible to electrical interference and is sensitive to layout and to changes in temperature. If the system is operating in an electrically noisy environment, use the internal oscillator or use an external CMOS clock.
- 2. If operating from the external oscillator, switch to the internal oscillator during Flash write or erase operations. The external oscillator can continue to run, and the CPU can switch back to the external oscillator after the Flash operation has completed.

Additional Flash recommendations and example code can be found in "AN201: Writing to Flash from Firm-ware," available from the Silicon Laboratories website.

Figure 22.2. External 32.768 kHz Quartz Crystal Oscillator Connection Diagram

22.3.2. External RC Example

If an RC network is used as an external oscillator source for the MCU, the circuit should be configured as shown in Figure 22.1, Option 2. The capacitor should be no greater than 100 pF; however for very small capacitors, the total capacitance may be dominated by parasitic capacitance in the PCB layout. To determine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, first select the RC network value to produce the desired frequency of oscillation, according to Equation 22.1, where f = the frequency of oscillation in MHz, C = the capacitor value in pF, and R = the pull-up resistor value in k Ω .

Equation 22.1. RC Mode Oscillator Frequency

 $f = 1.23 \times 10^3 / (R \times C)$

Rev. 1.0

For example: If the frequency desired is 100 kHz, let R = 246 k Ω and C = 50 pF:

 $f = 1.23(10^3) / RC = 1.23(10^3) / [246 \times 50] = 0.1 MHz = 100 kHz$

Referring to the table in SFR Definition 22.4, the required XFCN setting is 010b.

23.1. Port I/O Modes of Operation

Port pins P0.0–P1.7 use the Port I/O cell shown in Figure 23.2. Each Port I/O cell can be configured by software for analog I/O or digital I/O using the PnMDIN and PnMDOUT registers. Port pin P2.0 can be configured by software for digital I/O using the P2MDOUT register. On reset, all Port I/O cells default to a high impedance state with weak pull-ups enabled. Until the crossbar is enabled (XBARE = 1), both the high and low port I/O drive circuits are explicitly disabled on all crossbar pins.

23.1.1. Port Pins Configured for Analog I/O

Any pins to be used as Comparator or ADC input, Capacitive Sense input, external oscillator input/output, VREF output, or AGND connection should be configured for analog I/O (PnMDIN.n = 0, Pn.n = 1). When a pin is configured for analog I/O, its weak pullup, digital driver, and digital receiver are disabled. To prevent the low port I/o drive circuit from pulling the pin low, a '1' should be written to the corresponding port latch (Pn.n = 1). Port pins configured for analog I/O will always read back a value of 0 regardless of the actual voltage on the pin.

Configuring pins as analog I/O saves power and isolates the Port pin from digital interference. Port pins configured as digital I/O may still be used by analog peripherals; however, this practice is not recommended and may result in measurement errors.

23.1.2. Port Pins Configured For Digital I/O

Any pins to be used by digital peripherals (UART, SPI, SMBus, etc.), external digital event capture functions, or as GPIO should be configured as digital I/O (PnMDIN.n = 1). For digital I/O pins, one of two output modes (push-pull or open-drain) must be selected using the PnMDOUT registers.

Push-pull outputs (PnMDOUT.n = 1) drive the Port pad to the VDD or GND supply rails based on the output logic value of the Port pin. Open-drain outputs have the high side driver disabled; therefore, they only drive the Port pad to GND when the output logic value is 0 and become high impedance inputs (both high and low drivers turned off) when the output logic value is 1.

When a digital I/O cell is placed in the high impedance state, a weak pull-up transistor pulls the Port pad to the VDD supply voltage to ensure the digital input is at a defined logic state. Weak pull-ups are disabled when the I/O cell is driven to GND to minimize power consumption and may be globally disabled by setting WEAKPUD to 1. The user should ensure that digital I/O are always internally or externally pulled or driven to a valid logic state to minimize power consumption. Port pins configured for digital I/O always read back the logic state of the Port pad, regardless of the output logic value of the Port pin.

SFR Definition 24.1. CRC0CN: CRC0 Control

Bit	7	6	5	4	3	2	1	0
Name				CRC0SEL	CRC0INIT	CRC0VAL	CRC0P	NT[1:0]
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/	W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xCE

Bit	Name	Function			
7:5	Unused	Read = 000b; Write = Don't Care.			
4	CRC0SEL	CRC0 Polynomial Select Bit.			
		This bit selects the CRC0 polynomial and result length (32-bit or 16-bit).			
		0: CRC0 uses the 32-bit polynomial 0x04C11DB7 for calculating the CRC result. 1: CRC0 uses the 16-bit polynomial 0x1021 for calculating the CRC result.			
3	CRC0INIT	CRC0 Result Initialization Bit.			
		Writing a 1 to this bit initializes the entire CRC result based on CRC0VAL.			
2	CRC0VAL	CRC0 Set Value Initialization Bit.			
		This bit selects the set value of the CRC result.			
		0: CRC result is set to 0x00000000 on write of 1 to CRC0INIT.			
		1: CRC result is set to 0xFFFFFFF on write of 1 to CRC0INIT.			
1:0	CRC0PNT[1:0]	CRC0 Result Pointer.			
		Specifies the byte of the CRC result to be read/written on the next access to			
		CRC0DAT. The value of these bits will auto-increment upon each read or write. For CRC0SEL $= 0$:			
		00: CRC0DAT accesses bits 7–0 of the 32-bit CRC result			
		01: CRC0DAT accesses bits 15–8 of the 32-bit CRC result.			
		10: CRC0DAT accesses bits 23–16 of the 32-bit CRC result.			
		11: CRC0DAT accesses bits 31–24 of the 32-bit CRC result.			
		For CRC0SEL = 1:			
		00: CRC0DAT accesses bits 7–0 of the 16-bit CRC result.			
		01: CRC0DAT accesses bits 15–8 of the 16-bit CRC result.			
		10: CRC0DAT accesses bits 7–0 of the 16-bit CRC result.			
		11: CRC0DAT accesses bits 15–8 of the 16-bit CRC result.			

25.1. Signal Descriptions

The four signals used by SPI0 (MOSI, MISO, SCK, NSS) are described below.

25.1.1. Master Out, Slave In (MOSI)

The master-out, slave-in (MOSI) signal is an output from a master device and an input to slave devices. It is used to serially transfer data from the master to the slave. This signal is an output when SPI0 is operating as a master and an input when SPI0 is operating as a slave. Data is transferred most-significant bit first. When configured as a master, MOSI is driven by the MSB of the shift register in both 3- and 4-wire mode.

25.1.2. Master In, Slave Out (MISO)

The master-in, slave-out (MISO) signal is an output from a slave device and an input to the master device. It is used to serially transfer data from the slave to the master. This signal is an input when SPI0 is operating as a master and an output when SPI0 is operating as a slave. Data is transferred most-significant bit first. The MISO pin is placed in a high-impedance state when the SPI module is disabled and when the SPI operates in 4-wire mode as a slave that is not selected. When acting as a slave in 3-wire mode, MISO is always driven by the MSB of the shift register.

25.1.3. Serial Clock (SCK)

The serial clock (SCK) signal is an output from the master device and an input to slave devices. It is used to synchronize the transfer of data between the master and slave on the MOSI and MISO lines. SPI0 generates this signal when operating as a master. The SCK signal is ignored by a SPI slave when the slave is not selected (NSS = 1) in 4-wire slave mode.

25.1.4. Slave Select (NSS)

The function of the slave-select (NSS) signal is dependent on the setting of the NSSMD1 and NSSMD0 bits in the SPI0CN register. There are three possible modes that can be selected with these bits:

- 1. NSSMD[1:0] = 00: 3-Wire Master or 3-Wire Slave Mode: SPI0 operates in 3-wire mode, and NSS is disabled. When operating as a slave device, SPI0 is always selected in 3-wire mode. Since no select signal is present, SPI0 must be the only slave on the bus in 3-wire mode. This is intended for point-to-point communication between a master and one slave.
- NSSMD[1:0] = 01: 4-Wire Slave or Multi-Master Mode: SPI0 operates in 4-wire mode, and NSS is enabled as an input. When operating as a slave, NSS selects the SPI0 device. When operating as a master, a 1-to-0 transition of the NSS signal disables the master function of SPI0 so that multiple master devices can be used on the same SPI bus.
- 3. NSSMD[1:0] = 1x: 4-Wire Master Mode: SPI0 operates in 4-wire mode, and NSS is enabled as an output. The setting of NSSMD0 determines what logic level the NSS pin will output. This configuration should only be used when operating SPI0 as a master device.

See Figure 25.2, Figure 25.3, and Figure 25.4 for typical connection diagrams of the various operational modes. **Note that the setting of NSSMD bits affects the pinout of the device.** When in 3-wire master or 3-wire slave mode, the NSS pin will not be mapped by the crossbar. In all other modes, the NSS signal will be mapped to a pin on the device. See Section "23. Port Input/Output" on page 138 for general purpose port I/O and crossbar information.

25.2. SPI0 Master Mode Operation

A SPI master device initiates all data transfers on a SPI bus. SPI0 is placed in master mode by setting the Master Enable flag (MSTEN, SPI0CN.6). Writing a byte of data to the SPI0 data register (SPI0DAT) when in master mode writes to the transmit buffer. If the SPI shift register is empty, the byte in the transmit buffer is moved to the shift register, and a data transfer begins. The SPI0 master immediately shifts out the data serially on the MOSI line while providing the serial clock on SCK. The SPIF (SPI0CN.7) flag is set to logic 1 at the end of the transfer. If interrupts are enabled, an interrupt request is generated when the SPIF flag

SFR Definition 25.1. SPI0CFG: SPI0 Configuration

Bit	7	6	5	4	3	2	1	0
Name	SPIBSY	MSTEN	СКРНА	CKPOL	SLVSEL	NSSIN	SRMT	RXBMT
Туре	R	R/W	R/W	R/W	R	R	R	R
Reset	0	0	0	0	0	1	1	1

SFR Address = 0xA1

Bit	Name	Function					
7	SPIBSY	SPI Busy.					
		This bit is set to logic 1 when a SPI transfer is in progress (master or slave mode).					
6	MSTEN	Master Mode Enable.					
		0: Disable master mode. Operate in slave mode.					
		1: Enable master mode. Operate as a master.					
5	СКРНА	SPI0 Clock Phase.					
		0: Data centered on first edge of SCK period.*					
		1: Data centered on second edge of SCK period.					
4	CKPOL	SPI0 Clock Polarity.					
		0: SCK line low in idle state.					
		1: SCK line high in idle state.					
3	SLVSEL	Slave Selected Flag.					
		This bit is set to logic 1 whenever the NSS pin is low indicating SPI0 is the selected					
		slave. It is cleared to logic 0 when NSS is high (slave not selected). This bit does					
		sion of the pin input.					
2	NSSIN	NSS Instantaneous Pin Input.					
		This bit mimics the instantaneous value that is present on the NSS port pin at the					
		time that the register is read. This input is not de-glitched.					
1	SRMT	Shift Register Empty (valid in slave mode only).					
		This bit will be set to logic 1 when all data has been transferred in/out of the shift					
		register, and there is no new information available to read from the transmit buffer					
		the shift register from the transmit buffer or by a transition on SCK_SRMT = 1 when					
		in Master Mode.					
0	RXBMT	Receive Buffer Empty (valid in slave mode only).					
		This bit will be set to logic 1 when the receive buffer has been read and contains no					
		new information. If there is new information available in the receive buffer that has					
		not been read, this bit will return to logic 0. RXBMT = 1 when in Master Mode.					
Note:	In slave mode, o	data on MOSI is sampled in the center of each data bit. In master mode, data on MISO is					
	See Table 25.1 for timing parameters.						

imum setup and hold times for the two EXTHOLD settings. Setup and hold time extensions are typically necessary when SYSCLK is above 10 MHz.

EXTHOLD	Minimum SDA Setup Time	Minimum SDA Hold Time					
0	T _{low} – 4 system clocks or 1 system clock + s/w delay [*]	3 system clocks					
1 11 system clocks		12 system clocks					
Note: Setup Tin software a ACK is w that defin	Setup Time for ACK bit transmissions and the MSB of all data transfers. When using software acknowledgement, the s/w delay occurs between the time SMB0DAT or ACK is written and when SI is cleared. Note that if SI is cleared in the same write that defines the outgoing ACK value, s/w delay is zero.						

Table 26.2. Minimum SDA Setup and Hold Times

With the SMBTOE bit set, Timer 3 should be configured to overflow after 25 ms in order to detect SCL low timeouts (see Section "26.3.4. SCL Low Timeout" on page 182). The SMBus interface will force Timer 3 to reload while SCL is high, and allow Timer 3 to count when SCL is low. The Timer 3 interrupt service routine should be used to reset SMBus communication by disabling and re-enabling the SMBus.

SMBus Free Timeout detection can be enabled by setting the SMBFTE bit. When this bit is set, the bus will be considered free if SDA and SCL remain high for more than 10 SMBus clock source periods (see Figure 26.4).

26.5.4. Read Sequence (Slave)

During a read sequence, an SMBus master reads data from a slave device. The slave in this transfer will be a receiver during the address byte, and a transmitter during all data bytes. When slave events are enabled (INH = 0), the interface enters Slave Receiver Mode (to receive the slave address) when a START followed by a slave address and direction bit (READ in this case) is received. If hardware ACK generation is disabled, upon entering Slave Receiver Mode, an interrupt is generated and the ACKRQ bit is set. The software must respond to the received slave address with an ACK, or ignore the received slave address with a NACK. If hardware ACK generation is enabled, the hardware will apply the ACK for a slave address which matches the criteria set up by SMB0ADR and SMB0ADM. The interrupt will occur after the ACK cycle.

If the received slave address is ignored (by software or hardware), slave interrupts will be inhibited until the next START is detected. If the received slave address is acknowledged, zero or more data bytes are transmitted. If the received slave address is acknowledged, data should be written to SMB0DAT to be transmitted. The interface enters slave transmitter mode, and transmits one or more bytes of data. After each byte is transmitted, the master sends an acknowledge bit; if the acknowledge bit is an ACK, SMB0DAT should be written with the next data byte. If the acknowledge bit is a NACK, SMB0DAT should not be written to before SI is cleared (an error condition may be generated if SMB0DAT is written following a received NACK while in slave transmitter mode). The interface exits slave transmitter mode after receiving a STOP. Note that the interface will switch to slave receiver mode if SMB0DAT is not written following a Slave Transmitter interrupt. Figure 26.8 shows a typical slave read sequence. Two transmitted data bytes are shown, though any number of bytes may be transmitted. Notice that all of the "data byte transferred" interrupts occur **after** the ACK cycle in this mode, regardless of whether hardware ACK generation is enabled.

26.6. SMBus Status Decoding

The current SMBus status can be easily decoded using the SMB0CN register. The appropriate actions to take in response to an SMBus event depend on whether hardware slave address recognition and ACK generation is enabled or disabled. Table 26.5 describes the typical actions when hardware slave address recognition and ACK generation is disabled. Table 26.6 describes the typical actions when hardware slave address recognition and ACK generation is enabled. In the tables, STATUS VECTOR refers to the four upper bits of SMB0CN: MASTER, TXMODE, STA, and STO. The shown response options are only the typical responses; application-specific procedures are allowed as long as they conform to the SMBus specification. Highlighted responses are allowed by hardware but do not conform to the SMBus specification.

27.1. Enhanced Baud Rate Generation

The UART0 baud rate is generated by Timer 1 in 8-bit auto-reload mode. The TX clock is generated by TL1; the RX clock is generated by a copy of TL1 (shown as RX Timer in Figure 27.2), which is not useraccessible. Both TX and RX Timer overflows are divided by two to generate the TX and RX baud rates. The RX Timer runs when Timer 1 is enabled, and uses the same reload value (TH1). However, an RX Timer reload is forced when a START condition is detected on the RX pin. This allows a receive to begin any time a START is detected, independent of the TX Timer state.

Figure 27.2. UART0 Baud Rate Logic

Timer 1 should be configured for Mode 2, 8-bit auto-reload (see Section "28.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload" on page 212). The Timer 1 reload value should be set so that overflows will occur at two times the desired UART baud rate frequency. Note that Timer 1 may be clocked by one of six sources: SYSCLK, SYSCLK/4, SYSCLK/12, SYSCLK/48, the external oscillator clock/8, or an external input T1. For any given Timer 1 clock source, the UART0 baud rate is determined by Equation 27.1-A and Equation 27.1-B.

A) UartBaudRate =
$$\frac{1}{2} \times T1_Overflow_Rate$$

B) T1_Overflow_Rate = $\frac{T1_{CLK}}{256 - TH1}$

Equation 27.1. UART0 Baud Rate

Where $T1_{CLK}$ is the frequency of the clock supplied to Timer 1, and T1H is the high byte of Timer 1 (reload value). Timer 1 clock frequency is selected as described in Section "28. Timers" on page 209. A quick reference for typical baud rates and system clock frequencies is given in Table 27.1 through Table 27.2. The internal oscillator may still generate the system clock when the external oscillator is driving Timer 1.

C8051F80x-83x

NOTES:

