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Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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Figure 1.1. C8051F800, C8051F806, C8051F812, C8051F818 Block Diagram
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Table 7.3. Port I/O DC Electrical Characteristics
VDD = 1.8 to 3.6 V, –40 to +85 °C unless otherwise specified.

Parameters Conditions Min Typ Max Units

Output High Voltage IOH = –3 mA, Port I/O push-pull
IOH = –10 µA, Port I/O push-pull
IOH = –10 mA, Port I/O push-pull

VDD – 0.7
VDD - 0.1

—

—
—

VDD - 0.8

—
—
—

V
V
V

Output Low Voltage IOL = 8.5 mA
IOL = 10 µA
IOL = 25 mA

—
—
—

—
—
1.0

0.6
0.1
—

V
V
V

Input High Voltage 0.75 x VDD — — V
Input Low Voltage — — 0.6 V
Input Leakage 
Current

Weak Pullup Off
Weak Pullup On, VIN = 0 V

–1
—

—
15

1
50

µA
µA

Table 7.4. Reset Electrical Characteristics
VDD = 1.8 to 3.6 V, –40 to +85 °C unless otherwise specified.

Parameter Conditions Min Typ Max Units

RST Output Low Voltage IOL = 8.5 mA, 
VDD = 1.8 V to 3.6 V

— — 0.6 V

RST Input High Voltage 0.75 x VDD — — V

RST Input Low Voltage — — 0.3 x VDD VDD

RST Input Pullup Current RST = 0.0 V — 25 50 µA

VDD POR Ramp Time — — 1 ms

VDD Monitor Threshold (VRST) 1.7 1.75 1.8 V

Missing Clock Detector 
Timeout

Time from last system clock 
rising edge to reset initiation

100 500 1000 µs

Reset Time Delay Delay between release of any 
reset source and code 
execution at location 0x0000

— — 30 µs

Minimum RST Low Time to 
Generate a System Reset

15 — — µs

VDD Monitor Turn-on Time VDD = VRST – 0.1 V — 50 — µs

VDD Monitor Supply Current — 20 30 µA

Table 7.5. Internal Voltage Regulator Electrical Characteristics
VDD = 3.0 V, –40 to +85 °C unless otherwise specified.

Parameter Conditions Min Typ Max Units

Input Voltage Range 1.8 — 3.6 V

Bias Current — 50 65 µA
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Table 7.13. Comparator Electrical Characteristics
VDD = 3.0 V, –40 to +85 °C unless otherwise noted.

Parameter Conditions Min Typ Max Units

Response Time:
Mode 0, Vcm* = 1.5 V

CP0+ – CP0– = 100 mV — 220 — ns

CP0+ – CP0– = –100 mV — 225 — ns

Response Time:
Mode 1, Vcm* = 1.5 V

CP0+ – CP0– = 100 mV — 340 — ns

CP0+ – CP0– = –100 mV — 380 — ns

Response Time:
Mode 2, Vcm* = 1.5 V

CP0+ – CP0– = 100 mV — 510 — ns

CP0+ – CP0– = –100 mV — 945 — ns

Response Time:
Mode 3, Vcm* = 1.5 V

CP0+ – CP0– = 100 mV — 1500 — ns

CP0+ – CP0– = –100 mV — 5000 — ns

Common-Mode Rejection Ratio — 1 4 mV/V

Positive Hysteresis 1 Mode 2, CP0HYP1–0 = 00b — 0 1 mV

Positive Hysteresis 2 Mode 2, CP0HYP1–0 = 01b 2 5 10 mV

Positive Hysteresis 3 Mode 2, CP0HYP1–0 = 10b 7 10 20 mV

Positive Hysteresis 4 Mode 2, CP0HYP1–0 = 11b 10 20 30 mV

Negative Hysteresis 1 Mode 2, CP0HYN1–0 = 00b — 0 1 mV

Negative Hysteresis 2 Mode 2, CP0HYN1–0 = 01b 2 5 10 mV

Negative Hysteresis 3 Mode 2, CP0HYN1–0 = 10b 7 10 20 mV

Negative Hysteresis 4 Mode 2, CP0HYN1–0 = 11b 10 20 30 mV

Inverting or Non-Inverting Input 
Voltage Range

–0.25 — VDD + 0.25 V

Input Offset Voltage –7.5 — 7.5 mV

Power Specifications

Power Supply Rejection — 0.1 — mV/V

Powerup Time — 10 — µs

Supply Current at DC Mode 0 — 20 — µA

Mode 1 — 8 — µA

Mode 2 — 3 — µA

Mode 3 — 0.5 — µA

Note: Vcm is the common-mode voltage on CP0+ and CP0–.
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8.  10-Bit ADC (ADC0)

ADC0 on the C8051F800/1/2/3/4/5, C8051F812/3/4/5/6/7, C8051F824/5/6, and C8051F830/1/2 is a
500 ksps, 10-bit successive-approximation-register (SAR) ADC with integrated track-and-hold, a gain
stage programmable to 1x or 0.5x, and a programmable window detector. The ADC is fully configurable
under software control via Special Function Registers. The ADC may be configured to measure various dif-
ferent signals using the analog multiplexer described in Section “8.5. ADC0 Analog Multiplexer” on
page 56. The voltage reference for the ADC is selected as described in Section “9. Temperature Sensor”
on page 58. The ADC0 subsystem is enabled only when the AD0EN bit in the ADC0 Control register
(ADC0CN) is set to logic 1. The ADC0 subsystem is in low power shutdown when this bit is logic 0.

Figure 8.1. ADC0 Functional Block Diagram
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Figure 9.2. Temperature Sensor Error with 1-Point Calibration at 0 °C
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SFR Address = 0x97

SFR Address = 0x96

SFR Definition 13.7. CS0THH: Capacitive Sense Comparator Threshold High Byte

Bit 7 6 5 4 3 2 1 0

Name CS0THH[7:0]

Type R/W R/W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Description

7:0 CS0THH[7:0] CS0 Comparator Threshold High Byte.

High byte of the 16-bit value compared to the Capacitive Sense conversion result.

SFR Definition 13.8. CS0THL: Capacitive Sense Comparator Threshold Low Byte

Bit 7 6 5 4 3 2 1 0

Name CS0THL[7:0]

Type R/W R/W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Description

7:0 CS0THL[7:0] CS0 Comparator Threshold Low Byte.

Low byte of the 16-bit value compared to the Capacitive Sense conversion result.
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XRL direct, #data Exclusive-OR immediate to direct byte 3 3
CLR A Clear A 1 1
CPL A Complement A 1 1
RL A Rotate A left 1 1
RLC A Rotate A left through Carry 1 1
RR A Rotate A right 1 1
RRC A Rotate A right through Carry 1 1
SWAP A Swap nibbles of A 1 1

Data Transfer

MOV A, Rn Move Register to A 1 1
MOV A, direct Move direct byte to A 2 2
MOV A, @Ri Move indirect RAM to A 1 2
MOV A, #data Move immediate to A 2 2
MOV Rn, A Move A to Register 1 1
MOV Rn, direct Move direct byte to Register 2 2
MOV Rn, #data Move immediate to Register 2 2
MOV direct, A Move A to direct byte 2 2
MOV direct, Rn Move Register to direct byte 2 2
MOV direct, direct Move direct byte to direct byte 3 3
MOV direct, @Ri Move indirect RAM to direct byte 2 2
MOV direct, #data Move immediate to direct byte 3 3
MOV @Ri, A Move A to indirect RAM 1 2
MOV @Ri, direct Move direct byte to indirect RAM 2 2
MOV @Ri, #data Move immediate to indirect RAM 2 2
MOV DPTR, #data16 Load DPTR with 16-bit constant 3 3
MOVC A, @A+DPTR Move code byte relative DPTR to A 1 3
MOVC A, @A+PC Move code byte relative PC to A 1 3
MOVX A, @Ri Move external data (8-bit address) to A 1 3
MOVX @Ri, A Move A to external data (8-bit address) 1 3
MOVX A, @DPTR Move external data (16-bit address) to A 1 3
MOVX @DPTR, A Move A to external data (16-bit address) 1 3
PUSH direct Push direct byte onto stack 2 2
POP direct Pop direct byte from stack 2 2
XCH A, Rn Exchange Register with A 1 1
XCH A, direct Exchange direct byte with A 2 2
XCH A, @Ri Exchange indirect RAM with A 1 2
XCHD A, @Ri Exchange low nibble of indirect RAM with A 1 2

Boolean Manipulation

CLR C Clear Carry 1 1
CLR bit Clear direct bit 2 2
SETB C Set Carry 1 1
SETB bit Set direct bit 2 2
CPL C Complement Carry 1 1
CPL bit Complement direct bit 2 2

Table 14.1. CIP-51 Instruction Set Summary (Continued)

Mnemonic Description Bytes Clock 
Cycles
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SFR Address = 0xE6

SFR Definition 18.3. EIE1: Extended Interrupt Enable 1

Bit 7 6 5 4 3 2 1 0

Name Reserved Reserved ECP0 EADC0 EPCA0 EWADC0 EMAT ESMB0

Type W W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7 Reserved Must write 0.

6 Reserved Reserved. 

Must write 0.

5 ECP0 Enable Comparator0 (CP0) Interrupt.
This bit sets the masking of the CP0 rising edge or falling edge interrupt.
0: Disable CP0 interrupts.
1: Enable interrupt requests generated by the CP0RIF and CP0FIF flags.

4 EADC0 Enable ADC0 Conversion Complete Interrupt.
This bit sets the masking of the ADC0 Conversion Complete interrupt.
0: Disable ADC0 Conversion Complete interrupt.
1: Enable interrupt requests generated by the AD0INT flag.

3 EPCA0 Enable Programmable Counter Array (PCA0) Interrupt.
This bit sets the masking of the PCA0 interrupts.
0: Disable all PCA0 interrupts.
1: Enable interrupt requests generated by PCA0.

2 EWADC0 Enable Window Comparison ADC0 interrupt.
This bit sets the masking of ADC0 Window Comparison interrupt.
0: Disable ADC0 Window Comparison interrupt.
1: Enable interrupt requests generated by ADC0 Window Compare flag (AD0WINT).

1 EMAT Enable Port Match Interrupts.
This bit sets the masking of the Port Match event interrupt.
0: Disable all Port Match interrupts.
1: Enable interrupt requests generated by a Port Match.

0 ESMB0 Enable SMBus (SMB0) Interrupt. 
This bit sets the masking of the SMB0 interrupt.
0: Disable all SMB0 interrupts.
1: Enable interrupt requests generated by SMB0.
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SFR Address = 0xE4

SFR Definition 18.7. IT01CF: INT0/INT1 Configuration

Bit 7 6 5 4 3 2 1 0

Name IN1PL IN1SL[2:0] IN0PL IN0SL[2:0]

Type R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 1

Bit Name Function

7 IN1PL INT1 Polarity.

0: INT1 input is active low.
1: INT1 input is active high.

6:4 IN1SL[2:0] INT1 Port Pin Selection Bits.

These bits select which Port pin is assigned to INT1. Note that this pin assignment is 
independent of the Crossbar; INT1 will monitor the assigned Port pin without disturb-
ing the peripheral that has been assigned the Port pin via the Crossbar. The Crossbar 
will not assign the Port pin to a peripheral if it is configured to skip the selected pin.
000: Select P0.0
001: Select P0.1
010: Select P0.2
011: Select P0.3
100: Select P0.4
101: Select P0.5
110: Select P0.6
111: Select P0.7

3 IN0PL INT0 Polarity.

0: INT0 input is active low.
1: INT0 input is active high.

2:0 IN0SL[2:0] INT0 Port Pin Selection Bits.

These bits select which Port pin is assigned to INT0. Note that this pin assignment is 
independent of the Crossbar; INT0 will monitor the assigned Port pin without disturb-
ing the peripheral that has been assigned the Port pin via the Crossbar. The Crossbar 
will not assign the Port pin to a peripheral if it is configured to skip the selected pin.
000: Select P0.0
001: Select P0.1
010: Select P0.2
011: Select P0.3
100: Select P0.4
101: Select P0.5
110: Select P0.6
111: Select P0.7
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8. Restore previous interrupt state.

Steps 4–6 must be repeated for each 512-byte page to be erased. 

Note: Flash security settings may prevent erasure of some Flash pages, such as the reserved area and the page 
containing the lock bytes. For a summary of Flash security settings and restrictions affecting Flash erase 
operations, please see Section “19.3. Security Options” on page 114.

19.1.3. Flash Write Procedure

A write to Flash memory can clear bits to logic 0 but cannot set them; only an erase operation can set bits
to logic 1 in Flash. A byte location to be programmed should be erased before a new value is written.

The recommended procedure for writing a single byte in Flash is as follows:

1. Save current interrupt state and disable interrupts.

2. Ensure that the Flash byte has been erased (has a value of 0xFF).

3. Set the PSWE bit (register PSCTL).

4. Clear the PSEE bit (register PSCTL).

5. Write the first key code to FLKEY: 0xA5.

6. Write the second key code to FLKEY: 0xF1.

7. Using the MOVX instruction, write a single data byte to the desired location within the 512-byte sector.

8. Clear the PSWE bit.

9. Restore previous interrupt state.

Steps 5–7 must be repeated for each byte to be written. 

Note: Flash security settings may prevent writes to some areas of Flash, such as the reserved area. For a summary 
of Flash security settings and restrictions affecting Flash write operations, please see Section “19.3. Security 
Options” on page 114.

19.2.  Non-volatile Data Storage
The Flash memory can be used for non-volatile data storage as well as program code. This allows data
such as calibration coefficients to be calculated and stored at run time. Data is written using the MOVX
write instruction and read using the MOVC instruction. 

Note: MOVX read instructions always target XRAM.

19.3.  Security Options
The CIP-51 provides security options to protect the Flash memory from inadvertent modification by soft-
ware as well as to prevent the viewing of proprietary program code and constants. The Program Store
Write Enable (bit PSWE in register PSCTL) and the Program Store Erase Enable (bit PSEE in register
PSCTL) bits protect the Flash memory from accidental modification by software. PSWE must be explicitly
set to 1 before software can modify the Flash memory; both PSWE and PSEE must be set to 1 before soft-
ware can erase Flash memory. Additional security features prevent proprietary program code and data
constants from being read or altered across the C2 interface.

A Security Lock Byte located at the last byte of Flash user space offers protection of the Flash program
memory from access (reads, writes, and erases) by unprotected code or the C2 interface. The Flash secu-
rity mechanism allows the user to lock all Flash pages, starting at page 0, by writing a non-0xFF value to
the lock byte. Note that writing a non-0xFF value to the lock byte will lock all pages of FLASH from
reads, writes, and erases, including the page containing the lock byte. 

The level of Flash security depends on the Flash access method. The three Flash access methods that
can be restricted are reads, writes, and erases from the C2 debug interface, user firmware executing on
unlocked pages, and user firmware executing on locked pages. Table 19.1 summarizes the Flash security
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19.4.3. System Clock

1. If operating from an external crystal, be advised that crystal performance is susceptible to electrical 
interference and is sensitive to layout and to changes in temperature. If the system is operating in an 
electrically noisy environment, use the internal oscillator or use an external CMOS clock.

2. If operating from the external oscillator, switch to the internal oscillator during Flash write or erase 
operations. The external oscillator can continue to run, and the CPU can switch back to the external 
oscillator after the Flash operation has completed.

Additional Flash recommendations and example code can be found in “AN201: Writing to Flash from Firm-
ware," available from the Silicon Laboratories website.
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Figure 22.2. External 32.768 kHz Quartz Crystal Oscillator Connection Diagram

22.3.2. External RC Example

If an RC network is used as an external oscillator source for the MCU, the circuit should be configured as
shown in Figure 22.1, Option 2. The capacitor should be no greater than 100 pF; however for very small
capacitors, the total capacitance may be dominated by parasitic capacitance in the PCB layout. To deter-
mine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, first
select the RC network value to produce the desired frequency of oscillation, according to Equation 22.1,
where f = the frequency of oscillation in MHz, C = the capacitor value in pF, and R = the pull-up resistor
value in kΩ.

Equation 22.1. RC Mode Oscillator Frequency

For example: If the frequency desired is 100 kHz, let R = 246 kΩ and C = 50 pF:

f = 1.23( 103 ) / RC = 1.23 ( 103 ) / [ 246 x 50 ] = 0.1 MHz = 100 kHz

Referring to the table in SFR Definition 22.4, the required XFCN setting is 010b.

XTAL1

XTAL2

10MΩ

22pF*22pF*

32.768 kHz

* Capacitor values depend on 
crystal specifications

f 1.23 10
3× R C×( )⁄=
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23.1.  Port I/O Modes of Operation
Port pins P0.0–P1.7 use the Port I/O cell shown in Figure 23.2. Each Port I/O cell can be configured by
software for analog I/O or digital I/O using the PnMDIN and PnMDOUT registers. Port pin P2.0 can be con-
figured by software for digital I/O using the P2MDOUT register. On reset, all Port I/O cells default to a high
impedance state with weak pull-ups enabled. Until the crossbar is enabled (XBARE = 1), both the high and
low port I/O drive circuits are explicitly disabled on all crossbar pins.

23.1.1. Port Pins Configured for Analog I/O

Any pins to be used as Comparator or ADC input, Capacitive Sense input, external oscillator input/output,
VREF output, or AGND connection should be configured for analog I/O (PnMDIN.n = 0, Pn.n = 1). When a
pin is configured for analog I/O, its weak pullup, digital driver, and digital receiver are disabled. To prevent
the low port I/o drive circuit from pulling the pin low, a ‘1’ should be written to the corresponding port latch
(Pn.n = 1). Port pins configured for analog I/O will always read back a value of 0 regardless of the actual
voltage on the pin.

Configuring pins as analog I/O saves power and isolates the Port pin from digital interference. Port pins
configured as digital I/O may still be used by analog peripherals; however, this practice is not recom-
mended and may result in measurement errors.

23.1.2. Port Pins Configured For Digital I/O

Any pins to be used by digital peripherals (UART, SPI, SMBus, etc.), external digital event capture func-
tions, or as GPIO should be configured as digital I/O (PnMDIN.n = 1). For digital I/O pins, one of two output
modes (push-pull or open-drain) must be selected using the PnMDOUT registers. 

Push-pull outputs (PnMDOUT.n = 1) drive the Port pad to the VDD or GND supply rails based on the out-
put logic value of the Port pin. Open-drain outputs have the high side driver disabled; therefore, they only
drive the Port pad to GND when the output logic value is 0 and become high impedance inputs (both high
and low drivers turned off) when the output logic value is 1. 

When a digital I/O cell is placed in the high impedance state, a weak pull-up transistor pulls the Port pad to
the VDD supply voltage to ensure the digital input is at a defined logic state. Weak pull-ups are disabled
when the I/O cell is driven to GND to minimize power consumption and may be globally disabled by setting
WEAKPUD to 1. The user should ensure that digital I/O are always internally or externally pulled or driven
to a valid logic state to minimize power consumption. Port pins configured for digital I/O always read back
the logic state of the Port pad, regardless of the output logic value of the Port pin.

Figure 23.2. Port I/O Cell Block Diagram

GND

VIO VIO
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PORT 
PAD

To/From Analog    
Peripheral

PxMDIN.x
(1 for digital)
(0 for analog)
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Crossbar)

XBARE
(Crossbar 
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SFR Address = 0xCE

SFR Definition 24.1. CRC0CN: CRC0 Control

Bit 7 6 5 4 3 2 1 0

Name CRC0SEL CRC0INIT CRC0VAL CRC0PNT[1:0]

Type R/W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:5 Unused Read = 000b; Write = Don’t Care.

4 CRC0SEL CRC0 Polynomial Select Bit.

This bit selects the CRC0 polynomial and result length (32-bit or 16-bit).
0: CRC0 uses the 32-bit polynomial 0x04C11DB7 for calculating the CRC result.
1: CRC0 uses the 16-bit polynomial 0x1021 for calculating the CRC result.

3 CRC0INIT CRC0 Result Initialization Bit.

Writing a 1 to this bit initializes the entire CRC result based on CRC0VAL.

2 CRC0VAL CRC0 Set Value Initialization Bit.

This bit selects the set value of the CRC result.
0: CRC result is set to 0x00000000 on write of 1 to CRC0INIT.
1: CRC result is set to 0xFFFFFFFF on write of 1 to CRC0INIT. 

1:0 CRC0PNT[1:0] CRC0 Result Pointer.

Specifies the byte of the CRC result to be read/written on the next access to 
CRC0DAT. The value of these bits will auto-increment upon each read or write.
For CRC0SEL = 0:
00: CRC0DAT accesses bits 7–0 of the 32-bit CRC result.
01: CRC0DAT accesses bits 15–8 of the 32-bit CRC result.
10: CRC0DAT accesses bits 23–16 of the 32-bit CRC result.
11: CRC0DAT accesses bits 31–24 of the 32-bit CRC result.
For CRC0SEL = 1:
00: CRC0DAT accesses bits 7–0 of the 16-bit CRC result.
01: CRC0DAT accesses bits 15–8 of the 16-bit CRC result.
10: CRC0DAT accesses bits 7–0 of the 16-bit CRC result. 
11: CRC0DAT accesses bits 15–8 of the 16-bit CRC result.
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25.1.  Signal Descriptions
The four signals used by SPI0 (MOSI, MISO, SCK, NSS) are described below. 

25.1.1. Master Out, Slave In (MOSI)

The master-out, slave-in (MOSI) signal is an output from a master device and an input to slave devices. It
is used to serially transfer data from the master to the slave. This signal is an output when SPI0 is operat-
ing as a master and an input when SPI0 is operating as a slave. Data is transferred most-significant bit
first. When configured as a master, MOSI is driven by the MSB of the shift register in both 3- and 4-wire
mode.

25.1.2. Master In, Slave Out (MISO)

The master-in, slave-out (MISO) signal is an output from a slave device and an input to the master device.
It is used to serially transfer data from the slave to the master. This signal is an input when SPI0 is operat-
ing as a master and an output when SPI0 is operating as a slave. Data is transferred most-significant bit
first. The MISO pin is placed in a high-impedance state when the SPI module is disabled and when the SPI
operates in 4-wire mode as a slave that is not selected. When acting as a slave in 3-wire mode, MISO is
always driven by the MSB of the shift register.

25.1.3. Serial Clock (SCK)

The serial clock (SCK) signal is an output from the master device and an input to slave devices. It is used
to synchronize the transfer of data between the master and slave on the MOSI and MISO lines. SPI0 gen-
erates this signal when operating as a master. The SCK signal is ignored by a SPI slave when the slave is
not selected (NSS = 1) in 4-wire slave mode.

25.1.4. Slave Select (NSS)

The function of the slave-select (NSS) signal is dependent on the setting of the NSSMD1 and NSSMD0
bits in the SPI0CN register. There are three possible modes that can be selected with these bits:

1. NSSMD[1:0] = 00: 3-Wire Master or 3-Wire Slave Mode: SPI0 operates in 3-wire mode, and NSS is 
disabled. When operating as a slave device, SPI0 is always selected in 3-wire mode. Since no select 
signal is present, SPI0 must be the only slave on the bus in 3-wire mode. This is intended for point-to-
point communication between a master and one slave.

2. NSSMD[1:0] = 01: 4-Wire Slave or Multi-Master Mode: SPI0 operates in 4-wire mode, and NSS is 
enabled as an input. When operating as a slave, NSS selects the SPI0 device. When operating as a 
master, a 1-to-0 transition of the NSS signal disables the master function of SPI0 so that multiple 
master devices can be used on the same SPI bus.

3. NSSMD[1:0] = 1x: 4-Wire Master Mode: SPI0 operates in 4-wire mode, and NSS is enabled as an 
output. The setting of NSSMD0 determines what logic level the NSS pin will output. This configuration 
should only be used when operating SPI0 as a master device.

See Figure 25.2, Figure 25.3, and Figure 25.4 for typical connection diagrams of the various operational
modes. Note that the setting of NSSMD bits affects the pinout of the device. When in 3-wire master or
3-wire slave mode, the NSS pin will not be mapped by the crossbar. In all other modes, the NSS signal will
be mapped to a pin on the device. See Section “23. Port Input/Output” on page 138 for general purpose
port I/O and crossbar information.

25.2.  SPI0 Master Mode Operation
A SPI master device initiates all data transfers on a SPI bus. SPI0 is placed in master mode by setting the
Master Enable flag (MSTEN, SPI0CN.6). Writing a byte of data to the SPI0 data register (SPI0DAT) when
in master mode writes to the transmit buffer. If the SPI shift register is empty, the byte in the transmit buffer
is moved to the shift register, and a data transfer begins. The SPI0 master immediately shifts out the data
serially on the MOSI line while providing the serial clock on SCK. The SPIF (SPI0CN.7) flag is set to logic
1 at the end of the transfer. If interrupts are enabled, an interrupt request is generated when the SPIF flag



C8051F80x-83x

174 Rev. 1.0

SFR Address = 0xA1 

SFR Definition 25.1. SPI0CFG: SPI0 Configuration

Bit 7 6 5 4 3 2 1 0

Name SPIBSY MSTEN CKPHA CKPOL SLVSEL NSSIN SRMT RXBMT

Type R R/W R/W R/W R R R R

Reset 0 0 0 0 0 1 1 1

Bit Name Function

7 SPIBSY SPI Busy.

This bit is set to logic 1 when a SPI transfer is in progress (master or slave mode).

6 MSTEN Master Mode Enable. 

0: Disable master mode. Operate in slave mode.
1: Enable master mode. Operate as a master.

5 CKPHA SPI0 Clock Phase.

0: Data centered on first edge of SCK period.*

1: Data centered on second edge of SCK period.*

4 CKPOL SPI0 Clock Polarity. 

0: SCK line low in idle state.
1: SCK line high in idle state.

3 SLVSEL Slave Selected Flag. 

This bit is set to logic 1 whenever the NSS pin is low indicating SPI0 is the selected 
slave. It is cleared to logic 0 when NSS is high (slave not selected). This bit does 
not indicate the instantaneous value at the NSS pin, but rather a de-glitched ver-
sion of the pin input.

2 NSSIN NSS Instantaneous Pin Input. 

This bit mimics the instantaneous value that is present on the NSS port pin at the 
time that the register is read. This input is not de-glitched.

1 SRMT Shift Register Empty (valid in slave mode only).

This bit will be set to logic 1 when all data has been transferred in/out of the shift 
register, and there is no new information available to read from the transmit buffer 
or write to the receive buffer. It returns to logic 0 when a data byte is transferred to 
the shift register from the transmit buffer or by a transition on SCK. SRMT = 1 when 
in Master Mode.

0 RXBMT Receive Buffer Empty (valid in slave mode only).

This bit will be set to logic 1 when the receive buffer has been read and contains no 
new information. If there is new information available in the receive buffer that has 
not been read, this bit will return to logic 0. RXBMT = 1 when in Master Mode.

Note: In slave mode, data on MOSI is sampled in the center of each data bit. In master mode, data on MISO is 
sampled one SYSCLK before the end of each data bit, to provide maximum settling time for the slave device. 
See Table 25.1 for timing parameters.
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imum setup and hold times for the two EXTHOLD settings. Setup and hold time extensions are typically
necessary when SYSCLK is above 10 MHz.

With the SMBTOE bit set, Timer 3 should be configured to overflow after 25 ms in order to detect SCL low
timeouts (see Section “26.3.4. SCL Low Timeout” on page 182). The SMBus interface will force Timer 3 to
reload while SCL is high, and allow Timer 3 to count when SCL is low. The Timer 3 interrupt service routine
should be used to reset SMBus communication by disabling and re-enabling the SMBus.

SMBus Free Timeout detection can be enabled by setting the SMBFTE bit. When this bit is set, the bus will
be considered free if SDA and SCL remain high for more than 10 SMBus clock source periods (see
Figure 26.4).

Table 26.2. Minimum SDA Setup and Hold Times

EXTHOLD Minimum SDA Setup Time Minimum SDA Hold Time

0
Tlow – 4 system clocks

or
1 system clock + s/w delay*

3 system clocks

1 11 system clocks 12 system clocks

Note: Setup Time for ACK bit transmissions and the MSB of all data transfers. When using 
software acknowledgement, the s/w delay occurs between the time SMB0DAT or 
ACK is written and when SI is cleared. Note that if SI is cleared in the same write 
that defines the outgoing ACK value, s/w delay is zero.
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26.5.4. Read Sequence (Slave)

During a read sequence, an SMBus master reads data from a slave device. The slave in this transfer will
be a receiver during the address byte, and a transmitter during all data bytes. When slave events are
enabled (INH = 0), the interface enters Slave Receiver Mode (to receive the slave address) when a START
followed by a slave address and direction bit (READ in this case) is received. If hardware ACK generation
is disabled, upon entering Slave Receiver Mode, an interrupt is generated and the ACKRQ bit is set. The
software must respond to the received slave address with an ACK, or ignore the received slave address
with a NACK. If hardware ACK generation is enabled, the hardware will apply the ACK for a slave address
which matches the criteria set up by SMB0ADR and SMB0ADM. The interrupt will occur after the ACK
cycle.

If the received slave address is ignored (by software or hardware), slave interrupts will be inhibited until the
next START is detected. If the received slave address is acknowledged, zero or more data bytes are trans-
mitted. If the received slave address is acknowledged, data should be written to SMB0DAT to be transmit-
ted. The interface enters slave transmitter mode, and transmits one or more bytes of data. After each byte
is transmitted, the master sends an acknowledge bit; if the acknowledge bit is an ACK, SMB0DAT should
be written with the next data byte. If the acknowledge bit is a NACK, SMB0DAT should not be written to
before SI is cleared (an error condition may be generated if SMB0DAT is written following a received
NACK while in slave transmitter mode). The interface exits slave transmitter mode after receiving a STOP.
Note that the interface will switch to slave receiver mode if SMB0DAT is not written following a Slave
Transmitter interrupt. Figure 26.8 shows a typical slave read sequence. Two transmitted data bytes are
shown, though any number of bytes may be transmitted. Notice that all of the “data byte transferred” inter-
rupts occur after the ACK cycle in this mode, regardless of whether hardware ACK generation is enabled.

Figure 26.8. Typical Slave Read Sequence

26.6.  SMBus Status Decoding
The current SMBus status can be easily decoded using the SMB0CN register. The appropriate actions to
take in response to an SMBus event depend on whether hardware slave address recognition and ACK
generation is enabled or disabled. Table 26.5 describes the typical actions when hardware slave address
recognition and ACK generation is disabled. Table 26.6 describes the typical actions when hardware slave
address recognition and ACK generation is enabled. In the tables, STATUS VECTOR refers to the four
upper bits of SMB0CN: MASTER, TXMODE, STA, and STO. The shown response options are only the typ-
ical responses; application-specific procedures are allowed as long as they conform to the SMBus specifi-
cation. Highlighted responses are allowed by hardware but do not conform to the SMBus specification.

PRSLAS Data ByteData Byte A NA

S = START
P = STOP
N = NACK
R = READ
SLA = Slave Address

Received by SMBus 
Interface

Transmitted by 
SMBus Interface

Interrupts with Hardware ACK Disabled (EHACK = 0)

Interrupts with Hardware ACK Enabled (EHACK = 1)
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27.1.  Enhanced Baud Rate Generation
The UART0 baud rate is generated by Timer 1 in 8-bit auto-reload mode. The TX clock is generated by
TL1; the RX clock is generated by a copy of TL1 (shown as RX Timer in Figure 27.2), which is not user-
accessible. Both TX and RX Timer overflows are divided by two to generate the TX and RX baud rates.
The RX Timer runs when Timer 1 is enabled, and uses the same reload value (TH1). However, an
RX Timer reload is forced when a START condition is detected on the RX pin. This allows a receive to
begin any time a START is detected, independent of the TX Timer state.

Figure 27.2. UART0 Baud Rate Logic

Timer 1 should be configured for Mode 2, 8-bit auto-reload (see Section “28.1.3. Mode 2: 8-bit
Counter/Timer with Auto-Reload” on page 212). The Timer 1 reload value should be set so that overflows
will occur at two times the desired UART baud rate frequency. Note that Timer 1 may be clocked by one of
six sources: SYSCLK, SYSCLK/4, SYSCLK/12, SYSCLK/48, the external oscillator clock/8, or an external
input T1. For any given Timer 1 clock source, the UART0 baud rate is determined by Equation 27.1-A and
Equation 27.1-B.

Equation 27.1. UART0 Baud Rate
Where T1CLK is the frequency of the clock supplied to Timer 1, and T1H is the high byte of Timer 1 (reload
value). Timer 1 clock frequency is selected as described in Section “28. Timers” on page 209. A quick ref-
erence for typical baud rates and system clock frequencies is given in Table 27.1 through Table 27.2. The
internal oscillator may still generate the system clock when the external oscillator is driving Timer 1. 
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NOTES:


