

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Cap Sense, POR, PWM, WDT
Number of I/O	17
Program Memory Size	16KB (16K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VFQFN Exposed Pad
Supplier Device Package	20-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f807-gm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

26.4.4. Data Register	192
26.5. SMBus Transfer Modes	193
26.5.1. Write Sequence (Master)	193
26.5.2. Read Sequence (Master)	194
26.5.3. Write Sequence (Slave)	195
26.5.4. Read Sequence (Slave)	196
26.6. SMBus Status Decoding	196
27. UART0	201
27.1. Enhanced Baud Rate Generation	202
27.2. Operational Modes	203
27.2.1. 8-Bit UART	203
27.2.2. 9-Bit UART	204
27.3. Multiprocessor Communications	205
28. Timers	209
28.1. Timer 0 and Timer 1	211
28.1.1. Mode 0: 13-bit Counter/Timer	211
28.1.2. Mode 1: 16-bit Counter/Timer	212
28.1.3 Mode 2: 8-bit Counter/Timer with Auto-Reload	212
28.1.4 Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)	213
28.2 Timer 2	219
28.2.1 16-bit Timer with Auto-Reload	219
28.2.2.8-bit Timers with Auto-Reload	220
29 Programmable Counter Array	225
29.1 PCA Counter/Timer	226
29.2 PCA0 Interrupt Sources	220
29.2. 1 OAU Interrupt Sources	221
29.3. Capture/Compare Modules	220
29.3.1. Edge-Thygered Capture Mode	220
29.3.2. Software Timer (Compare) Mode	230
29.3.3. High-Speed Output Mode	201
29.3.4. Frequency Output Mode	232
29.3.5. 6-bit through 15-bit Pulse Width Modulator Modes	202
29.3.5.1. O-bit Fulse Width Modulator Mode	200
29.3.5.2. 9-bit through 15-bit Pulse Width Modulator Mode	204
29.3.0. TO-Bit Fulse Width Modulator Mode	200
29.4. Walchdog Timer Operation	230
29.4.1. Watchdog Timer Upgra	230
29.4.2. Walchoog Timer Usage	231
29.5. Register Descriptions for PCAU	231
30. 62 Interface	244
	244 047
30.2. CZCK Pin Sharing	24/
Document Change List	248
Contact Information	250

Figure 1.8. C8051F825, C8051F828, C8051F831, C8051F834 Block Diagram

Table 7.6. Flash Electrical Characteristics

Parameter	Conditions	Min	Тур	Max	Units		
Flash Size (Note 1)	C8051F80x and C8051F810/1		16384	1	bytes		
	C8051F812/3/4/5/6/7/8/9 and C8051F82x		8192		bytes		
	C8051F830/1/2/3/4/5		4096		bytes		
Endurance (Erase/Write)		10000	—		cycles		
Erase Cycle Time	25 MHz Clock	15	20	26	ms		
Write Cycle Time	25 MHz Clock	15	20	26	μs		
Clock Speed during Flash Write/Erase Operations		1	—	—	MHz		
Note: Includes Security Lock Byte.							

Table 7.7. Internal High-Frequency Oscillator Electrical Characteristics

 V_{DD} = 1.8 to 3.6 V; T_A = -40 to +85 °C unless otherwise specified. Use factory-calibrated settings.

Parameter	Conditions	Min	Тур	Мах	Units
Oscillator Frequency	IFCN = 11b	24	24.5	25	MHz
Oscillator Supply Current	25 °C, V _{DD} = 3.0 V,	_	350	650	μA
	OSCICN.7 = 1,				
	OCSICN.5 = 0				

Table 7.8. Capacitive Sense Electrical Characteristics

 V_{DD} = 1.8 to 3.6 V; T_A = -40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Conversion Time	Single Conversion	26	38	50	μs
Capacitance per Code		—	1	—	fF
External Capacitive Load		—	—	45	pF
Quantization Noise ¹	RMS	—	3	_	fF
	Peak-to-Peak	—	20	—	fF
Supply Current	CS module bias current, 25 °C	—	40	60	μA
	CS module alone, maximum code output, 25 °C	—	75	105	μA
	Wake-on-CS Threshold ² , 25 °C	—	150	165	μA

Notes:

1. RMS Noise is equivalent to one standard deviation. Peak-to-peak noise encompasses ±3.3 standard deviations.

2. Includes only current from regulator, CS module, and MCU in suspend mode.

SFR Definition 8.1. ADC0CF: ADC0 Configuration

Bit	7	6	5	4	3	2	1	0
Nam	e	AD0SC[4:0] AD0LJST AD08BE AMF						AMP0GN0
Туре	•		R/W			R/W	R/W	R/W
Rese	et 1	1	1	1	1	0	0	1
SFR A	Address = 0xB	C						
Bit	Name				Function			
2	ADOSC[4:0]	ADC0 SAR SAR Conver AD0SC refe requirement AD0SC = ADC0 Left . 0: Data in Al 1: Data in Al Note: The A	ADC0 SAR Conversion Clock Period Bits. SAR Conversion clock is derived from system clock by the following equation, where ADOSC refers to the 5-bit value held in bits ADOSC4–0. SAR Conversion clock equirements are given in the ADC specification table. $ADOSC = \frac{SYSCLK}{CLK_{SAR}} - 1$ ADC0 Left Justify Select. D: Data in ADC0H:ADC0L registers are right-justified. I: Data in ADC0H:ADC0L registers are left-justified.					
1	AD08BE	8-Bit Mode 0: ADC oper 1: ADC oper Note: When ADC Gain C 0: Gain = 0.8 1: Gain = 1	Enable. rates in 10-b rates in 8-bit AD08BE is se Control Bit.	it mode (nori mode. et to 1, the AD	mal). 0LJST bit is ig	gnored.		

The Comparator response time may be configured in software via the CPT0MD register (see SFR Definition 12.2). Selecting a longer response time reduces the Comparator supply current.

Figure 12.2. Comparator Hysteresis Plot

The Comparator hysteresis is software-programmable via its Comparator Control register CPT0CN. The user can program both the amount of hysteresis voltage (referred to the input voltage) and the positive and negative-going symmetry of this hysteresis around the threshold voltage.

The Comparator hysteresis is programmed using bits 3:0 in the Comparator Control Register CPT0CN (shown in SFR Definition 12.1). The amount of negative hysteresis voltage is determined by the settings of the CP0HYN bits. As shown in Figure 12.2, settings of 20, 10 or 5 mV of negative hysteresis can be programmed, or negative hysteresis can be disabled. In a similar way, the amount of positive hysteresis is determined by the setting the CP0HYP bits.

Comparator interrupts can be generated on both rising-edge and falling-edge output transitions. (For Interrupt enable and priority control, see Section "18.1. MCU Interrupt Sources and Vectors" on page 103). The CP0FIF flag is set to logic 1 upon a Comparator falling-edge occurrence, and the CP0RIF flag is set to logic 1 upon the Comparator rising-edge occurrence. Once set, these bits remain set until cleared by software. The Comparator rising-edge interrupt mask is enabled by setting CP0RIE to a logic 1. The Comparator0 falling-edge interrupt mask is enabled by setting CP0FIE to a logic 1.

The output state of the Comparator can be obtained at any time by reading the CP0OUT bit. The Comparator is enabled by setting the CP0EN bit to logic 1, and is disabled by clearing this bit to logic 0.

Note that false rising edges and falling edges can be detected when the comparator is first powered on or if changes are made to the hysteresis or response time control bits. Therefore, it is recommended that the rising-edge and falling-edge flags be explicitly cleared to logic 0 a short time after the comparator is enabled or its mode bits have been changed.

13.1. Configuring Port Pins as Capacitive Sense Inputs

In order for a port pin to be measured by CS0, that port pin must be configured as an analog input (see "23. Port Input/Output"). Configuring the input multiplexer to a port pin not configured as an analog input will cause the capacitive sense comparator to output incorrect measurements.

13.2. Capacitive Sense Start-Of-Conversion Sources

A capacitive sense conversion can be initiated in one of seven ways, depending on the programmed state of the CS0 start of conversion bits (CS0CF6:4). Conversions may be initiated by one of the following:

- 1. Writing a 1 to the CS0BUSY bit of register CS0CN
- 2. Timer 0 overflow
- 3. Timer 2 overflow
- 4. Timer 1 overflow
- 5. Convert continuously
- 6. Convert continuously with auto-scan enabled

Conversions can be configured to be initiated continuously through one of two methods. CS0 can be configured to convert at a single channel continuously or it can be configured to convert continuously with auto-scan enabled. When configured to convert continuously, conversions will begin after the CS0BUSY bit in CS0CF has been set.

An interrupt will be generated if CS0 conversion complete interrupts are enabled by setting the ECSCPT bit (EIE2.0).

Note: CS0 conversion complete interrupt behavior depends on the settings of the CS0 accumulator. If CS0 is configured to accumulate multiple conversions on an input channel, a CS0 conversion complete interrupt will be generated only after the last conversion completes.

13.3. Automatic Scanning

CS0 can be configured to automatically scan a sequence of contiguous CS0 input channels by configuring and enabling auto-scan. Using auto-scan with the CS0 comparator interrupt enabled allows a system to detect a change in measured capacitance without requiring any additional dedicated MCU resources.

Auto-scan is enabled by setting the CS0 start-of-conversion bits (CS0CF6:4) to 111b. After enabling autoscan, the starting and ending channels should be set to appropriate values in CS0SS and CS0SE, respectively. Writing to CS0SS when auto-scan is enabled will cause the value written to CS0SS to be copied into CS0MX. After being enabled, writing a 1 to CS0BUSY will start auto-scan conversions. When auto-scan completes the number of conversions defined in the CS0 accumulator bits (CS0CF1:0) (see "13.5. CS0 Conversion Accumulator"), auto-scan configures CS0MX to the next highest port pin configured as an analog input and begins a conversion on that channel. This scan sequence continues until CS0MX reaches the ending input channel value defined in CS0SE. After one or more conversions have been taken at this channel, auto-scan configures CS0MX back to the starting input channel. For an example system configured to use auto-scan, please see Figure "13.2 Auto-Scan Example" on page 73.

Note: Auto-scan attempts one conversion on a CS0MX channel regardless of whether that channel's port pin has been configured as an analog input.

If auto-scan is enabled when the device enters suspend mode, auto-scan will remain enabled and running. This feature allows the device to wake from suspend through CS0 greater-than comparator event on any configured capacitive sense input included in the auto-scan sequence of inputs.

SFR Definition 13.5. CS0SS: Capacitive Sense Auto-Scan Start Channel

Bit	7	6	5	4	3	2	1	0
Name					CS0SS[4:0]			
Туре	R	R	R	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xB9

Bit	Name	Description
7:5	Unused	Read = 000b; Write = Don't care
4:0	CS0SS[4:0]	Starting Channel for Auto-Scan.
		Sets the first CS0 channel to be selected by the mux for Capacitive Sense conversion when auto-scan is enabled and active.
		When auto-scan is enabled, a write to CS0SS will also update CS0MX.

SFR Definition 13.6. CS0SE: Capacitive Sense Auto-Scan End Channel

Bit	7	6	5	4	3	2	1	0
Name				CS0SE[4:0]				
Туре	R	R	R	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xBA

Bit	Name	Description
7:5	Unused	Read = 000b; Write = Don't care
4:0	CS0SE[4:0]	Ending Channel for Auto-Scan.
		Sets the last CS0 channel to be selected by the mux for Capacitive Sense conversion when auto-scan is enabled and active.

SFR Definition 14.6. PSW: Program Status Word

Bit	7	6	5	4	3	2	1	0
Name	CY	AC	F0	RS[1:0]		OV	F1	PARITY
Туре	R/W	R/W	R/W	R/W		R/W	R/W	R
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xD0; Bit-Addressable

Bit	Name	Function
7	CY	Carry Flag.
		This bit is set when the last arithmetic operation resulted in a carry (addition) or a borrow (subtraction). It is cleared to logic 0 by all other arithmetic operations.
6	AC	Auxiliary Carry Flag.
		This bit is set when the last arithmetic operation resulted in a carry into (addition) or a borrow from (subtraction) the high order nibble. It is cleared to logic 0 by all other arithmetic operations.
5	F0	User Flag 0.
		This is a bit-addressable, general purpose flag for use under software control.
4:3	RS[1:0]	Register Bank Select.
		These bits select which register bank is used during register accesses.
		00: Bank 0, Addresses 0x00-0x07
		01: Bank 1, Addresses 0x08-0x0F
		11: Bank 3, Addresses 0x10-0x17
2	OV	Overflow Flag.
		This bit is set to 1 under the following circumstances:
		 An ADD, ADDC, or SUBB instruction causes a sign-change overflow.
		 A MUL instruction results in an overflow (result is greater than 255). A DW instruction equates a divide by more condition
		• A Div Instruction causes a divide-by-zero condition. The OV bit is cleared to 0 by the ADD, ADDC, SUBB, MUL, and DIV instructions in all
		other cases.
1	F1	User Flag 1.
		This is a bit-addressable, general purpose flag for use under software control.
0	PARITY	Parity Flag.
		This bit is set to logic 1 if the sum of the eight bits in the accumulator is odd and cleared if the sum is even.

SFR Definition 18.5. EIP1: Extended Interrupt Priority 1

Bit	7	6	5	4	3	2	1	0
Name	Reserved	Reserved	PCP0	PPCA0	PADC0	PWADC0	PMAT	PSMB0
Туре	W	W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xF3

Bit	Name	Function
7:6	Reserved	Must write 0.
5	PCP0	Comparator0 (CP0) Interrupt Priority Control.
		This bit sets the priority of the CP0 rising edge or falling edge interrupt.
		0: CP0 interrupt set to low priority level.
		1: CP0 interrupt set to high priority level.
4	PPCA0	Programmable Counter Array (PCA0) Interrupt Priority Control.
		This bit sets the priority of the PCA0 interrupt.
		0: PCA0 interrupt set to low priority level.
		1: PCAU interrupt set to high priority level.
3	PADC0	ADC0 Conversion Complete Interrupt Priority Control.
		This bit sets the priority of the ADC0 Conversion Complete interrupt.
		0: ADC0 Conversion Complete interrupt set to low priority level.
	-	1: ADC0 Conversion Complete interrupt set to high priority level.
2	PWADC0	ADC0 Window Comparator Interrupt Priority Control.
		This bit sets the priority of the ADC0 Window interrupt.
		0: ADC0 Window interrupt set to low priority level.
		1: ADCU window interrupt set to high priority level.
1	PMAT	Port Match Interrupt Priority Control.
		This bit sets the priority of the Port Match Event interrupt.
		0: Port Match interrupt set to low priority level.
		1: Port Match Interrupt set to high priority level.
0	PSMB0	SMBus (SMB0) Interrupt Priority Control.
		This bit sets the priority of the SMB0 interrupt.
		U: SMBU interrupt set to low priority level.
		1: SIVIBU INTERRUPT SET to high priority level.

22. Oscillators and Clock Selection

C8051F80x-83x devices include a programmable internal high-frequency oscillator and an external oscillator drive circuit. The internal high-frequency oscillator can be enabled/disabled and calibrated using the OSCICN and OSCICL registers, as shown in Figure 22.1. The system clock can be sourced by the external oscillator circuit or the internal oscillator (default). The internal oscillator offers a selectable post-scaling feature, which is initially set to divide the clock by 8.

Figure 22.1. Oscillator Options

22.1. System Clock Selection

The system clock source for the MCU can be selected using the CLKSEL register. The clock selected as the system clock can be divided by 1, 2, 4, 8, 16, 32, 64, or 128. When switching between two clock divide values, the transition may take up to 128 cycles of the undivided clock source. The CLKRDY flag can be polled to determine when the new clock divide value has been applied. The clock divider must be set to "divide by 1" when entering Suspend mode. The system clock source may also be switched on-the-fly. The switchover takes effect after one clock period of the slower oscillator.

23.4. Port I/O Initialization

Port I/O initialization consists of the following steps:

- 1. Select the input mode (analog or digital) for all Port pins, using the Port Input Mode register (PnMDIN). If the pin is in analog mode, a '1' must also be written to the corresponding Port Latch (Pn).
- 2. Select the output mode (open-drain or push-pull) for all Port pins, using the Port Output Mode register (PnMDOUT).
- 3. Select any pins to be skipped by the I/O Crossbar using the Port Skip registers (PnSKIP).
- 4. Assign Port pins to desired peripherals (XBR0, XBR1).
- 5. Enable the Crossbar (XBARE = 1).

All Port pins must be configured as either analog or digital inputs. When a pin is configured as an analog input, its weak pullup, digital driver, and digital receiver are disabled. This process saves power and reduces noise on the analog input. Pins configured as digital inputs may still be used by analog peripherals; however this practice is not recommended.

Additionally, all analog input pins should be configured to be skipped by the Crossbar (accomplished by setting the associated bits in PnSKIP). Port input mode is set in the PnMDIN register, where a 1 indicates a digital input, and a 0 indicates an analog input. All port pins in analog mode must have a '1' set in the corresponding Port Latch register. All pins default to digital inputs on reset. See SFR Definition 23.8 and SFR Definition 23.12 for the PnMDIN register details.

The output driver characteristics of the I/O pins are defined using the Port Output Mode registers (PnMD-OUT). Each Port Output driver can be configured as either open drain or push-pull. This selection is required even for the digital resources selected in the XBRn registers, and is not automatic. The only exception to this is the SMBus (SDA, SCL) pins, which are configured as open-drain regardless of the PnMDOUT settings. When the WEAKPUD bit in XBR1 is 0, a weak pullup is enabled for all Port I/O configured as open-drain. WEAKPUD does not affect the push-pull Port I/O. Furthermore, the weak pullup is turned off on an output that is driving a 0 to avoid unnecessary power dissipation.

Registers XBR0 and XBR1 must be loaded with the appropriate values to select the digital I/O functions required by the design. Setting the XBARE bit in XBR1 to 1 enables the Crossbar. Until the Crossbar is enabled, the external pins remain as standard Port I/O (in input mode), regardless of the XBRn Register settings. For given XBRn Register settings, one can determine the I/O pin-out using the Priority Decode Table; as an alternative, the Configuration Wizard utility will determine the Port I/O pin-assignments based on the XBRn Register settings.

The Crossbar must be enabled to use Port pins as standard Port I/O in output mode. Port output drivers are disabled while the Crossbar is disabled.

All transactions are initiated by a master, with one or more addressed slave devices as the target. The master generates the START condition and then transmits the slave address and direction bit. If the transaction is a WRITE operation from the master to the slave, the master transmits the data a byte at a time waiting for an ACK from the slave at the end of each byte. For READ operations, the slave transmits the data waiting for an ACK from the master at the end of each byte. At the end of the data transfer, the master generates a STOP condition to terminate the transaction and free the bus. Figure 26.3 illustrates a typical SMBus transaction.

Figure 26.3. SMBus Transaction

26.3.1. Transmitter Vs. Receiver

On the SMBus communications interface, a device is the "transmitter" when it is sending an address or data byte to another device on the bus. A device is a "receiver" when an address or data byte is being sent to it from another device on the bus. The transmitter controls the SDA line during the address or data byte. After each byte of address or data information is sent by the transmitter, the receiver sends an ACK or NACK bit during the ACK phase of the transfer, during which time the receiver controls the SDA line.

26.3.2. Arbitration

A master may start a transfer only if the bus is free. The bus is free after a STOP condition or after the SCL and SDA lines remain high for a specified time (see Section "26.3.5. SCL High (SMBus Free) Timeout" on page 183). In the event that two or more devices attempt to begin a transfer at the same time, an arbitration scheme is employed to force one master to give up the bus. The master devices continue transmitting until one attempts a HIGH while the other transmits a LOW. Since the bus is open-drain, the bus will be pulled LOW. The master attempting the HIGH will detect a LOW SDA and lose the arbitration. The winning master continues its transmission without interruption; the losing master becomes a slave and receives the rest of the transfer if addressed. This arbitration scheme is non-destructive: one device always wins, and no data is lost.

26.3.3. Clock Low Extension

SMBus provides a clock synchronization mechanism, similar to I2C, which allows devices with different speed capabilities to coexist on the bus. A clock-low extension is used during a transfer in order to allow slower slave devices to communicate with faster masters. The slave may temporarily hold the SCL line LOW to extend the clock low period, effectively decreasing the serial clock frequency.

26.3.4. SCL Low Timeout

If the SCL line is held low by a slave device on the bus, no further communication is possible. Furthermore, the master cannot force the SCL line high to correct the error condition. To solve this problem, the SMBus protocol specifies that devices participating in a transfer must detect any clock cycle held low longer than 25 ms as a "timeout" condition. Devices that have detected the timeout condition must reset the communication no later than 10 ms after detecting the timeout condition.

When the SMBTOE bit in SMB0CF is set, Timer 3 is used to detect SCL low timeouts. Timer 3 is forced to reload when SCL is high, and allowed to count when SCL is low. With Timer 3 enabled and configured to

26.5.2. Read Sequence (Master)

During a read sequence, an SMBus master reads data from a slave device. The master in this transfer will be a transmitter during the address byte, and a receiver during all data bytes. The SMBus interface generates the START condition and transmits the first byte containing the address of the target slave and the data direction bit. In this case the data direction bit (R/W) will be logic 1 (READ). Serial data is then received from the slave on SDA while the SMBus outputs the serial clock. The slave transmits one or more bytes of serial data.

If hardware ACK generation is disabled, the ACKRQ is set to 1 and an interrupt is generated after each received byte. Software must write the ACK bit at that time to ACK or NACK the received byte.

With hardware ACK generation enabled, the SMBus hardware will automatically generate the ACK/NACK, and then post the interrupt. It is important to note that the appropriate ACK or NACK value should be set up by the software prior to receiving the byte when hardware ACK generation is enabled.

Writing a 1 to the ACK bit generates an ACK; writing a 0 generates a NACK. Software should write a 0 to the ACK bit for the last data transfer, to transmit a NACK. The interface exits Master Receiver Mode after the STO bit is set and a STOP is generated. The interface will switch to Master Transmitter Mode if SMB0-DAT is written while an active Master Receiver. Figure 26.6 shows a typical master read sequence. Two received data bytes are shown, though any number of bytes may be received. Notice that the 'data byte transferred' interrupts occur at different places in the sequence, depending on whether hardware ACK generation is enabled. The interrupt occurs **before** the ACK with hardware ACK generation disabled, and **after** the ACK when hardware ACK generation is enabled.

Figure 26.6. Typical Master Read Sequence

		Frequency: 24.5 MHz									
	Target Baud Rate (bps)	Baud Rate % Error	Oscillator Divide Factor	Timer Clock Source	SCA1–SCA0 (pre-scale select) ¹	T1M ¹	Timer 1 Reload Value (hex)				
	230400	-0.32%	106	SYSCLK	XX ²	1	0xCB				
E	115200	-0.32%	212	SYSCLK	XX	1	0x96				
ror Sc	57600	0.15%	426	SYSCLK	XX	1	0x2B				
Υ Ψ	28800	-0.32%	848	SYSCLK/4	01	0	0x96				
ц я	14400	0.15%	1704	SYSCLK/12	00	0	0xB9				
YS	9600	-0.32%	2544	SYSCLK/12	00	0	0x96				
– v	2400	-0.32%	10176	SYSCLK/48	10	0	0x96				
	1200	0.15%	20448	SYSCLK/48	10	0	0x2B				
Notes: 1. 2.	 Notes: 1. SCA1–SCA0 and T1M bit definitions can be found in Section 28.1. 2. X = Don't care. 										

Table 27.1. Timer Settings for Standard Baud RatesUsing The Internal 24.5 MHz Oscillator

Table 27.2. Timer Settings for Standard Baud RatesUsing an External 22.1184 MHz Oscillator

			Frequ	Jency: 22.1184	MHz		
	Target Baud Rate (bps)	Baud Rate % Error	Oscillator Divide Factor	Timer Clock Source	SCA1–SCA0 (pre-scale select) ¹	T1M ¹	Timer 1 Reload Value (hex)
	230400	0.00%	96	SYSCLK	XX ²	1	0xD0
εĸ	115200	0.00%	192	SYSCLK	XX	1	0xA0
ror Dsc	57600	0.00%	384	SYSCLK	XX	1	0x40
K f al C	28800	0.00%	768	SYSCLK / 12	00	0	0xE0
CL	14400	0.00%	1536	SYSCLK / 12	00	0	0xC0
ΥS xte	9600	0.00%	2304	SYSCLK / 12	00	0	0xA0
ŚШ	2400	0.00%	9216	SYSCLK / 48	10	0	0xA0
	1200	0.00%	18432	SYSCLK / 48	10	0	0x40
۲. ۲	230400	0.00%	96	EXTCLK / 8	11	0	0xFA
ror Sc	115200	0.00%	192	EXTCLK / 8	11	0	0xF4
K f I O	57600	0.00%	384	EXTCLK / 8	11	0	0xE8
CL rna	28800	0.00%	768	EXTCLK / 8	11	0	0xD0
ΥS	14400	0.00%	1536	EXTCLK / 8	11	0	0xA0
s =	9600	0.00%	2304	EXTCLK / 8	11	0	0x70
Mateau							

Notes:

1. SCA1–SCA0 and T1M bit definitions can be found in Section 28.1.

2. X = Don't care.

SFR Definition 28.8. TMR2CN: Timer 2 Control

Bit	7	6	5	4	3	2	1	0
Name	TF2H	TF2L	TF2LEN	TF2CEN	T2SPLIT	TR2		T2XCLK
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xC8; Bit-Addressable

Bit	Name	Function
7	TF2H	Timer 2 High Byte Overflow Flag.
		Set by hardware when the Timer 2 high byte overflows from 0xFF to 0x00. In 16 bit mode, this will occur when Timer 2 overflows from 0xFFFF to 0x0000. When the Timer 2 interrupt is enabled, setting this bit causes the CPU to vector to the Timer 2 interrupt service routine. This bit is not automatically cleared by hardware.
6	TF2L	Timer 2 Low Byte Overflow Flag.
		Set by hardware when the Timer 2 low byte overflows from 0xFF to 0x00. TF2L will be set when the low byte overflows regardless of the Timer 2 mode. This bit is not automatically cleared by hardware.
5	TF2LEN	Timer 2 Low Byte Interrupt Enable.
		When set to 1, this bit enables Timer 2 Low Byte interrupts. If Timer 2 interrupts are also enabled, an interrupt will be generated when the low byte of Timer 2 overflows.
4	TF2CEN	Timer 2 Comparator Capture Enable.
		When set to 1, this bit enables Timer 2 Comparator Capture Mode. If TF2CEN is set, on a rising edge of the Comparator0 output the current 16-bit timer value in TMR2H:TMR2L will be copied to TMR2RLH:TMR2RLL. If Timer 2 interrupts are also enabled, an interrupt will be generated on this event.
3	T2SPLIT	Timer 2 Split Mode Enable.
		When this bit is set, Timer 2 operates as two 8-bit timers with auto-reload.0: Timer 2 operates in 16-bit auto-reload mode.1: Timer 2 operates as two 8-bit auto-reload timers.
2	TR2	Timer 2 Run Control.
		Timer 2 is enabled by setting this bit to 1. In 8-bit mode, this bit enables/disables TMR2H only; TMR2L is always enabled in split mode.
1	Unused	Read = 0b; Write = Don't Care.
0	T2XCLK	Timer 2 External Clock Select.
		This bit selects the external clock source for Timer 2. If Timer 2 is in 8-bit mode, this bit selects the external oscillator clock source for both timer bytes. However, the Timer 2 Clock Select bits (T2MH and T2ML in register CKCON) may still be used to select between the external clock and the system clock for either timer. 0: System clock divided by 12. 1: External clock divided by 8 (synchronized with SYSCLK when not in suspend).

29. programmable Counter Array

The programmable counter array (PCA0) provides enhanced timer functionality while requiring less CPU intervention than the standard 8051 counter/timers. The PCA consists of a dedicated 16-bit counter/timer and three 16-bit capture/compare modules. Each capture/compare module has its own associated I/O line (CEXn) which is routed through the Crossbar to Port I/O when enabled. The counter/timer is driven by a programmable timebase that can select between six sources: system clock, system clock divided by four, system clock divided by twelve, the external oscillator clock source divided by 8, Timer 0 overflows, or an external clock signal on the ECI input pin. Each capture/compare module may be configured to operate independently in one of six modes: Edge-Triggered Capture, Software Timer, High-Speed Output, Frequency Output, 8 to 15-Bit PWM, or 16-Bit PWM (each mode is described in Section "29.3. Capture/Compare Modules" on page 228). The external oscillator clock option is ideal for real-time clock (RTC) functionality, allowing the PCA to be clocked by a precision external oscillator while the internal oscillator drives the system clock. The PCA is configured and controlled through the system controller's Special Function Registers. The PCA block diagram is shown in Figure 29.1

Important Note: The PCA Module 2 may be used as a watchdog timer (WDT), and is enabled in this mode following a system reset. Access to certain PCA registers is restricted while WDT mode is enabled. See Section 29.4 for details.

Figure 29.1. PCA Block Diagram

29.3. Capture/Compare Modules

Each module can be configured to operate independently in one of six operation modes: edge-triggered capture, software timer, high-speed output, frequency output, 8-bit through 15-bit pulse width modulator, or 16-bit pulse width modulator. Each module has Special Function Registers (SFRs) associated with it in the CIP-51 system controller. These registers are used to exchange data with a module and configure the module's mode of operation. Table 29.2 summarizes the bit settings in the PCA0CPMn and PCA0PWM registers used to select the PCA capture/compare module's operating mode. Note that all modules set to use 8-bit through 15-bit PWM mode must use the same cycle length (8–15 bits). Setting the ECCFn bit in a PCA0CPMn register enables the module's CCFn interrupt.

Operational Mode			PCA0CPMn PCA0PWM										Λ	
Bit Number	7	6	5	4	3	2	1	0	7	6	5	4	3	2–0
Capture triggered by positive edge on CEXn	Х	Х	1	0	0	0	0	А	0	Х	В	Х	Х	XXX
Capture triggered by negative edge on CEXn	Х	Х	0	1	0	0	0	А	0	Х	В	Х	Х	XXX
Capture triggered by any transition on CEXn	Х	Х	1	1	0	0	0	А	0	Х	В	Х	Х	XXX
Software Timer	Х	С	0	0	1	0	0	А	0	Х	В	Х	Х	XXX
High Speed Output	Х	С	0	0	1	1	0	А	0	Х	В	Х	Х	XXX
Frequency Output	Х	С	0	0	0	1	1	А	0	Х	В	Х	Х	XXX
8-Bit Pulse Width Modulator ⁷	0	С	0	0	Е	0	1	А	0	Х	В	Х	Х	000
9-Bit Pulse Width Modulator ⁷	0	С	0	0	Е	0	1	Α	D	Х	В	Х	Х	001
10-Bit Pulse Width Modulator ⁷	0	С	0	0	Е	0	1	Α	D	Х	В	Х	Х	010
11-Bit Pulse Width Modulator ⁷	0	С	0	0	Е	0	1	А	D	Х	В	Х	Х	011
12-Bit Pulse Width Modulator ⁷	0	С	0	0	Е	0	1	Α	D	Х	В	Х	Х	100
13-Bit Pulse Width Modulator ⁷	0	С	0	0	Е	0	1	Α	D	Х	В	Х	Х	101
14-Bit Pulse Width Modulator ⁷	0	С	0	0	Е	0	1	А	D	Х	В	Х	Х	110
15-Bit Pulse Width Modulator ⁷	0	С	0	0	Е	0	1	А	D	Х	В	Х	Х	111
16-Bit Pulse Width Modulator	1	С	0	0	Е	0	1	А	0	Х	В	Х	0	XXX
16-Bit Pulse Width Modulator with Auto-Reload	1	С	0	0	Е	0	1	А	D	Х	В	Х	1	XXX

Table 29.2. PCA0CPM and PCA0PWM Bit Settings for PCA Capture/Compare Modules^{1,2,3,4,5,6}

Notes:

- 1. X = Don't Care (no functional difference for individual module if 1 or 0).
- 2. A = Enable interrupts for this module (PCA interrupt triggered on CCFn set to 1).
- 3. B = Enable 8th through 15th bit overflow interrupt (Depends on setting of CLSEL[2:0]).
- **4.** C = When set to 0, the digital comparator is off. For high speed and frequency output modes, the associated pin will not toggle. In any of the PWM modes, this generates a 0% duty cycle (output = 0).
- 5. D = Selects whether the Capture/Compare register (0) or the Auto-Reload register (1) for the associated channel is accessed via addresses PCA0CPHn and PCA0CPLn.
- 6. E = When set, a match event will cause the CCFn flag for the associated channel to be set.
- 7. All modules set to 8-bit through 15-bit PWM mode use the same cycle length setting.

29.3.6. 16-Bit Pulse Width Modulator Mode

A PCA module may be operated in 16-Bit PWM mode. 16-bit PWM mode is independent of the other (8-bit through 15-bit) PWM modes. In this mode, the 16-bit capture/compare module defines the number of PCA clocks for the low time of the PWM signal. When the PCA counter matches the module contents, the output on CEXn is asserted high; when the 16-bit counter overflows, CEXn is asserted low. 16-Bit PWM Mode is enabled by setting the ECOMn, PWMn, and PWM16n bits in the PCA0CPMn register.

The duty cycle of the PWM output signal can be varied by writing to an "Auto-Reload" Register, which is dual-mapped into the PCA0CPHn and PCA0CPLn register locations. The auto-reload registers are accessed (read or written) when the bit ARSEL in PCA0PWM is set to 1. The capture/compare registers are accessed when ARSEL is set to 0. This synchronous update feature allows software to asynchronously write a new PWM high time, which will then take effect on the following PWM period.

For backwards-compatibility with the 16-bit PWM mode available on other devices, the PWM duty cycle can also be changed without using the "Auto-Reload" register. To output a varying duty cycle without using the "Auto-Reload" register, new value writes should be synchronized with PCA CCFn match interrupts. Match interrupts should be enabled (ECCFn = 1 AND MATn = 1) to help synchronize the capture/compare register writes. If the MATn bit is set to 1, the CCFn flag for the module will be set each time a 16-bit comparator match (rising edge) occurs. The CF flag in PCA0CN can be used to detect the overflow (falling edge). The duty cycle for 16-Bit PWM Mode is given by Equation 29.4.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to 0; writing to PCA0CPHn sets ECOMn to 1.

Duty Cycle =
$$\frac{(65536 - PCA0CPn)}{65536}$$

Equation 29.4. 16-Bit PWM Duty Cycle Using Equation 29.4, the largest duty cycle is 100% (PCA0CPn = 0), and the smallest duty cycle is

0.0015% (PCA0CPn = 0xFFFF). A 0% duty cycle may be generated by clearing the ECOMn bit to 0.

Figure 29.10. PCA 16-Bit PWM Mode

set is then given (in PCA clocks) by Equation 29.5, where PCA0L is the value of the PCA0L register at the time of the update.

 $Offset = (256 \times PCA0CPL2) + (256 - PCA0L)$

Equation 29.5. Watchdog Timer Offset in PCA Clocks

The WDT reset is generated when PCA0L overflows while there is a match between PCA0CPH2 and PCA0H. Software may force a WDT reset by writing a 1 to the CCF2 flag (PCA0CN.2) while the WDT is enabled.

29.4.2. Watchdog Timer Usage

To configure the WDT, perform the following tasks:

- 1. Disable the WDT by writing a 0 to the WDTE bit.
- 2. Select the desired PCA clock source (with the CPS2–CPS0 bits).
- 3. Load PCA0CPL2 with the desired WDT update offset value.
- 4. Configure the PCA Idle mode (set CIDL if the WDT should be suspended while the CPU is in Idle mode).
- 5. Enable the WDT by setting the WDTE bit to 1.
- 6. Reset the WDT timer by writing to PCA0CPH2.

The PCA clock source and Idle mode select cannot be changed while the WDT is enabled. The watchdog timer is enabled by setting the WDTE or WDLCK bits in the PCA0MD register. When WDLCK is set, the WDT cannot be disabled until the next system reset. If WDLCK is not set, the WDT is disabled by clearing the WDTE bit.

The WDT is enabled following any reset. The PCA0 counter clock defaults to the system clock divided by 12, PCA0L defaults to 0x00, and PCA0CPL2 defaults to 0x00. Using Equation 29.5, this results in a WDT timeout interval of 256 PCA clock cycles, or 3072 system clock cycles. Table 29.3 lists some example timeout intervals for typical system clocks.

System Clock (Hz)	PCA0CPL2	Timeout Interval (ms)							
24,500,000	255	32.1							
24,500,000	128	16.2							
24,500,000	32	4.1							
3,062,500 ²	255	257							
3,062,500 ²	128	129.5							
3,062,500 ²	32	33.1							
32,000	255	24576							
32,000	128	12384							
32,000	32	3168							
Notes: 1. Assumes SYSCLK/12 as the PCA clock source, and a PCA0L value									
of 0x00 at the update time. 2. Internal SYSCI K reset frequency = Internal Oscillator divided by 8									

Table 29.3. Watchdog Timer Timeout Intervals¹

29.5. Register Descriptions for PCA0

Following are detailed descriptions of the special function registers related to the operation of the PCA.

