E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Last Time Buy
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	17
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-SSOP (0.154", 3.90mm Width)
Supplier Device Package	24-QSOP
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f808-gu

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

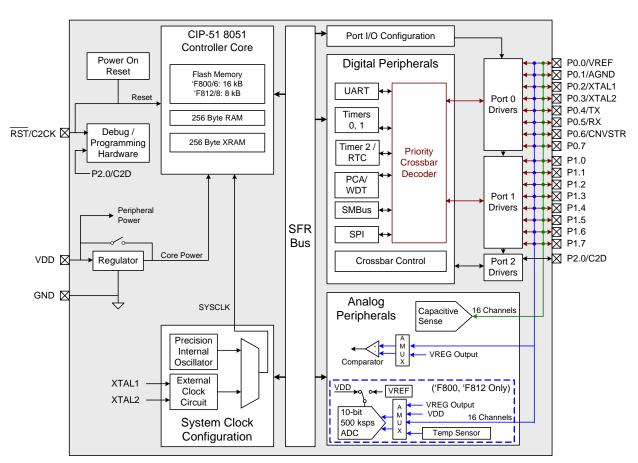
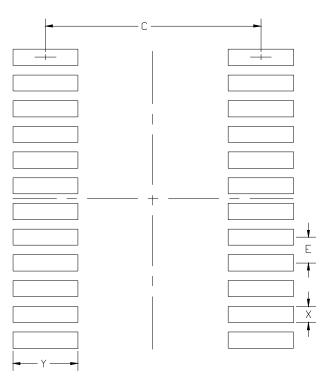



Figure 1.1. C8051F800, C8051F806, C8051F812, C8051F818 Block Diagram

Figure 5.2. QSOP-24 PCB Land Pattern

Table 5.2. QSOP-24 PCB Land Pattern Dimensions

Dimension	Min	Мах			
С	5.20 5.30				
E	0.635 BSC				
Х	0.30	0.40			
Y	1.50	1.60			

Notes: General

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This land pattern design is based on the IPC-7351 guidelines.

Solder Mask Design

3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad.

Stencil Design

- **4.** A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 5. The stencil thickness should be 0.125 mm (5 mils).
- 6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.

Card Assembly

- 7. A No-Clean, Type-3 solder paste is recommended.
- 8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

SFR Definition 8.1. ADC0CF: ADC0 Configuration

Bit	7	6	5	4	3	2	1	0			
Nam	е		AD0SC[4:0]	I	I	AD0LJST	AD08BE	AMP0GN0			
Туре	e		R/W			R/W	R/W	R/W			
Rese	et 1	1	1	1	1	0	0	1			
SFR A	Address = 0xB	SC						11			
Bit	Name	Function									
7:3	AD0SC[4:0]	ADC0 SAR	DC0 SAR Conversion Clock Period Bits.								
		AD0SC refe	AR Conversion clock is derived from system clock by the following equation, where DOSC refers to the 5-bit value held in bits AD0SC4–0. SAR Conversion clock equirements are given in the ADC specification table.								
			$ADOSC = \frac{SYSCLK}{CLK_{SAR}} - 1$								
2	AD0LJST	ADC0 Left 、	Justify Sele	ct.							
			0: Data in ADC0H:ADC0L registers are right-justified.								
		1: Data in ADC0H:ADC0L registers are left-justified. Note: The AD0LJST bit is only valid for 10-bit mode (AD08BE = 0).									
1	AD08BE	8-Bit Mode				//2008E = 0).					
		• =	0: ADC operates in 10-bit mode (normal).								
		•	1: ADC operates in 8-bit mode.								
		Note: When	AD08BE is se	et to 1, the AD	00LJST bit is i	gnored.					
0	AMP0GN0	ADC Gain C									
		0: Gain = 0. 1: Gain = 1	5								
		1. Gain = 1									

11. Voltage Regulator (REG0)

C8051F80x-83x devices include an internal voltage regulator (REG0) to regulate the internal core supply to 1.8 V from a V_{DD} supply of 1.8 to 3.6 V. A power-saving mode is built into the regulator to help reduce current consumption in low-power applications. This mode is accessed through the REG0CN register (SFR Definition 11.1). Electrical characteristics for the on-chip regulator are specified in Table 7.5 on page 41

Under default conditions, when the device enters STOP mode the internal regulator will remain on. This allows any enabled reset source to generate a reset for the device and bring the device out of STOP mode. For additional power savings, the STOPCF bit can be used to shut down the regulator and the internal power network of the device when the part enters STOP mode. When STOPCF is set to 1, the RST pin or a full power cycle of the device are the only methods of generating a reset.

SFR Definition 11.1. REG0CN: Voltage Regulator Control

Bit	7	6	5	4	3	2	1	0
Name	STOPCF							
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xC9

Bit	Name	Function
7	STOPCF	Stop Mode Configuration.
		This bit configures the regulator's behavior when the device enters STOP mode. 0: Regulator is still active in STOP mode. Any enabled reset source will reset the device. 1: Regulator is shut down in STOP mode. Only the RST pin or power cycle can reset the device.
6:0	Reserved	Must write to 000000b.

features of the C8051F80x-83x devices.

Action	C2 Debug	User Firmware executing from:			
	Interface	an unlocked page	a locked page		
Read, Write or Erase unlocked pages (except page with Lock Byte)	Permitted	Permitted	Permitted		
Read, Write or Erase locked pages (except page with Lock Byte)	Not Permitted	FEDR	Permitted		
Read or Write page containing Lock Byte (if no pages are locked)	Permitted	Permitted	Permitted		
Read or Write page containing Lock Byte (if any page is locked)	Not Permitted	FEDR	Permitted		
Read contents of Lock Byte (if no pages are locked)	Permitted	Permitted	Permitted		
Read contents of Lock Byte (if any page is locked)	Not Permitted	FEDR	Permitted		
Erase page containing Lock Byte (if no pages are locked)	Permitted	FEDR	FEDR		
Erase page containing Lock Byte—Unlock all pages (if any page is locked)	Only by C2DE	FEDR	FEDR		
Lock additional pages (change 1s to 0s in the Lock Byte)	Not Permitted	FEDR	FEDR		
Unlock individual pages (change 0s to 1s in the Lock Byte)	Not Permitted	FEDR	FEDR		
Read, Write or Erase Reserved Area	Not Permitted	FEDR	FEDR		

Table 19.1. Flash Security Summary

C2DE—C2 Device Erase (Erases all Flash pages including the page containing the Lock Byte) FEDR—Not permitted; Causes Flash Error Device Reset (FERROR bit in RSTSRC is 1 after reset)

- All prohibited operations that are performed via the C2 interface are ignored (do not cause device reset).
- Locking any Flash page also locks the page containing the Lock Byte.
- Once written to, the Lock Byte cannot be modified except by performing a C2 Device Erase.
- If user code writes to the Lock Byte, the Lock does not take effect until the next device reset.

19.4. Flash Write and Erase Guidelines

Any system which contains routines which write or erase Flash memory from software involves some risk that the write or erase routines will execute unintentionally if the CPU is operating outside its specified operating range of VDD, system clock frequency, or temperature. This accidental execution of Flash modifying code can result in alteration of Flash memory contents causing a system failure that is only recoverable by re-Flashing the code in the device.

To help prevent the accidental modification of Flash by firmware, the VDD Monitor must be enabled and enabled as a reset source on C8051F80x-83x devices for the Flash to be successfully modified. If either the VDD Monitor or the VDD Monitor reset source is not enabled, a Flash Error Device Reset will be generated when the firmware attempts to modify the Flash.

21.1. Power-On Reset

During power-up, the device is held in a reset state and the \overline{RST} pin is driven low until V_{DD} settles above V_{RST}. A delay occurs before the device is released from reset; the delay decreases as the V_{DD} ramp time increases (V_{DD} ramp time is defined as how fast V_{DD} ramps from 0 V to V_{RST}). Figure 21.2. plots the power-on and V_{DD} monitor reset timing. The maximum V_{DD} ramp time is 1 ms; slower ramp times may cause the device to be released from reset before V_{DD} reaches the V_{RST} level. For ramp times less than 1 ms, the power-on reset delay (T_{PORDelay}) is typically less than 10 ms.

On exit from a power-on reset, the PORSF flag (RSTSRC.1) is set by hardware to logic 1. When PORSF is set, all of the other reset flags in the RSTSRC Register are indeterminate (PORSF is cleared by all other resets). Since all resets cause program execution to begin at the same location (0x0000) software can read the PORSF flag to determine if a power-up was the cause of reset. The content of internal data memory should be assumed to be undefined after a power-on reset. The V_{DD} monitor is enabled and selected as a reset source following a power-on reset.

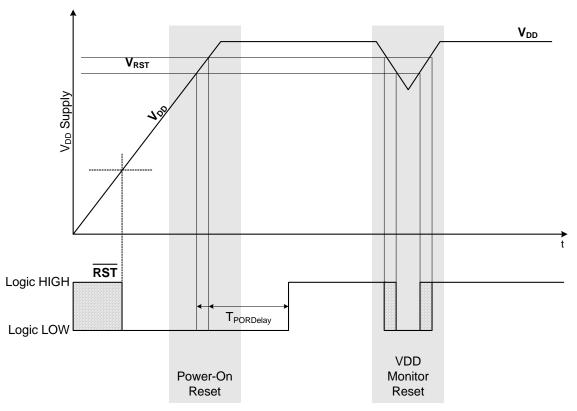


Figure 21.2. Power-On and V_{DD} Monitor Reset Timing

22.2. Programmable Internal High-Frequency (H-F) Oscillator

All C8051F80x-83x devices include a programmable internal high-frequency oscillator that defaults as the system clock after a system reset. The internal oscillator period can be adjusted via the OSCICL register as defined by SFR Definition 22.2.

On C8051F80x-83x devices, OSCICL is factory calibrated to obtain a 24.5 MHz base frequency.

The internal oscillator output frequency may be divided by 1, 2, 4, or 8, as defined by the IFCN bits in register OSCICN. The divide value defaults to 8 following a reset.

The precision oscillator supports a spread spectrum mode which modulates the output frequency in order to reduce the EMI generated by the system. When enabled (SSE = 1), the oscillator output frequency is modulated by a stepped triangle wave whose frequency is equal to the oscillator frequency divided by 384 (63.8 kHz using the factory calibration). The maximum deviation from the center frequency is $\pm 0.75\%$. The output frequency updates occur every 32 cycles and the step size is typically 0.25% of the center frequency.

SFR Definition 22.2. OSCICL: Internal H-F Oscillator Calibration

Bit	7	6	5	4	3	2	1	0			
Name	OSCICL[6:0]										
Туре	R/W										
Reset	Varies	Varies	Varies	Varies	Varies	Varies	Varies	Varies			

SFR Address = 0xB3

Bit	Name	Function
6:0	OSCICL[7:0]	Internal Oscillator Calibration Bits.
		These bits determine the internal oscillator period. When set to 00000000b, the H-F oscillator operates at its fastest setting. When set to 1111111b, the H-F oscillator operates at its slowest setting. The reset value is factory calibrated to generate an internal oscillator frequency of 24.5 MHz.

SFR Definition 22.4. OSCXCN: External Oscillator Control

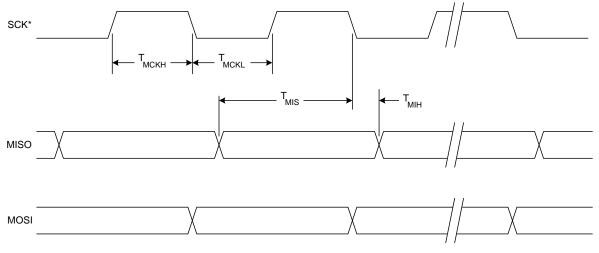
Bit	7	6	5	4	3	2	1	0	
Name	XTLVLD	Х	(OSCMD[2:0)]		XFCN[2:0]			
Туре	R		R/W		R	R/W			
Reset	0	0	0	0	0	0	0	0	

SFR Address = 0xB1

Bit	Name			Function						
7	XTLVLD	Crystal	Oscillator Valid Flag.							
		•	nly when XOSCMD = 11							
		-	Crystal Oscillator is unused or not yet stable.							
		,	al Oscillator is running ar							
6:4	XOSCMD[2:0]	Externa	I Oscillator Mode Selec	ct.						
			0x: External Oscillator circuit off.							
			ternal CMOS Clock Mode							
			ernal CMOS Clock Mode	e with divide by 2 stage.						
			Oscillator Mode.							
			pacitor Oscillator Mode.							
		-	vstal Oscillator Mode.	divida by 2 staga						
			11: Crystal Oscillator Mode with divide by 2 stage. Read = 0; Write = Don't Care							
3	Unused									
2:0	XFCN[2:0]	External Oscillator Frequency Control Bits.								
		Set according to the desired frequency for Crystal or RC mode.								
			Set according to the desired K Factor for C mode.							
		XFCN	Crystal Mode	RC Mode	C Mode					
		000	f ≤ 32 kHz	f ≤ 25 kHz	K Factor = 0.87					
		001	32 kHz < f ≤ 84 kHz	25 kHz < f ≤ 50 kHz	K Factor = 2.6					
		010	84 kHz < f ≤ 225 kHz	50 kHz < f ≤ 100 kHz	K Factor = 7.7					
		011	225 kHz < f ≤ 590 kHz	100 kHz < f ≤ 200 kHz	K Factor = 22					
		100	590 kHz < f ≤ 1.5 MHz	200 kHz < f \leq 400 kHz	K Factor = 65					
		101	$1.5 \text{ MHz} < f \le 4 \text{ MHz}$	400 kHz < f ≤ 800 kHz	K Factor = 180					
		110	$4 \text{ MHz} < f \le 10 \text{ MHz}$	800 kHz $<$ f \leq 1.6 MHz	K Factor = 664					
		111	10 MHz < f ≤ 30 MHz	$1.6 \text{ MHz} < f \le 3.2 \text{ MHz}$	K Factor = 1590					

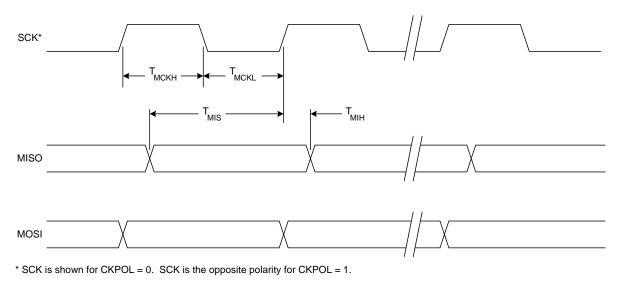
Special Function Signals (Control Signals) (Control SCK) (Control SCK)	P0.0 Skipped	AGND AGND	P0.2 Skipped XTAL1 N	P0.3 Skipped		5	CNVSTR 9	7			2	3	4 ¹	5 ¹	6 ¹	7 ¹	Signal Unavailable to Crossbar
Function SignalsTX0RX0RX0SCKMISOMOSINSS2SDASCLCP0ACP0ASYSCLKCEX0CEX1CEX2ECIT1Pin Skip SettingsIn this example RX0 signals, th signals are ass P0.3 are config	Skipped	AGND		Skipped			CNVSTR										Crossbar
RX0 SCK MISO MOSI NSS ² SDA SCL CP0 CP0A SYSCLK CEX0 CEX1 CEX1 CEX2 ECI CEX2 ECI T0 T1 Pin Skip Settings In this example RX0 signals, th signals are ass P0.3 are config	P0.0 Skipped		P0.2 Skipped	P0.3 Skipped													Crossbar
SCK MISO MOSI NSS ² SDA SCL CP0 CP0A SYSCLK CEX0 CEX1 CEX2 ECI CEX2 ECI T0 T1 Pin Skip Settings In this example RX0 signals, th signals are ass P0.3 are config	P0.0 Skipped		P0.2 Skipped	P0.3 Skipped													Crossbar
MISO MOSI NSS ² SDA SCL CP00 CP0A SYSCLK CEX0 CEX1 CEX1 CEX2 ECI CEX1 CEX2 ECI T0 T1 Pin Skip Settings In this example RX0 signals, th signals are ass P0.3 are config	P0.0 Skipped		P0.2 Skipped	P0.3 Skipped													Crossbar
MOSI NSS ² SDA SCL CP0 CP0A SYSCLK CEX0 CEX1 CEX2 ECI CEX2 ECI T0 T1 Pin Skip Settings In this example RX0 signals, th signals are ass P0.3 are config	P0.0 Skipped		P0.2 Skipped	P0.3 Skipped													Crossbar
NSS ² SDA SCL CP00 CP0A SYSCLK CEX0 CEX1 CEX2 ECI CEX2 ECI T0 T1 Pin Skip Settings In this example RX0 signals, th signals are ass P0.3 are config	P0.0 Skipped		P0.2 Skipped	P0.3 Skipped													Crossl
SDA SCL CP00 SYSCLK CEX0 CEX1 CEX1 CEX2 ECI ECI T0 T1 Pin Skip Settings In this example RX0 signals, th signals are ass P0.3 are config	P0.0 Skipped		P0.2 Skipped	P0.3 Skipped													ō
SCL CP0A SYSCLK CEX0 CEX1 CEX2 ECI T0 T1 Pin Skip Settings In this example RX0 signals, th signals are ass P0.3 are config	P0.0 Skipped		P0.2 Skipped	P0.3 Skipped													
CP0A SYSCLK CEX0 CEX1 CEX2 ECI T0 T1 Pin Skip Settings In this example RX0 signals, th signals are ass P0.3 are config	P0.0 Skippe		P0.2 Skippe	P0.3 Skippe													e to
CP0A SYSCLK CEX0 CEX1 CEX2 ECI T0 T1 Pin Skip Settings In this example RX0 signals, th signals are ass P0.3 are config	P0.0 Ski		P0.2 Ski	P0.3 Ski													able
CEX0 CEX1 CEX2 ECI T0 T1 Pin Skip Settings In this example RX0 signals, th signals are ass P0.3 are config	P0.0		P0.2	P0.3													vail
CEX0 CEX1 CEX2 ECI T0 T1 Pin Skip Settings In this example RX0 signals, th signals are ass P0.3 are config	ط 		₫.	۹.													Jna
CEX1 CEX2 ECI T0 T1 Pin Skip Settings In this example RX0 signals, th signals are ass P0.3 are config																	al
CEX2 ECI T0 T1 Pin Skip Settings In this example RX0 signals, th signals are ass P0.3 are config																	sign
ECI T0 T1 Pin Skip Settings In this example RX0 signals, th signals are ass P0.3 are config																	0
T0 T1 Pin Skip Settings In this example RX0 signals, th signals are ass P0.3 are config	-																
T1 Pin Skip Settings In this example RX0 signals, th signals are ass P0.3 are config																	
Pin Skip Settings In this example RX0 signals, th signals are ass P0.3 are config																	
Settings In this example RX0 signals, th signals are ass P0.3 are config																	
In this example RX0 signals, th signals are ass P0.3 are config	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	
RX0 signals, th signals are ass P0.3 are config																	
In this example, the crossbar is configured to assign the UART TX0 and RX0 signals, the SPI signals, and the PCA signals. Note that the SPI signals are assigned as multiple signals. Additionally, pins P0.0, P0.2, and P0.3 are configured to be skipped using the POSKIP register. These boxes represent the port pins which are used by the peripherals in this configuration. I st TX0 is assigned to P0.4 2 nd RX0 is assigned to P0.5 3 rd SCK, MISO, MOSI, and NSS are assigned to P0.1, P0.6, P0.7, and P1.0, respectively.																	
 SCR, MISO, MOSI, and NSS are assigned to P0.1, P0.6, P0.7, and P1.0, respectively. 4th CEX0, CEX1, and CEX2 are assigned to P1.1, P1.2, and P1.3, respectively. All unassigned pins, including those skipped by XBR0 can be used as GPIO or for other non-crossbar functions. Notes: 1. P1.4-P1.7 are not available on 16-pin packages. 																	

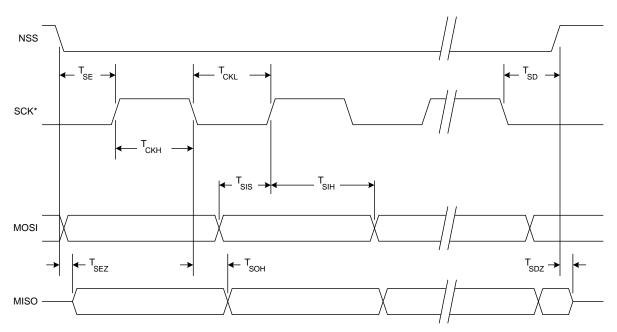
Figure 23.6. Priority Crossbar Decoder Example 2—Skipping Pins

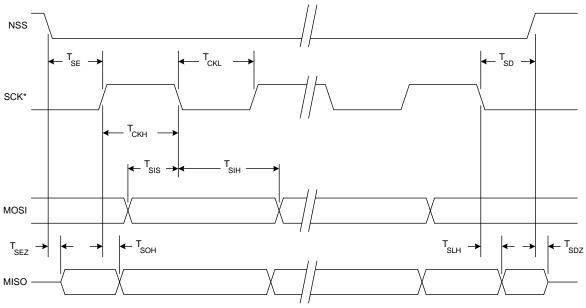

SFR Definition 23.16. P2MDOUT: Port 2 Output Mode

Bit	7	6	5	4	3	2	1	0
Name								P2MDOUT[0]
Туре	R	R	R	R	R	R	R	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xA6


Bit	Name	Function			
7:1	Unused	Read = 0000000b; Write = Don't Care			
0	P2MDOUT[0]	put Configuration Bits for P2.0.			
		0: P2.0 Output is open-drain. 1: P2.0 Output is push-pull.			


* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.


Figure 25.9. SPI Master Timing (CKPHA = 1)

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

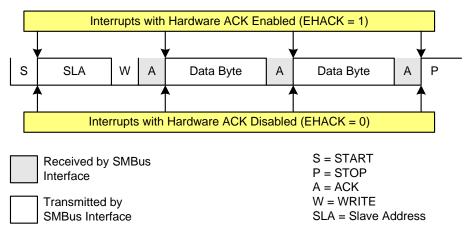
Bit	Set by Hardware When:	Cleared by Hardware When:
MASTER	 A START is generated. 	 A STOP is generated.
MASIER		 Arbitration is lost.
	 START is generated. 	 A START is detected.
TXMODE	 SMB0DAT is written before the start of an 	 Arbitration is lost.
TANIO DE	SMBus frame.	 SMB0DAT is not written before the start of an SMBus frame.
STA	 A START followed by an address byte is received. 	Must be cleared by software.
STO	 A STOP is detected while addressed as a slave. 	A pending STOP is generated.
	Arbitration is lost due to a detected STOP.	
ACKRQ	 A byte has been received and an ACK response value is needed (only when hardware ACK is not enabled). 	 After each ACK cycle.
ARBLOST	 A repeated START is detected as a MASTER when STA is low (unwanted repeated START). SCL is sensed low while attempting to generate a STOP or repeated START condition. 	Each time SI is cleared.
	 SDA is sensed low while transmitting a 1 (excluding ACK bits). 	
ACK	 The incoming ACK value is low (ACKNOWLEDGE). 	 The incoming ACK value is high (NOT ACKNOWLEDGE).
SI	 A START has been generated. Lost arbitration. A byte has been transmitted and an ACK/NACK received. A byte has been received. A START or repeated START followed by a slave address + R/W has been received. A STOP has been received. 	 Must be cleared by software.

Table 26.3. Sources for Hardware Changes to SMB0CN

26.4.3. Hardware Slave Address Recognition

The SMBus hardware has the capability to automatically recognize incoming slave addresses and send an ACK without software intervention. Automatic slave address recognition is enabled by setting the EHACK bit in register SMB0ADM to 1. This will enable both automatic slave address recognition and automatic hardware ACK generation for received bytes (as a master or slave). More detail on automatic hardware ACK generation can be found in Section 26.4.2.2.

The registers used to define which address(es) are recognized by the hardware are the SMBus Slave Address register (SFR Definition 26.3) and the SMBus Slave Address Mask register (SFR Definition 26.4). A single address or range of addresses (including the General Call Address 0x00) can be specified using these two registers. The most-significant seven bits of the two registers are used to define which addresses will be ACKed. A 1 in bit positions of the slave address mask SLVM[6:0] enable a comparison between the received slave address and the hardware's slave address SLV[6:0] for those bits. A 0 in a bit of the slave address mask means that bit will be treated as a "don't care" for comparison purposes. In this



26.5. SMBus Transfer Modes

The SMBus interface may be configured to operate as master and/or slave. At any particular time, it will be operating in one of the following four modes: Master Transmitter, Master Receiver, Slave Transmitter, or Slave Receiver. The SMBus interface enters Master Mode any time a START is generated, and remains in Master Mode until it loses an arbitration or generates a STOP. An SMBus interrupt is generated at the end of all SMBus byte frames. Note that the position of the ACK interrupt when operating as a receiver depends on whether hardware ACK generation is enabled. As a receiver, the interrupt for an ACK occurs **before** the ACK with hardware ACK generation disabled, and **after** the ACK when hardware ACK generation is enabled. As a transmitter, interrupts occur **after** the ACK, regardless of whether hardware ACK generation is enabled or not.

26.5.1. Write Sequence (Master)

During a write sequence, an SMBus master writes data to a slave device. The master in this transfer will be a transmitter during the address byte, and a transmitter during all data bytes. The SMBus interface generates the START condition and transmits the first byte containing the address of the target slave and the data direction bit. In this case the data direction bit (R/W) will be logic 0 (WRITE). The master then transmits one or more bytes of serial data. After each byte is transmitted, an acknowledge bit is generated by the slave. The transfer is ended when the STO bit is set and a STOP is generated. Note that the interface will switch to Master Receiver Mode if SMB0DAT is not written following a Master Transmitter interrupt. Figure 26.5 shows a typical master write sequence. Two transmit data bytes are shown, though any number of bytes may be transmitted. Notice that all of the "data byte transferred" interrupts occur **after** the ACK cycle in this mode, regardless of whether hardware ACK generation is enabled.

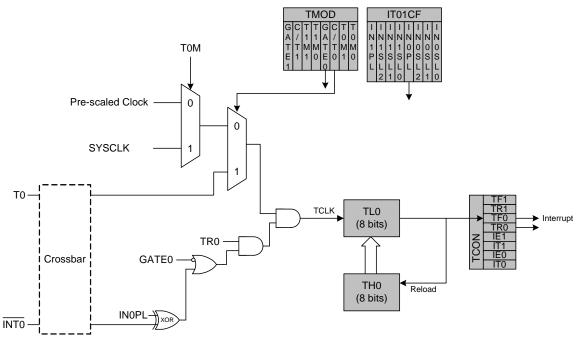


Figure 28.2. T0 Mode 2 Block Diagram

28.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)

In Mode 3, Timer 0 is configured as two separate 8-bit counter/timers held in TL0 and TH0. The counter/timer in TL0 is controlled using the Timer 0 control/status bits in TCON and TMOD: TR0, C/T0, GATE0 and TF0. TL0 can use either the system clock or an external input signal as its timebase. The TH0 register is restricted to a timer function sourced by the system clock or prescaled clock. TH0 is enabled using the Timer 1 run control bit TR1. TH0 sets the Timer 1 overflow flag TF1 on overflow and thus controls the Timer 1 interrupt.

Timer 1 is inactive in Mode 3. When Timer 0 is operating in Mode 3, Timer 1 can be operated in Modes 0, 1 or 2, but cannot be clocked by external signals nor set the TF1 flag and generate an interrupt. However, the Timer 1 overflow can be used to generate baud rates or overflow conditions for other peripherals. While Timer 0 is operating in Mode 3, Timer 1 run control is handled through its mode settings. To run Timer 1 while Timer 0 is in Mode 3, set the Timer 1 Mode as 0, 1, or 2. To disable Timer 1, configure it for Mode 3.

SFR Definition 28.6. TH0: Timer 0 High Byte

Bit	7	6	5	4	3	2	1	0			
Name TH0[7:0]											
Туре	Type R/W										
Rese	t 0	0	0	0	0	0	0	0			
SFR A	ddress = 0x8	С									
Bit	Name				Function						
7:0	TH0[7:0]	H0[7:0] Timer 0 High Byte.									
		The TH0 register is the high byte of the 16-bit Timer 0.									

SFR Definition 28.7. TH1: Timer 1 High Byte

Bit	7	6	5	4	3	2	1	0				
Name	TH1[7:0]											
Туре		R/W										
Reset	0	0	0	0	0	0	0	0				
SFR Ad	dress = 0x8l)										
Bit	Name Function											

Bit	Name	Function
7:0	TH1[7:0]	Timer 1 High Byte.
		The TH1 register is the high byte of the 16-bit Timer 1.

29. programmable Counter Array

The programmable counter array (PCA0) provides enhanced timer functionality while requiring less CPU intervention than the standard 8051 counter/timers. The PCA consists of a dedicated 16-bit counter/timer and three 16-bit capture/compare modules. Each capture/compare module has its own associated I/O line (CEXn) which is routed through the Crossbar to Port I/O when enabled. The counter/timer is driven by a programmable timebase that can select between six sources: system clock, system clock divided by four, system clock divided by twelve, the external oscillator clock source divided by 8, Timer 0 overflows, or an external clock signal on the ECI input pin. Each capture/compare module may be configured to operate independently in one of six modes: Edge-Triggered Capture, Software Timer, High-Speed Output, Frequency Output, 8 to 15-Bit PWM, or 16-Bit PWM (each mode is described in Section "29.3. Capture/Compare Modules" on page 228). The external oscillator clock option is ideal for real-time clock (RTC) functionality, allowing the PCA to be clocked by a precision external oscillator while the internal oscillator drives the system clock. The PCA is configured and controlled through the system controller's Special Function Registers. The PCA block diagram is shown in Figure 29.1

Important Note: The PCA Module 2 may be used as a watchdog timer (WDT), and is enabled in this mode following a system reset. Access to certain PCA registers is restricted while WDT mode is enabled. See Section 29.4 for details.

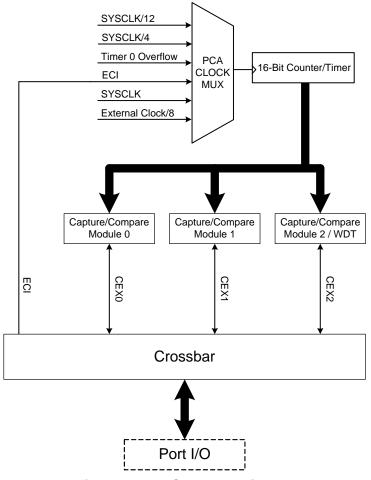


Figure 29.1. PCA Block Diagram

SFR Definition 29.5. PCA0L: PCA0 Counter/Timer Low Byte

Bit	7	6	5	4	3	2	1	0				
Name		PCA0[7:0]										
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Reset	0	0	0	0	0	0	0	0				

SFR Address = 0xF9

Bit	Name	Function
7:0	PCA0[7:0]	PCA Counter/Timer Low Byte.
		The PCA0L register holds the low byte (LSB) of the 16-bit PCA Counter/Timer.
Note:		DTE bit is set to 1, the PCA0L register cannot be modified by software. To change the contents of gister, the Watchdog Timer must first be disabled.

SFR Definition 29.6. PCA0H: PCA0 Counter/Timer High Byte

Bit	7	6	5	4	3	2	1	0			
Name		PCA0[15:8]									
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			

SFR Address = 0xFA

Bit	Name	Function							
7:0	PCA0[15:8]	PCA Counter/Timer High Byte.							
		The PCA0H register holds the high byte (MSB) of the 16-bit PCA Counter/Timer. Reads of this register will read the contents of a "snapshot" register, whose contents are updated only when the contents of PCA0L are read (see Section 29.1).							
Note:		When the WDTE bit is set to 1, the PCA0H register cannot be modified by software. To change the contents of the PCA0H register, the Watchdog Timer must first be disabled.							

C2 Register Definition 30.4. FPCTL: C2 Flash Programming Control

Bit	7	6	5	4	3	2	1	0				
Name	FPCTL[7:0]											
Туре		R/W										
Reset	0	0 0 0 0 0 0 0 0										

C2 Address: 0x02

Bit	Name	Function
7:0	FPCTL[7:0]	C2 Flash Programming Control Register.
		This register is used to enable Flash programming via the C2 interface. To enable C2 Flash programming, the following codes must be written in order: 0x02, 0x01. Once C2 Flash programming is enabled, a system reset must be issued to resume normal operation.

C2 Register Definition 30.5. FPDAT: C2 Flash Programming Data

Bit	7	6	5	4	3	2	1	0				
Name	FPDAT[7:0]											
Туре		R/W										
Reset	0	0 0 0 0 0 0 0 0										

C2 Address: 0xBF

Bit	Name	Function	
7:0	FPDAT[7:0]	C2 Flash Programming Data Register.	
		This register is used to pass Flash commands, addresses, and data during C2 Flash accesses. Valid commands are listed below.	
		Code	Command
		0x06	Flash Block Read
		0x07	Flash Block Write
		0x08	Flash Page Erase
		0x03	Device Erase

