
Silicon Labs - C8051F811-GSR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Not For New Designs

Core Processor 8051

Core Size 8-Bit

Speed 25MHz

Connectivity SMBus (2-Wire/I²C), SPI, UART/USART

Peripherals POR, PWM, WDT

Number of I/O 13

Program Memory Size 16KB (16K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 512 x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V

Data Converters -

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 16-SOIC (0.154", 3.90mm Width)

Supplier Device Package 16-SOIC

Purchase URL https://www.e-xfl.com/product-detail/silicon-labs/c8051f811-gsr

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/c8051f811-gsr-4401090
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

C8051F80x-83x

16 Rev. 1.0

Figure 1.1. C8051F800, C8051F806, C8051F812, C8051F818 Block Diagram

System Clock
Configuration

Debug /
Programming

Hardware

CIP-51 8051
Controller Core

Flash Memory
‘F800/6: 16 kB
‘F812/8: 8 kB

256 Byte RAM

External
Clock
Circuit

Precision
Internal

Oscillator

XTAL2

Power On
Reset

Reset

P2.0/C2D

256 Byte XRAM

XTAL1

Regulator
Core PowerVDD

GND

Peripheral
Power

10-bit
500 ksps
ADC

A
M
U
X Temp Sensor

Comparator

+
-

VDD

VDD

VREF

SFR
Bus

(‘F800, ‘F812 Only)

RST/C2CK

SYSCLK

Digital Peripherals

UART

Timers
0, 1

PCA/
WDT

SMBus

Priority
Crossbar
Decoder

Crossbar Control

Port I/O Configuration

SPI

Port 0
Drivers

P0.0/VREF
P0.1/AGND
P0.2/XTAL1
P0.3/XTAL2
P0.4/TX
P0.5/RX
P0.6/CNVSTR
P0.7

Port 1
Drivers

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5

Port 2
Drivers

P2.0/C2D

P1.6
P1.7

Timer 2 /
RTC

A
M
U
X

Analog
Peripherals

VREG Output

VREG Output

Capacitive
Sense

16 Channels

16 Channels

C8051F80x-83x

Rev. 1.0 21

Figure 1.6. C8051F805, C8051F811, C8051F817, C8051F823 Block Diagram

System Clock
Configuration

Debug /
Programming

Hardware

CIP-51 8051
Controller Core

Flash Memory
‘F805, ‘F811: 16 kB
‘F817, ‘F823: 8 kB

256 Byte RAM

External
Clock
Circuit

Precision
Internal

Oscillator

XTAL2

Power On
Reset

Reset

P2.0/C2D

256 Byte XRAM

XTAL1

Regulator
Core PowerVDD

GND

Peripheral
Power

10-bit
500 ksps
ADC

A
M
U
X Temp Sensor

Comparator

+
-

VDD

VDD

VREF

SFR
Bus

(‘F805, ‘F817 Only)

RST/C2CK

SYSCLK

Digital Peripherals

UART

Timers
0, 1

PCA/
WDT

SMBus

Priority
Crossbar
Decoder

Crossbar Control

Port I/O Configuration

SPI

Port 0
Drivers

P0.0/VREF
P0.1/AGND
P0.2/XTAL1
P0.3/XTAL2
P0.4/TX
P0.5/RX
P0.6/CNVSTR
P0.7

Port 1
Drivers

P1.0
P1.1
P1.2
P1.3

Port 2
Drivers

P2.0/C2D

Timer 2 /
RTC

A
M
U
X

Analog Peripherals

VREG Output

VREG Output

12 Channels

C8051F80x-83x

24 Rev. 1.0

Figure 1.9. C8051F826, C8051F829, C8051F832, C8051F835 Block Diagram

System Clock
Configuration

Debug /
Programming

Hardware

External
Clock
Circuit

Precision
Internal

Oscillator

XTAL2

Power On
Reset

Reset

P2.0/C2D

XTAL1

Regulator
Core PowerVDD

GND

Peripheral
Power

10-bit
500 ksps
ADC

A
M
U
X Temp Sensor

Comparator

+
-

VDD

VDD

VREF

SFR
Bus

(‘F826, ‘F832 Only)

RST/C2CK

SYSCLK

Digital Peripherals

UART

Timers
0, 1

PCA/
WDT

SMBus

Priority
Crossbar
Decoder

Crossbar Control

Port I/O Configuration

SPI

Port 0
Drivers

P0.0/VREF
P0.1/AGND
P0.2/XTAL1
P0.3/XTAL2
P0.4/TX
P0.5/RX
P0.6/CNVSTR
P0.7

Port 1
Drivers

P1.0
P1.1
P1.2
P1.3

Port 2
Drivers

P2.0/C2D

Timer 2 /
RTC

A
M
U
X

Analog Peripherals

VREG Output

VREG Output

12 Channels

CIP-51 8051
Controller Core

Flash Memory
‘F826, ‘F829: 8 kB
‘F832, ‘F835: 4 kB

256 Byte RAM

C8051F80x-83x

Rev. 1.0 30

Figure 3.1. QFN-20 Pinout Diagram (Top View)

3

4

5

1

2

8 9 106 7
13

12

11

15

14

1
8

1
9

2
0

1
6

1
7

P0.0

GND

VDD

P2.0/C2D

P
1.

7

P
1.

6

P
1.

5

P
1.

4

P
1.

3

P1.2

P1.1

P1.0

P0.7

P0.6

P
0.

5

P
0.

4

P
0.

3

P
0.

2

P
0.

1

C8051F80x-GM
C8051F81x-GM
C8051F82x-GM

Top View

GND

RST/C2CK

C8051F80x-83x

Rev. 1.0 32

Figure 3.3. SOIC-16 Pinout Diagram (Top View)

2

1

4

3

5

6

7

15

16

13

14

12

11

10

TOP VIEW

C8051F80x-GS
C8051F81x-GS
C8051F82x-GS
C8051F83x-GS

P0.1

P0.0

GND

VDD

P0.2

P2.0/C2D

P0.7

P0.4

P0.3

P0.5

P0.6

P1.0

P1.1

8P1.3 9 P1.2

RST / C2CK

C8051F80x-83x

Rev. 1.0 37

6. SOIC-16 Package Specifications

Figure 6.1. SOIC-16 Package Drawing

Table 6.1. SOIC-16 Package Dimensions

Dimension Min Nom Max Dimension Min Nom Max

A — 1.75 L 0.40 1.27

A1 0.10 0.25 L2 0.25 BSC

A2 1.25 — h 0.25 0.50

b 0.31 0.51 θ 0º 8º

c 0.17 0.25 aaa 0.10

D 9.90 BSC bbb 0.20

E 6.00 BSC ccc 0.10

E1 3.90 BSC ddd 0.25

e 1.27 BSC

Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to the JEDEC Solid State Outline MS-012, Variation AC.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body

Components.

C8051F80x-83x

Rev. 1.0 71

13. Capacitive Sense (CS0)

The Capacitive Sense subsystem included on the C8051F800/1/3/4/6/7/9, C8051F810/2/3/5/6/8/9,
C8051F821/2/4/5/7/8, C8051F830/1/3/4 uses a capacitance-to-digital circuit to determine the capacitance
on a port pin. The module can take measurements from different port pins using the module’s analog mul-
tiplexer. The multiplexer supports up to 16 channels. See SFR Definition 13.9. “CS0MX: Capacitive Sense
Mux Channel Select” on page 81 for channel availability for specific part numbers. The module is enabled
only when the CS0EN bit (CS0CN) is set to 1. Otherwise the module is in a low-power shutdown state. The
module can be configured to take measurements on one port pin or a group of port pins, using auto-scan.
An accumulator can be configured to accumulate multiple conversions on an input channel. Interrupts can
be generated when CS0 completes a conversion or when the measured value crosses a threshold defined
in CS0THH:L.

Figure 13.1. CS0 Block Diagram

16-Bit
Capacitance to

Digital Converter

Timer 0 Overflow
Timer 2 Overflow
Timer 1 Overflow

Start
Conversion

000 CS0BUSY (W)

CS0CMPF

001
010
011
100 Reserved

Greater Than
Compare Logic

101
Initiated continuously

CS0THH:L

CS0DH:L

Auto-Scan
Logic

CS0SS CS0SE

CS0MX

22-Bit Accumulator

110
111 Initiated continuously

when auto-scan
enabled

Reserved

CS0CN

C
S

0C
M

P
F

C
S

0C
M

P
E

N

C
S

0B
U

S
Y

C
S

0I
N

T

C
S

0E
N

CS0CF

C
S

0
A

C
U

0

C
S

0
A

C
U

1

C
S

0
A

C
U

2

C
S

0
C

M
0

C
S

0
C

M
1

C
S

0
C

M
2

A
M

U
X

. . .

C8051F80x-83x

Rev. 1.0 77

SFR Address = 0xAC

SFR Address = 0xAB

SFR Definition 13.3. CS0DH: Capacitive Sense Data High Byte

Bit 7 6 5 4 3 2 1 0

Name CS0DH[7:0]

Type R R R R R R R R

Reset 0 0 0 0 0 0 0 0

Bit Name Description

7:0 CS0DH CS0 Data High Byte.

Stores the high byte of the last completed 16-bit Capacitive Sense conversion.

SFR Definition 13.4. CS0DL: Capacitive Sense Data Low Byte

Bit 7 6 5 4 3 2 1 0

Name CS0DL[7:0]

Type R R R R R R R R

Reset 0 0 0 0 0 0 0 0

Bit Name Description

7:0 CS0DL CS0 Data Low Byte.

Stores the low byte of the last completed 16-bit Capacitive Sense conversion.

C8051F80x-83x

Rev. 1.0 97

17. Special Function Registers

The direct-access data memory locations from 0x80 to 0xFF constitute the special function registers
(SFRs). The SFRs provide control and data exchange with the C8051F80x-83x's resources and peripher-
als. The CIP-51 controller core duplicates the SFRs found in a typical 8051 implementation as well as
implementing additional SFRs used to configure and access the sub-systems unique to the C8051F80x-
83x. This allows the addition of new functionality while retaining compatibility with the MCS-51™ instruc-
tion set. Table 17.1 lists the SFRs implemented in the C8051F80x-83x device family.

The SFR registers are accessed anytime the direct addressing mode is used to access memory locations
from 0x80 to 0xFF. SFRs with addresses ending in 0x0 or 0x8 (e.g., P0, TCON, SCON0, IE, etc.) are bit-
addressable as well as byte-addressable. All other SFRs are byte-addressable only. Unoccupied
addresses in the SFR space are reserved for future use. Accessing these areas will have an indeterminate
effect and should be avoided. Refer to the corresponding pages of the data sheet, as indicated in
Table 17.2, for a detailed description of each register.

Table 17.1. Special Function Register (SFR) Memory Map

F8 SPI0CN PCA0L PCA0H PCA0CPL0 PCA0CPH0 P0MAT P0MASK VDM0CN

F0 B P0MDIN P1MDIN EIP1 EIP2 PCA0PWM

E8 ADC0CN PCA0CPL1 PCA0CPH1 PCA0CPL2 PCA0CPH2 P1MAT P1MASK RSTSRC

E0 ACC XBR0 XBR1 IT01CF EIE1 EIE2

D8 PCA0CN PCA0MD PCA0CPM0 PCA0CPM1 PCA0CPM2 CRC0IN CRC0DATA

D0 PSW REF0CN CRC0AUTO CRC0CNT P0SKIP P1SKIP SMB0ADM SMB0ADR

C8 TMR2CN REG0CN TMR2RLL TMR2RLH TMR2L TMR2H CRC0CN CRC0FLIP

C0 SMB0CN SMB0CF SMB0DAT ADC0GTL ADC0GTH ADC0LTL ADC0LTH

B8 IP CS0SS CS0SE ADC0MX ADC0CF ADC0L ADC0H

B0 CS0CN OSCXCN OSCICN OSCICL HWID REVID FLKEY

A8 IE CLKSEL CS0DL CS0DH DERVID

A0 P2 SPI0CFG SPI0CKR SPI0DAT P0MDOUT P1MDOUT P2MDOUT

98 SCON0 SBUF0 CPT0CN CS0MX CPT0MD CS0CF CPT0MX

90 P1 CS0THL CS0THH

88 TCON TMOD TL0 TL1 TH0 TH1 CKCON PSCTL

80 P0 SP DPL DPH PCON

0(8) 1(9) 2(A) 3(B) 4(C) 5(D) 6(E) 7(F)

Note: SFR Addresses ending in 0x0 or 0x8 are bit-addressable locations, and can be used with bitwise instructions.

C8051F80x-83x

111 Rev. 1.0

18.3. INT0 and INT1 External Interrupts
The INT0 and INT1 external interrupt sources are configurable as active high or low, edge or level sensi-
tive. The IN0PL (INT0 Polarity) and IN1PL (INT1 Polarity) bits in the IT01CF register select active high or
active low; the IT0 and IT1 bits in TCON (Section “28.1. Timer 0 and Timer 1” on page 211) select level or
edge sensitive. The table below lists the possible configurations.

INT0 and INT1 are assigned to Port pins as defined in the IT01CF register (see SFR Definition 18.7). Note
that INT0 and INT0 Port pin assignments are independent of any Crossbar assignments. INT0 and INT1
will monitor their assigned Port pins without disturbing the peripheral that was assigned the Port pin via the
Crossbar. To assign a Port pin only to INT0 and/or INT1, configure the Crossbar to skip the selected pin(s).
This is accomplished by setting the associated bit in register XBR0 (see Section “23.3. Priority Crossbar
Decoder” on page 143 for complete details on configuring the Crossbar).

IE0 (TCON.1) and IE1 (TCON.3) serve as the interrupt-pending flags for the INT0 and INT1 external inter-
rupts, respectively. If an INT0 or INT1 external interrupt is configured as edge-sensitive, the corresponding
interrupt-pending flag is automatically cleared by the hardware when the CPU vectors to the ISR. When
configured as level sensitive, the interrupt-pending flag remains logic 1 while the input is active as defined
by the corresponding polarity bit (IN0PL or IN1PL); the flag remains logic 0 while the input is inactive. The
external interrupt source must hold the input active until the interrupt request is recognized. It must then
deactivate the interrupt request before execution of the ISR completes or another interrupt request will be
generated.

IT0 IN0PL INT0 Interrupt IT1 IN1PL INT1 Interrupt

1 0 Active low, edge sensitive 1 0 Active low, edge sensitive
1 1 Active high, edge sensitive 1 1 Active high, edge sensitive
0 0 Active low, level sensitive 0 0 Active low, level sensitive
0 1 Active high, level sensitive 0 1 Active high, level sensitive

C8051F80x-83x

Rev. 1.0 113

19. Flash Memory

On-chip, re-programmable Flash memory is included for program code and non-volatile data storage. The
Flash memory can be programmed in-system through the C2 interface or by software using the MOVX
write instruction. Once cleared to logic 0, a Flash bit must be erased to set it back to logic 1. Flash bytes
would typically be erased (set to 0xFF) before being reprogrammed. The write and erase operations are
automatically timed by hardware for proper execution; data polling to determine the end of the write/erase
operations is not required. Code execution is stalled during Flash write/erase operations. Refer to
Table 7.6 for complete Flash memory electrical characteristics.

19.1. Programming The Flash Memory
The simplest means of programming the Flash memory is through the C2 interface using programming
tools provided by Silicon Laboratories or a third party vendor. This is the only means for programming a
non-initialized device. For details on the C2 commands to program Flash memory, see Section “30. C2
Interface” on page 244.

The Flash memory can be programmed by software using the MOVX write instruction with the address and
data byte to be programmed provided as normal operands. Before programming Flash memory using
MOVX, Flash programming operations must be enabled by: (1) setting the PSWE Program Store Write
Enable bit (PSCTL.0) to logic 1 (this directs the MOVX writes to target Flash memory); and (2) Writing the
Flash key codes in sequence to the Flash Lock register (FLKEY). The PSWE bit remains set until cleared
by software. For detailed guidelines on programming Flash from firmware, please see Section “19.4. Flash
Write and Erase Guidelines” on page 115.

Note: A minimum SYSCLK frequency is required for writing or erasing Flash memory, as detailed in “7. Electrical
Characteristics” on page 39.

To ensure the integrity of the Flash contents, the on-chip VDD Monitor must be enabled and enabled as a
reset source in any system that includes code that writes and/or erases Flash memory from software. Fur-
thermore, there should be no delay between enabling the VDD Monitor and enabling the VDD Monitor as a
reset source. Any attempt to write or erase Flash memory while the VDD Monitor is disabled, or not
enabled as a reset source, will cause a Flash Error device reset.

19.1.1. Flash Lock and Key Functions

Flash writes and erases by user software are protected with a lock and key function. The Flash Lock and
Key Register (FLKEY) must be written with the correct key codes, in sequence, before Flash operations
may be performed. The key codes are: 0xA5, 0xF1. The timing does not matter, but the codes must be
written in order. If the key codes are written out of order, or the wrong codes are written, Flash writes and
erases will be disabled until the next system reset. Flash writes and erases will also be disabled if a Flash
write or erase is attempted before the key codes have been written properly. The Flash lock resets after
each write or erase; the key codes must be written again before a following Flash operation can be per-
formed. The FLKEY register is detailed in SFR Definition 19.2.

19.1.2. Flash Erase Procedure

The Flash memory is organized in 512-byte pages. The erase operation applies to an entire page (setting
all bytes in the page to 0xFF). To erase an entire 512-byte page, perform the following steps:

1. Save current interrupt state and disable interrupts.

2. Set the PSEE bit (register PSCTL).

3. Set the PSWE bit (register PSCTL).

4. Write the first key code to FLKEY: 0xA5.

5. Write the second key code to FLKEY: 0xF1.

6. Using the MOVX instruction, write a data byte to any location within the 512-byte page to be erased.

7. Clear the PSWE and PSEE bits.

C8051F80x-83x

Rev. 1.0 146

Figure 23.6. Priority Crossbar Decoder Example 2—Skipping Pins

TX0

RX0

SDA

SCL

SYSCLK

CEX0

CEX1

CEX2

ECI

T0

T1

0 1 2 3 4 5 6 7

P0Port

Pin Number

Special
Function

Signals

V
R

E
F

X
T

A
L2

C
N

V
S

T
R

1 0 1 1 0 0 0 0

P0SKIP
Pin Skip
Settings

A
G

N
D

X
T

A
L1

SCK

MISO

MOSI

NSS2

0 1 2 3 61

P1

0 0 0 0 0 0 0

P1SKIP

0

P
2

S
ig

na
l U

na
va

ila
bl

e
to

 C
ro

ss
ba

r
In this example, the crossbar is configured to assign the UART TX0 and
RX0 signals, the SPI signals, and the PCA signals. Note that the SPI
signals are assigned as multiple signals. Additionally, pins P0.0, P0.2, and
P0.3 are configured to be skipped using the P0SKIP register.

 These boxes represent the port pins which are used by the peripherals
in this configuration.

1st TX0 is assigned to P0.4
2nd RX0 is assigned to P0.5
3rd SCK, MISO, MOSI, and NSS are assigned to P0.1, P0.6, P0.7, and
P1.0, respectively.
4th CEX0, CEX1, and CEX2 are assigned to P1.1, P1.2, and P1.3,
respectively.

All unassigned pins, including those skipped by XBR0 can be used as
GPIO or for other non-crossbar functions.

Notes:
1. P1.4-P1.7 are not available on 16-pin packages.
2. NSS is only pinned out when the SPI is in 4-wire mode.

CP0

CP0A

71

0

41 51

P
0.

0
S

ki
pp

ed

P
0.

2
S

ki
pp

ed

P
0.

3
S

ki
pp

ed

C8051F80x-83x

155 Rev. 1.0

SFR Address = 0xD4

SFR Address = 0x90; Bit-Addressable

SFR Definition 23.10. P0SKIP: Port 0 Skip

Bit 7 6 5 4 3 2 1 0

Name P0SKIP[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 P0SKIP[7:0] Port 0 Crossbar Skip Enable Bits.

These bits select Port 0 pins to be skipped by the Crossbar Decoder. Port pins
used for analog, special functions or GPIO should be skipped by the Crossbar.
0: Corresponding P0.n pin is not skipped by the Crossbar.
1: Corresponding P0.n pin is skipped by the Crossbar.

SFR Definition 23.11. P1: Port 1

Bit 7 6 5 4 3 2 1 0

Name P1[7:0]

Type R/W

Reset 1 1 1 1 1 1 1 1

Bit Name Description Write Read

7:0 P1[7:0] Port 1 Data.

Sets the Port latch logic
value or reads the Port pin
logic state in Port cells con-
figured for digital I/O.
Note: P1.4–P1.7 are not

available on 16-pin
packages.

0: Set output latch to logic
LOW.
1: Set output latch to logic
HIGH.

0: P1.n Port pin is logic
LOW.
1: P1.n Port pin is logic
HIGH.

C8051F80x-83x

Rev. 1.0 161

24.2. 32-bit CRC Algorithm
The C8051F80x-83x CRC unit calculates the 32-bit CRC using a poly of 0x04C11DB7. The CRC-32 algo-
rithm is "reflected", meaning that all of the input bytes and the final 32-bit output are bit-reversed in the pro-
cessing engine. The following is a description of a simplified CRC algorithm that produces results identical
to the hardware:

1. XOR the least-significant byte of the current CRC result with the input byte. If this is the first iteration of
the CRC unit, the current CRC result will be the set initial value (0x00000000 or 0xFFFFFFFF).

2. Right-shift the CRC result.

3. If the LSB of the CRC result is set, XOR the CRC result with the reflected polynomial (0xEDB88320).

4. Repeat at Step 2 for the number of input bits (8).

For example, the 32-bit C8051F80x-83x CRC algorithm can be described by the following code:

unsigned long UpdateCRC (unsigned long CRC_acc, unsigned char CRC_input){
unsigned char i; // loop counter
#define POLY 0xEDB88320 // bit-reversed version of the poly 0x04C11DB7
// Create the CRC "dividend" for polynomial arithmetic (binary arithmetic
// with no carries)
CRC_acc = CRC_acc ^ CRC_input;
// "Divide" the poly into the dividend using CRC XOR subtraction
// CRC_acc holds the "remainder" of each divide
// Only complete this division for 8 bits since input is 1 byte
for (i = 0; i < 8; i++)
{

// Check if the MSB is set (if MSB is 1, then the POLY can "divide"
// into the "dividend")
if ((CRC_acc & 0x00000001) == 0x00000001)
{

// if so, shift the CRC value, and XOR "subtract" the poly
CRC_acc = CRC_acc >> 1;
CRC_acc ^= POLY;

}
else
{

// if not, just shift the CRC value
CRC_acc = CRC_acc >> 1;

}
}
return CRC_acc; // Return the final remainder (CRC value)

}
Table 24.2 lists example input values and the associated outputs using the 32-bit C8051F80x-83x CRC
algorithm (an initial value of 0xFFFFFFFF is used):

Table 24.2. Example 32-bit CRC Outputs

Input Output

0x63 0xF9462090
0xAA, 0xBB, 0xCC 0x41B207B3

0x00, 0x00, 0xAA, 0xBB, 0xCC 0x78D129BC

C8051F80x-83x

170 Rev. 1.0

Figure 25.4. 4-Wire Single Master Mode and 4-Wire Slave Mode Connection Diagram

25.3. SPI0 Slave Mode Operation
When SPI0 is enabled and not configured as a master, it will operate as a SPI slave. As a slave, bytes are
shifted in through the MOSI pin and out through the MISO pin by a master device controlling the SCK sig-
nal. A bit counter in the SPI0 logic counts SCK edges. When 8 bits have been shifted through the shift reg-
ister, the SPIF flag is set to logic 1, and the byte is copied into the receive buffer. Data is read from the
receive buffer by reading SPI0DAT. A slave device cannot initiate transfers. Data to be transferred to the
master device is pre-loaded into the shift register by writing to SPI0DAT. Writes to SPI0DAT are double-
buffered, and are placed in the transmit buffer first. If the shift register is empty, the contents of the transmit
buffer will immediately be transferred into the shift register. When the shift register already contains data,
the SPI will load the shift register with the transmit buffer’s contents after the last SCK edge of the next (or
current) SPI transfer.

When configured as a slave, SPI0 can be configured for 4-wire or 3-wire operation. The default, 4-wire
slave mode, is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 1. In 4-wire mode, the
NSS signal is routed to a port pin and configured as a digital input. SPI0 is enabled when NSS is logic 0,
and disabled when NSS is logic 1. The bit counter is reset on a falling edge of NSS. Note that the NSS sig-
nal must be driven low at least 2 system clocks before the first active edge of SCK for each byte transfer.
Figure 25.4 shows a connection diagram between two slave devices in 4-wire slave mode and a master
device.

3-wire slave mode is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 0. NSS is not
used in this mode, and is not mapped to an external port pin through the crossbar. Since there is no way of
uniquely addressing the device in 3-wire slave mode, SPI0 must be the only slave device present on the
bus. It is important to note that in 3-wire slave mode there is no external means of resetting the bit counter
that determines when a full byte has been received. The bit counter can only be reset by disabling and re-
enabling SPI0 with the SPIEN bit. Figure 25.3 shows a connection diagram between a slave device in 3-
wire slave mode and a master device.

Slave
Device

Master
Device MOSI

MISO

SCK

MISO

MOSI

SCK

NSS NSS
GPIO

Slave
Device MOSI

MISO

SCK

NSS

C8051F80x-83x

191 Rev. 1.0

SFR Address = 0xD7

SFR Address = 0xD6

SFR Definition 26.3. SMB0ADR: SMBus Slave Address

Bit 7 6 5 4 3 2 1 0

Name SLV[6:0] GC

Type R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:1 SLV[6:0] SMBus Hardware Slave Address.

Defines the SMBus Slave Address(es) for automatic hardware acknowledgement.
Only address bits which have a 1 in the corresponding bit position in SLVM[6:0]
are checked against the incoming address. This allows multiple addresses to be
recognized.

0 GC General Call Address Enable.

When hardware address recognition is enabled (EHACK = 1), this bit will deter-
mine whether the General Call Address (0x00) is also recognized by hardware.
0: General Call Address is ignored.
1: General Call Address is recognized.

SFR Definition 26.4. SMB0ADM: SMBus Slave Address Mask

Bit 7 6 5 4 3 2 1 0

Name SLVM[6:0] EHACK

Type R/W R/W

Reset 1 1 1 1 1 1 1 0

Bit Name Function

7:1 SLVM[6:0] SMBus Slave Address Mask.

Defines which bits of register SMB0ADR are compared with an incoming address
byte, and which bits are ignored. Any bit set to 1 in SLVM[6:0] enables compari-
sons with the corresponding bit in SLV[6:0]. Bits set to 0 are ignored (can be either
0 or 1 in the incoming address).

0 EHACK Hardware Acknowledge Enable.

Enables hardware acknowledgement of slave address and received data bytes.
0: Firmware must manually acknowledge all incoming address and data bytes.
1: Automatic Slave Address Recognition and Hardware Acknowledge is Enabled.

C8051F80x-83x

195 Rev. 1.0

26.5.3. Write Sequence (Slave)

During a write sequence, an SMBus master writes data to a slave device. The slave in this transfer will be
a receiver during the address byte, and a receiver during all data bytes. When slave events are enabled
(INH = 0), the interface enters Slave Receiver Mode when a START followed by a slave address and direc-
tion bit (WRITE in this case) is received. If hardware ACK generation is disabled, upon entering Slave
Receiver Mode, an interrupt is generated and the ACKRQ bit is set. The software must respond to the
received slave address with an ACK, or ignore the received slave address with a NACK. If hardware ACK
generation is enabled, the hardware will apply the ACK for a slave address which matches the criteria set
up by SMB0ADR and SMB0ADM. The interrupt will occur after the ACK cycle.

If the received slave address is ignored (by software or hardware), slave interrupts will be inhibited until the
next START is detected. If the received slave address is acknowledged, zero or more data bytes are
received.

If hardware ACK generation is disabled, the ACKRQ is set to 1 and an interrupt is generated after each
received byte. Software must write the ACK bit at that time to ACK or NACK the received byte.

With hardware ACK generation enabled, the SMBus hardware will automatically generate the ACK/NACK,
and then post the interrupt. It is important to note that the appropriate ACK or NACK value should be
set up by the software prior to receiving the byte when hardware ACK generation is enabled.

The interface exits Slave Receiver Mode after receiving a STOP. Note that the interface will switch to Slave
Transmitter Mode if SMB0DAT is written while an active Slave Receiver. Figure 26.7 shows a typical slave
write sequence. Two received data bytes are shown, though any number of bytes may be received. Notice
that the “data byte transferred” interrupts occur at different places in the sequence, depending on whether
hardware ACK generation is enabled. The interrupt occurs before the ACK with hardware ACK generation
disabled, and after the ACK when hardware ACK generation is enabled.

Figure 26.7. Typical Slave Write Sequence

PWSLAS Data ByteData Byte A AA

S = START
P = STOP
A = ACK
W = WRITE
SLA = Slave Address

Received by SMBus
Interface

Transmitted by
SMBus Interface

Interrupts with Hardware ACK Disabled (EHACK = 0)

Interrupts with Hardware ACK Enabled (EHACK = 1)

C8051F80x-83x

Rev. 1.0 201

27. UART0

UART0 is an asynchronous, full duplex serial port offering modes 1 and 3 of the standard 8051 UART.
Enhanced baud rate support allows a wide range of clock sources to generate standard baud rates (details
in Section “27.1. Enhanced Baud Rate Generation” on page 202). Received data buffering allows UART0
to start reception of a second incoming data byte before software has finished reading the previous data
byte.

UART0 has two associated SFRs: Serial Control Register 0 (SCON0) and Serial Data Buffer 0 (SBUF0).
The single SBUF0 location provides access to both transmit and receive registers. Writes to SBUF0
always access the Transmit register. Reads of SBUF0 always access the buffered Receive register;
it is not possible to read data from the Transmit register.

With UART0 interrupts enabled, an interrupt is generated each time a transmit is completed (TI0 is set in
SCON0), or a data byte has been received (RI0 is set in SCON0). The UART0 interrupt flags are not
cleared by hardware when the CPU vectors to the interrupt service routine. They must be cleared manually
by software, allowing software to determine the cause of the UART0 interrupt (transmit complete or receive
complete).

Figure 27.1. UART0 Block Diagram

UART Baud
Rate Generator

RI

 SCON

R
I

T
I

R
B

8
T

B
8

R
E

N
M

C
E

S
M

O
D

E

Tx Control
Tx Clock

Send

SBUF
(TX Shift)

Start

Data

Write to
SBUF

Crossbar
TX

Shift

Zero Detector

Tx IRQ

SET

QD

CLR

Stop Bit

TB8

SFR Bus

Serial
Port

Interrupt

TI

Port I/O

Rx Control

Start

Rx Clock

Load
SBUFShift 0x1FF RB8

Rx IRQ

Input Shift Register
(9 bits)

Load SBUF

Read
SBUF

SFR Bus
Crossbar

RX

SBUF
(RX Latch)

C8051F80x-83x

204 Rev. 1.0

27.2.2. 9-Bit UART

9-bit UART mode uses a total of eleven bits per data byte: a start bit, 8 data bits (LSB first), a programma-
ble ninth data bit, and a stop bit. The state of the ninth transmit data bit is determined by the value in TB80
(SCON0.3), which is assigned by user software. It can be assigned the value of the parity flag (bit P in reg-
ister PSW) for error detection, or used in multiprocessor communications. On receive, the ninth data bit
goes into RB80 (SCON0.2) and the stop bit is ignored.

Data transmission begins when an instruction writes a data byte to the SBUF0 register. The TI0 Transmit
Interrupt Flag (SCON0.1) is set at the end of the transmission (the beginning of the stop-bit time). Data
reception can begin any time after the REN0 Receive Enable bit (SCON0.4) is set to 1. After the stop bit is
received, the data byte will be loaded into the SBUF0 receive register if the following conditions are met:
(1) RI0 must be logic 0, and (2) if MCE0 is logic 1, the 9th bit must be logic 1 (when MCE0 is logic 0, the
state of the ninth data bit is unimportant). If these conditions are met, the eight bits of data are stored in
SBUF0, the ninth bit is stored in RB80, and the RI0 flag is set to 1. If the above conditions are not met,
SBUF0 and RB80 will not be loaded and the RI0 flag will not be set to 1. A UART0 interrupt will occur if
enabled when either TI0 or RI0 is set to 1.

Figure 27.5. 9-Bit UART Timing Diagram

D1D0 D2 D3 D4 D5 D6 D7
START

BIT
MARK

STOP
BIT

BIT TIMES

BIT SAMPLING

SPACE
D8

C8051F80x-83x

228 Rev. 1.0

29.3. Capture/Compare Modules
Each module can be configured to operate independently in one of six operation modes: edge-triggered
capture, software timer, high-speed output, frequency output, 8-bit through 15-bit pulse width modulator, or
16-bit pulse width modulator. Each module has Special Function Registers (SFRs) associated with it in the
CIP-51 system controller. These registers are used to exchange data with a module and configure the
module's mode of operation. Table 29.2 summarizes the bit settings in the PCA0CPMn and PCA0PWM
registers used to select the PCA capture/compare module’s operating mode. Note that all modules set to
use 8-bit through 15-bit PWM mode must use the same cycle length (8–15 bits). Setting the ECCFn bit in a
PCA0CPMn register enables the module's CCFn interrupt.

Table 29.2. PCA0CPM and PCA0PWM Bit Settings for PCA Capture/Compare Modules1,2,3,4,5,6

Operational Mode PCA0CPMn PCA0PWM

Bit Number 7 6 5 4 3 2 1 0 7 6 5 4 3 2–0

Capture triggered by positive edge on CEXn X X 1 0 0 0 0 A 0 X B X X XXX

Capture triggered by negative edge on CEXn X X 0 1 0 0 0 A 0 X B X X XXX

Capture triggered by any transition on CEXn X X 1 1 0 0 0 A 0 X B X X XXX

Software Timer X C 0 0 1 0 0 A 0 X B X X XXX

High Speed Output X C 0 0 1 1 0 A 0 X B X X XXX

Frequency Output X C 0 0 0 1 1 A 0 X B X X XXX

8-Bit Pulse Width Modulator7 0 C 0 0 E 0 1 A 0 X B X X 000

9-Bit Pulse Width Modulator7 0 C 0 0 E 0 1 A D X B X X 001

10-Bit Pulse Width Modulator7 0 C 0 0 E 0 1 A D X B X X 010

11-Bit Pulse Width Modulator7 0 C 0 0 E 0 1 A D X B X X 011

12-Bit Pulse Width Modulator7 0 C 0 0 E 0 1 A D X B X X 100

13-Bit Pulse Width Modulator7 0 C 0 0 E 0 1 A D X B X X 101

14-Bit Pulse Width Modulator7 0 C 0 0 E 0 1 A D X B X X 110

15-Bit Pulse Width Modulator7 0 C 0 0 E 0 1 A D X B X X 111

16-Bit Pulse Width Modulator 1 C 0 0 E 0 1 A 0 X B X 0 XXX

16-Bit Pulse Width Modulator with Auto-Reload 1 C 0 0 E 0 1 A D X B X 1 XXX

Notes:
1. X = Don’t Care (no functional difference for individual module if 1 or 0).
2. A = Enable interrupts for this module (PCA interrupt triggered on CCFn set to 1).
3. B = Enable 8th through 15th bit overflow interrupt (Depends on setting of CLSEL[2:0]).
4. C = When set to 0, the digital comparator is off. For high speed and frequency output modes, the

associated pin will not toggle. In any of the PWM modes, this generates a 0% duty cycle (output = 0).
5. D = Selects whether the Capture/Compare register (0) or the Auto-Reload register (1) for the associated

channel is accessed via addresses PCA0CPHn and PCA0CPLn.
6. E = When set, a match event will cause the CCFn flag for the associated channel to be set.
7. All modules set to 8-bit through 15-bit PWM mode use the same cycle length setting.

