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Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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Figure 3.3. SOIC-16 Pinout Diagram (Top View)
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4.  QFN-20 Package Specifications

Figure 4.1. QFN-20 Package Drawing

Table 4.1. QFN-20 Package Dimensions

Dimension Min Typ Max Dimension Min Typ Max

A 0.80 0.90 1.00 L 0.45 0.55 0.65

A1 0.00 0.02 0.05 L1 0.00 — 0.15

b 0.18 0.25 0.30 aaa — — 0.15

D 4.00 BSC. bbb — — 0.10

D2 2.00 2.15 2.25 ddd — — 0.05

e 0.50 BSC. eee — — 0.08

E 4.00 BSC. Z — 0.43 —

E2 2.00 2.15 2.25 Y — 0.18 —

Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to the JEDEC Solid State Outline MO-220, variation VGGD except for 

custom features D2, E2, Z, Y, and L which are toleranced per supplier designation.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body 

Components.
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11.  Voltage Regulator (REG0)

C8051F80x-83x devices include an internal voltage regulator (REG0) to regulate the internal core supply
to 1.8 V from a VDD supply of 1.8 to 3.6 V. A power-saving mode is built into the regulator to help reduce
current consumption in low-power applications. This mode is accessed through the REG0CN register
(SFR Definition 11.1). Electrical characteristics for the on-chip regulator are specified in Table 7.5 on
page 41

Under default conditions, when the device enters STOP mode the internal regulator will remain on. This
allows any enabled reset source to generate a reset for the device and bring the device out of STOP mode.
For additional power savings, the STOPCF bit can be used to shut down the regulator and the internal
power network of the device when the part enters STOP mode. When STOPCF is set to 1, the RST pin or
a full power cycle of the device are the only methods of generating a reset.
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The Comparator response time may be configured in software via the CPT0MD register (see SFR Defini-
tion 12.2). Selecting a longer response time reduces the Comparator supply current.

Figure 12.2. Comparator Hysteresis Plot

The Comparator hysteresis is software-programmable via its Comparator Control register CPT0CN. The
user can program both the amount of hysteresis voltage (referred to the input voltage) and the positive and
negative-going symmetry of this hysteresis around the threshold voltage.

The Comparator hysteresis is programmed using bits 3:0 in the Comparator Control Register CPT0CN
(shown in SFR Definition 12.1). The amount of negative hysteresis voltage is determined by the settings of
the CP0HYN bits. As shown in Figure 12.2, settings of 20, 10 or 5 mV of negative hysteresis can be pro-
grammed, or negative hysteresis can be disabled. In a similar way, the amount of positive hysteresis is
determined by the setting the CP0HYP bits.

Comparator interrupts can be generated on both rising-edge and falling-edge output transitions. (For Inter-
rupt enable and priority control, see Section “18.1. MCU Interrupt Sources and Vectors” on page 103). The
CP0FIF flag is set to logic 1 upon a Comparator falling-edge occurrence, and the CP0RIF flag is set to
logic 1 upon the Comparator rising-edge occurrence. Once set, these bits remain set until cleared by soft-
ware. The Comparator rising-edge interrupt mask is enabled by setting CP0RIE to a logic 1. The Compar-
ator0 falling-edge interrupt mask is enabled by setting CP0FIE to a logic 1. 

The output state of the Comparator can be obtained at any time by reading the CP0OUT bit. The Compar-
ator is enabled by setting the CP0EN bit to logic 1, and is disabled by clearing this bit to logic 0.

Note that false rising edges and falling edges can be detected when the comparator is first powered on or
if changes are made to the hysteresis or response time control bits. Therefore, it is recommended that the
rising-edge and falling-edge flags be explicitly cleared to logic 0 a short time after the comparator is
enabled or its mode bits have been changed.
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SFR Address = 0x9B

SFR Definition 12.1. CPT0CN: Comparator0 Control

Bit 7 6 5 4 3 2 1 0

Name CP0EN CP0OUT CP0RIF CP0FIF CP0HYP[1:0] CP0HYN[1:0]

Type R/W R R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7 CP0EN Comparator0 Enable Bit.

0: Comparator0 Disabled.
1: Comparator0 Enabled.

6 CP0OUT Comparator0 Output State Flag.

0: Voltage on CP0+ < CP0–.
1: Voltage on CP0+ > CP0–.

5 CP0RIF Comparator0 Rising-Edge Flag. Must be cleared by software.

0: No Comparator0 Rising Edge has occurred since this flag was last cleared.
1: Comparator0 Rising Edge has occurred.

4 CP0FIF Comparator0 Falling-Edge Flag. Must be cleared by software.

0: No Comparator0 Falling-Edge has occurred since this flag was last cleared.
1: Comparator0 Falling-Edge has occurred.

3:2 CP0HYP[1:0] Comparator0 Positive Hysteresis Control Bits.

00: Positive Hysteresis Disabled.
01: Positive Hysteresis = 5 mV.
10: Positive Hysteresis = 10 mV.
11: Positive Hysteresis = 20 mV.

1:0 CP0HYN[1:0] Comparator0 Negative Hysteresis Control Bits.

00: Negative Hysteresis Disabled.
01: Negative Hysteresis = 5 mV.
10: Negative Hysteresis = 10 mV.
11: Negative Hysteresis = 20 mV.
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Table 14.1. CIP-51 Instruction Set Summary

Mnemonic Description Bytes Clock 
Cycles

Arithmetic Operations

ADD A, Rn Add register to A 1 1
ADD A, direct Add direct byte to A 2 2
ADD A, @Ri Add indirect RAM to A 1 2
ADD A, #data Add immediate to A 2 2
ADDC A, Rn Add register to A with carry 1 1
ADDC A, direct Add direct byte to A with carry 2 2
ADDC A, @Ri Add indirect RAM to A with carry 1 2
ADDC A, #data Add immediate to A with carry 2 2
SUBB A, Rn Subtract register from A with borrow 1 1
SUBB A, direct Subtract direct byte from A with borrow 2 2
SUBB A, @Ri Subtract indirect RAM from A with borrow 1 2
SUBB A, #data Subtract immediate from A with borrow 2 2
INC A Increment A 1 1
INC Rn Increment register 1 1
INC direct Increment direct byte 2 2
INC @Ri Increment indirect RAM 1 2
DEC A Decrement A 1 1
DEC Rn Decrement register 1 1
DEC direct Decrement direct byte 2 2
DEC @Ri Decrement indirect RAM 1 2
INC DPTR Increment Data Pointer 1 1
MUL AB Multiply A and B 1 4
DIV AB Divide A by B 1 8
DA A Decimal adjust A 1 1

Logical Operations

ANL A, Rn AND Register to A 1 1
ANL A, direct AND direct byte to A 2 2
ANL A, @Ri AND indirect RAM to A 1 2
ANL A, #data AND immediate to A 2 2
ANL direct, A AND A to direct byte 2 2
ANL direct, #data AND immediate to direct byte 3 3
ORL A, Rn OR Register to A 1 1
ORL A, direct OR direct byte to A 2 2
ORL A, @Ri OR indirect RAM to A 1 2
ORL A, #data OR immediate to A 2 2
ORL direct, A OR A to direct byte 2 2
ORL direct, #data OR immediate to direct byte 3 3
XRL A, Rn Exclusive-OR Register to A 1 1
XRL A, direct Exclusive-OR direct byte to A 2 2
XRL A, @Ri Exclusive-OR indirect RAM to A 1 2
XRL A, #data Exclusive-OR immediate to A 2 2
XRL direct, A Exclusive-OR A to direct byte 2 2
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Notes on Registers, Operands and Addressing Modes:

Rn—Register R0–R7 of the currently selected register bank.

@Ri—Data RAM location addressed indirectly through R0 or R1.

rel—8-bit, signed (twos complement) offset relative to the first byte of the following instruction. Used by
SJMP and all conditional jumps.

direct—8-bit internal data location’s address. This could be a direct-access Data RAM location (0x00–
0x7F) or an SFR (0x80–0xFF).

#data—8-bit constant

#data16—16-bit constant

bit—Direct-accessed bit in Data RAM or SFR

addr11—11-bit destination address used by ACALL and AJMP. The destination must be within the
same 2 kB page of program memory as the first byte of the following instruction.

addr16—16-bit destination address used by LCALL and LJMP. The destination may be anywhere within
the 8 kB program memory space.

There is one unused opcode (0xA5) that performs the same function as NOP.
All mnemonics copyrighted © Intel Corporation 1980.
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SFR Address = 0xD0; Bit-Addressable

SFR Definition 14.6. PSW: Program Status Word

Bit 7 6 5 4 3 2 1 0

Name CY AC F0 RS[1:0] OV F1 PARITY

Type R/W R/W R/W R/W R/W R/W R

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7 CY Carry Flag.

This bit is set when the last arithmetic operation resulted in a carry (addition) or a bor-
row (subtraction). It is cleared to logic 0 by all other arithmetic operations.

6 AC Auxiliary Carry Flag.

This bit is set when the last arithmetic operation resulted in a carry into (addition) or a 
borrow from (subtraction) the high order nibble. It is cleared to logic 0 by all other arith-
metic operations.

5 F0 User Flag 0.

This is a bit-addressable, general purpose flag for use under software control.

4:3 RS[1:0] Register Bank Select.

These bits select which register bank is used during register accesses.
00: Bank 0, Addresses 0x00-0x07
01: Bank 1, Addresses 0x08-0x0F
10: Bank 2, Addresses 0x10-0x17
11: Bank 3, Addresses 0x18-0x1F

2 OV Overflow Flag.

This bit is set to 1 under the following circumstances:
An ADD, ADDC, or SUBB instruction causes a sign-change overflow.
A MUL instruction results in an overflow (result is greater than 255).
A DIV instruction causes a divide-by-zero condition.

The OV bit is cleared to 0 by the ADD, ADDC, SUBB, MUL, and DIV instructions in all 
other cases.

1 F1 User Flag 1.

This is a bit-addressable, general purpose flag for use under software control.

0 PARITY Parity Flag.

This bit is set to logic 1 if the sum of the eight bits in the accumulator is odd and cleared 
if the sum is even.
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18.  Interrupts

The C8051F80x-83x includes an extended interrupt system supporting a total of 15 interrupt sources with
two priority levels. The allocation of interrupt sources between on-chip peripherals and external input pins
varies according to the specific version of the device. Each interrupt source has one or more associated
interrupt-pending flag(s) located in an SFR. When a peripheral or external source meets a valid interrupt
condition, the associated interrupt-pending flag is set to logic 1.

If interrupts are enabled for the source, an interrupt request is generated when the interrupt-pending flag is
set. As soon as execution of the current instruction is complete, the CPU generates an LCALL to a prede-
termined address to begin execution of an interrupt service routine (ISR). Each ISR must end with an RETI
instruction, which returns program execution to the next instruction that would have been executed if the
interrupt request had not occurred. If interrupts are not enabled, the interrupt-pending flag is ignored by the
hardware and program execution continues as normal. (The interrupt-pending flag is set to logic 1 regard-
less of the interrupt's enable/disable state.)

Each interrupt source can be individually enabled or disabled through the use of an associated interrupt
enable bit in an SFR (IE–EIE1). However, interrupts must first be globally enabled by setting the EA bit
(IE.7) to logic 1 before the individual interrupt enables are recognized. Setting the EA bit to logic 0 disables
all interrupt sources regardless of the individual interrupt-enable settings.

Some interrupt-pending flags are automatically cleared by the hardware when the CPU vectors to the ISR.
However, most are not cleared by the hardware and must be cleared by software before returning from the
ISR. If an interrupt-pending flag remains set after the CPU completes the return-from-interrupt (RETI)
instruction, a new interrupt request will be generated immediately and the CPU will re-enter the ISR after
the completion of the next instruction.
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The following guidelines are recommended for any system that contains routines which write or erase
Flash from code.

19.4.1. VDD Maintenance and the VDD Monitor

1. If the system power supply is subject to voltage or current "spikes," add sufficient transient protection 
devices to the power supply to ensure that the supply voltages listed in the Absolute Maximum Ratings 
table are not exceeded.

2. Make certain that the minimum VDD rise time specification of 1 ms is met. If the system cannot meet 
this rise time specification, then add an external VDD brownout circuit to the RST pin of the device that 
holds the device in reset until VDD reaches the minimum device operating voltage and re-asserts RST 
if VDD drops below the minimum device operating voltage.

3. Keep the on-chip VDD Monitor enabled and enable the VDD Monitor as a reset source as early in code 
as possible. This should be the first set of instructions executed after the Reset Vector. For C-based 
systems, this will involve modifying the startup code added by the C compiler. See your compiler 
documentation for more details. Make certain that there are no delays in software between enabling the 
VDD Monitor and enabling the VDD Monitor as a reset source. Code examples showing this can be 
found in “AN201: Writing to Flash from Firmware," available from the Silicon Laboratories website.

Note: On C8051F80x-83x devices, both the VDD Monitor and the VDD Monitor reset source must be enabled to write 
or erase Flash without generating a Flash Error Device Reset.

On C8051F80x-83x devices, both the VDD Monitor and the VDD Monitor reset source are enabled by hardware 
after a power-on reset.

4. As an added precaution, explicitly enable the VDD Monitor and enable the VDD Monitor as a reset 
source inside the functions that write and erase Flash memory. The VDD Monitor enable instructions 
should be placed just after the instruction to set PSWE to a 1, but before the Flash write or erase 
operation instruction.

5. Make certain that all writes to the RSTSRC (Reset Sources) register use direct assignment operators 
and explicitly DO NOT use the bit-wise operators (such as AND or OR). For example, "RSTSRC = 
0x02" is correct, but "RSTSRC |= 0x02" is incorrect.

6. Make certain that all writes to the RSTSRC register explicitly set the PORSF bit to a 1. Areas to check 
are initialization code which enables other reset sources, such as the Missing Clock Detector or 
Comparator, for example, and instructions which force a Software Reset. A global search on "RSTSRC" 
can quickly verify this.

19.4.2. PSWE Maintenance

1. Reduce the number of places in code where the PSWE bit (b0 in PSCTL) is set to a 1. There should be 
exactly one routine in code that sets PSWE to a 1 to write Flash bytes and one routine in code that sets 
both PSWE and PSEE both to a 1 to erase Flash pages.

2. Minimize the number of variable accesses while PSWE is set to a 1. Handle pointer address updates 
and loop maintenance outside the "PSWE = 1;... PSWE = 0;" area. Code examples showing this can be 
found in “AN201: Writing to Flash from Firmware," available from the Silicon Laboratories website.

3. Disable interrupts prior to setting PSWE to a 1 and leave them disabled until after PSWE has been 
reset to 0. Any interrupts posted during the Flash write or erase operation will be serviced in priority 
order after the Flash operation has been completed and interrupts have been re-enabled by software.

4. Make certain that the Flash write and erase pointer variables are not located in XRAM. See your 
compiler documentation for instructions regarding how to explicitly locate variables in different memory 
areas.

5. Add address bounds checking to the routines that write or erase Flash memory to ensure that a routine 
called with an illegal address does not result in modification of the Flash.
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21.  Reset Sources

Reset circuitry allows the controller to be easily placed in a predefined default condition. On entry to this
reset state, the following occur:

 CIP-51 halts program execution

 Special Function Registers (SFRs) are initialized to their defined reset values

 External Port pins are forced to a known state

 Interrupts and timers are disabled. 

All SFRs are reset to the predefined values noted in the SFR detailed descriptions. The contents of internal
data memory are unaffected during a reset; any previously stored data is preserved. However, since the
stack pointer SFR is reset, the stack is effectively lost, even though the data on the stack is not altered. 

The Port I/O latches are reset to 0xFF (all logic ones) in open-drain mode. Weak pullups are enabled
during and after the reset. For VDD Monitor and power-on resets, the RST pin is driven low until the device
exits the reset state.

On exit from the reset state, the program counter (PC) is reset, and the system clock defaults to the inter-
nal oscillator. The Watchdog Timer is enabled with the system clock divided by 12 as its clock source. Pro-
gram execution begins at location 0x0000.

Figure 21.1. Reset Sources

PCA
WDT

Missing 
Clock 

Detector 
(one-
shot)

(Software Reset)

 

System Reset

Reset 
Funnel

Px.x

Px.x

EN

SWRSF

System
Clock CIP-51

Microcontroller 
Core

Extended Interrupt 
Handler

EN

W
D

T
 

E
n

ab
le

M
C

D
 

E
n

ab
le

Errant 
FLASH 

Operation

RST
(wired-OR)

Power On 
Reset

'0'

+
-

Comparator 0

C0RSEF

VDD

+
-

Supply 
Monitor

Enable



C8051F80x-83x

126 Rev. 1.0

SFR Address = 0xFF

21.3.  External Reset
The external RST pin provides a means for external circuitry to force the device into a reset state. Assert-
ing an active-low signal on the RST pin generates a reset; an external pullup and/or decoupling of the RST
pin may be necessary to avoid erroneous noise-induced resets. See Section “7. Electrical Characteristics”
on page 39 for complete RST pin specifications. The PINRSF flag (RSTSRC.0) is set on exit from an exter-
nal reset.

21.4.  Missing Clock Detector Reset
The Missing Clock Detector (MCD) is a one-shot circuit that is triggered by the system clock. If the system
clock remains high or low for more than the MCD timeout, the one-shot will time out and generate a reset.
After a MCD reset, the MCDRSF flag (RSTSRC.2) will read 1, signifying the MCD as the reset source; oth-
erwise, this bit reads 0. Writing a 1 to the MCDRSF bit enables the Missing Clock Detector; writing a 0 dis-
ables it. The state of the RST pin is unaffected by this reset. 

SFR Definition 21.1. VDM0CN: VDD Monitor Control

Bit 7 6 5 4 3 2 1 0

Name VDMEN VDDSTAT

Type R/W R R R R R R R

Reset Varies Varies Varies Varies Varies Varies Varies Varies

Bit Name Function

7 VDMEN VDD Monitor Enable.

This bit turns the VDD monitor circuit on/off. The VDD Monitor cannot generate sys-
tem resets until it is also selected as a reset source in register RSTSRC (SFR Defi-
nition 21.2). Selecting the VDD monitor as a reset source before it has stabilized 
may generate a system reset. In systems where this reset would be undesirable, a 
delay should be introduced between enabling the VDD Monitor and selecting it as a 
reset source. After a power-on reset, the VDD monitor is enabled, and this bit will 
read 1. The state of this bit is sticky through any other reset source.
0: VDD Monitor Disabled.
1: VDD Monitor Enabled.

6 VDDSTAT VDD Status.

This bit indicates the current power supply status (VDD Monitor output). 
0: VDD is at or below the VDD monitor threshold.
1: VDD is above the VDD monitor threshold.

5:0 Unused Read = Varies; Write = Don’t care.
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SFR Address = 0xEF

SFR Definition 21.2. RSTSRC: Reset Source

Bit 7 6 5 4 3 2 1 0

Name FERROR C0RSEF SWRSF WDTRSF MCDRSF PORSF PINRSF

Type R R R/W R/W R R/W R/W R

Reset 0 Varies Varies Varies Varies Varies Varies Varies

Bit Name Description Write Read

7 Unused Unused. Don’t care. 0

6 FERROR Flash Error Reset Flag. N/A Set to 1 if Flash 
read/write/erase error 
caused the last reset.

5 C0RSEF Comparator0 Reset Enable 
and Flag.

Writing a 1 enables 
Comparator0 as a reset 
source (active-low).

Set to 1 if Comparator0 
caused the last reset.

4 SWRSF Software Reset Force and 
Flag.

Writing a 1 forces a sys-
tem reset.

Set to 1 if last reset was 
caused by a write to 
SWRSF.

3 WDTRSF Watchdog Timer Reset Flag. N/A Set to 1 if Watchdog Timer 
overflow caused the last 
reset.

2 MCDRSF Missing Clock Detector 
Enable and Flag.

Writing a 1 enables the 
Missing Clock Detector. 
The MCD triggers a reset 
if a missing clock condition 
is detected.

Set to 1 if Missing Clock 
Detector timeout caused 
the last reset.

1 PORSF Power-On / VDD Monitor 
Reset Flag, and VDD monitor 
Reset Enable.

Writing a 1 enables the 
VDD monitor as a reset 
source. 
Writing 1 to this bit 
before the VDD monitor 
is enabled and stabilized 
may cause a system 
reset.

Set to 1 anytime a power-
on or VDD monitor reset 
occurs.
When set to 1 all other 
RSTSRC flags are inde-
terminate.

0 PINRSF HW Pin Reset Flag. N/A Set to 1 if RST pin caused 
the last reset.

Note: Do not use read-modify-write operations on this register
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24.2.  32-bit CRC Algorithm
The C8051F80x-83x CRC unit calculates the 32-bit CRC using a poly of 0x04C11DB7. The CRC-32 algo-
rithm is "reflected", meaning that all of the input bytes and the final 32-bit output are bit-reversed in the pro-
cessing engine. The following is a description of a simplified CRC algorithm that produces results identical
to the hardware:

1. XOR the least-significant byte of the current CRC result with the input byte. If this is the first iteration of 
the CRC unit, the current CRC result will be the set initial value (0x00000000 or 0xFFFFFFFF).

2. Right-shift the CRC result.

3. If the LSB of the CRC result is set, XOR the CRC result with the reflected polynomial (0xEDB88320).

4. Repeat at Step 2 for the number of input bits (8).

For example, the 32-bit C8051F80x-83x CRC algorithm can be described by the following code:

unsigned long UpdateCRC (unsigned long CRC_acc, unsigned char CRC_input){
unsigned char i; // loop counter
#define POLY 0xEDB88320 // bit-reversed version of the poly 0x04C11DB7
// Create the CRC "dividend" for polynomial arithmetic (binary arithmetic
// with no carries)
CRC_acc = CRC_acc ^ CRC_input;
// "Divide" the poly into the dividend using CRC XOR subtraction
// CRC_acc holds the "remainder" of each divide
// Only complete this division for 8 bits since input is 1 byte
for (i = 0; i < 8; i++)
{

// Check if the MSB is set (if MSB is 1, then the POLY can "divide"
// into the "dividend")
if ((CRC_acc & 0x00000001) == 0x00000001)
{

// if so, shift the CRC value, and XOR "subtract" the poly
CRC_acc = CRC_acc >> 1;
CRC_acc ^= POLY;

}
else
{

// if not, just shift the CRC value
CRC_acc = CRC_acc >> 1;

}
}
return CRC_acc; // Return the final remainder (CRC value)

}
Table 24.2 lists example input values and the associated outputs using the 32-bit C8051F80x-83x CRC
algorithm (an initial value of 0xFFFFFFFF is used):

Table 24.2. Example 32-bit CRC Outputs

Input Output

0x63 0xF9462090
0xAA, 0xBB, 0xCC 0x41B207B3

0x00, 0x00, 0xAA, 0xBB, 0xCC 0x78D129BC
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25.1.  Signal Descriptions
The four signals used by SPI0 (MOSI, MISO, SCK, NSS) are described below. 

25.1.1. Master Out, Slave In (MOSI)

The master-out, slave-in (MOSI) signal is an output from a master device and an input to slave devices. It
is used to serially transfer data from the master to the slave. This signal is an output when SPI0 is operat-
ing as a master and an input when SPI0 is operating as a slave. Data is transferred most-significant bit
first. When configured as a master, MOSI is driven by the MSB of the shift register in both 3- and 4-wire
mode.

25.1.2. Master In, Slave Out (MISO)

The master-in, slave-out (MISO) signal is an output from a slave device and an input to the master device.
It is used to serially transfer data from the slave to the master. This signal is an input when SPI0 is operat-
ing as a master and an output when SPI0 is operating as a slave. Data is transferred most-significant bit
first. The MISO pin is placed in a high-impedance state when the SPI module is disabled and when the SPI
operates in 4-wire mode as a slave that is not selected. When acting as a slave in 3-wire mode, MISO is
always driven by the MSB of the shift register.

25.1.3. Serial Clock (SCK)

The serial clock (SCK) signal is an output from the master device and an input to slave devices. It is used
to synchronize the transfer of data between the master and slave on the MOSI and MISO lines. SPI0 gen-
erates this signal when operating as a master. The SCK signal is ignored by a SPI slave when the slave is
not selected (NSS = 1) in 4-wire slave mode.

25.1.4. Slave Select (NSS)

The function of the slave-select (NSS) signal is dependent on the setting of the NSSMD1 and NSSMD0
bits in the SPI0CN register. There are three possible modes that can be selected with these bits:

1. NSSMD[1:0] = 00: 3-Wire Master or 3-Wire Slave Mode: SPI0 operates in 3-wire mode, and NSS is 
disabled. When operating as a slave device, SPI0 is always selected in 3-wire mode. Since no select 
signal is present, SPI0 must be the only slave on the bus in 3-wire mode. This is intended for point-to-
point communication between a master and one slave.

2. NSSMD[1:0] = 01: 4-Wire Slave or Multi-Master Mode: SPI0 operates in 4-wire mode, and NSS is 
enabled as an input. When operating as a slave, NSS selects the SPI0 device. When operating as a 
master, a 1-to-0 transition of the NSS signal disables the master function of SPI0 so that multiple 
master devices can be used on the same SPI bus.

3. NSSMD[1:0] = 1x: 4-Wire Master Mode: SPI0 operates in 4-wire mode, and NSS is enabled as an 
output. The setting of NSSMD0 determines what logic level the NSS pin will output. This configuration 
should only be used when operating SPI0 as a master device.

See Figure 25.2, Figure 25.3, and Figure 25.4 for typical connection diagrams of the various operational
modes. Note that the setting of NSSMD bits affects the pinout of the device. When in 3-wire master or
3-wire slave mode, the NSS pin will not be mapped by the crossbar. In all other modes, the NSS signal will
be mapped to a pin on the device. See Section “23. Port Input/Output” on page 138 for general purpose
port I/O and crossbar information.

25.2.  SPI0 Master Mode Operation
A SPI master device initiates all data transfers on a SPI bus. SPI0 is placed in master mode by setting the
Master Enable flag (MSTEN, SPI0CN.6). Writing a byte of data to the SPI0 data register (SPI0DAT) when
in master mode writes to the transmit buffer. If the SPI shift register is empty, the byte in the transmit buffer
is moved to the shift register, and a data transfer begins. The SPI0 master immediately shifts out the data
serially on the MOSI line while providing the serial clock on SCK. The SPIF (SPI0CN.7) flag is set to logic
1 at the end of the transfer. If interrupts are enabled, an interrupt request is generated when the SPIF flag
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26.5.4. Read Sequence (Slave)

During a read sequence, an SMBus master reads data from a slave device. The slave in this transfer will
be a receiver during the address byte, and a transmitter during all data bytes. When slave events are
enabled (INH = 0), the interface enters Slave Receiver Mode (to receive the slave address) when a START
followed by a slave address and direction bit (READ in this case) is received. If hardware ACK generation
is disabled, upon entering Slave Receiver Mode, an interrupt is generated and the ACKRQ bit is set. The
software must respond to the received slave address with an ACK, or ignore the received slave address
with a NACK. If hardware ACK generation is enabled, the hardware will apply the ACK for a slave address
which matches the criteria set up by SMB0ADR and SMB0ADM. The interrupt will occur after the ACK
cycle.

If the received slave address is ignored (by software or hardware), slave interrupts will be inhibited until the
next START is detected. If the received slave address is acknowledged, zero or more data bytes are trans-
mitted. If the received slave address is acknowledged, data should be written to SMB0DAT to be transmit-
ted. The interface enters slave transmitter mode, and transmits one or more bytes of data. After each byte
is transmitted, the master sends an acknowledge bit; if the acknowledge bit is an ACK, SMB0DAT should
be written with the next data byte. If the acknowledge bit is a NACK, SMB0DAT should not be written to
before SI is cleared (an error condition may be generated if SMB0DAT is written following a received
NACK while in slave transmitter mode). The interface exits slave transmitter mode after receiving a STOP.
Note that the interface will switch to slave receiver mode if SMB0DAT is not written following a Slave
Transmitter interrupt. Figure 26.8 shows a typical slave read sequence. Two transmitted data bytes are
shown, though any number of bytes may be transmitted. Notice that all of the “data byte transferred” inter-
rupts occur after the ACK cycle in this mode, regardless of whether hardware ACK generation is enabled.

Figure 26.8. Typical Slave Read Sequence

26.6.  SMBus Status Decoding
The current SMBus status can be easily decoded using the SMB0CN register. The appropriate actions to
take in response to an SMBus event depend on whether hardware slave address recognition and ACK
generation is enabled or disabled. Table 26.5 describes the typical actions when hardware slave address
recognition and ACK generation is disabled. Table 26.6 describes the typical actions when hardware slave
address recognition and ACK generation is enabled. In the tables, STATUS VECTOR refers to the four
upper bits of SMB0CN: MASTER, TXMODE, STA, and STO. The shown response options are only the typ-
ical responses; application-specific procedures are allowed as long as they conform to the SMBus specifi-
cation. Highlighted responses are allowed by hardware but do not conform to the SMBus specification.

PRSLAS Data ByteData Byte A NA

S = START
P = STOP
N = NACK
R = READ
SLA = Slave Address

Received by SMBus 
Interface

Transmitted by 
SMBus Interface

Interrupts with Hardware ACK Disabled (EHACK = 0)

Interrupts with Hardware ACK Enabled (EHACK = 1)
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SFR Addresses: PCA0CPM0 = 0xDA, PCA0CPM1 = 0xDB, PCA0CPM2 = 0xDC 

SFR Definition 29.4. PCA0CPMn: PCA0 Capture/Compare Mode

Bit 7 6 5 4 3 2 1 0

Name PWM16n ECOMn CAPPn CAPNn MATn TOGn PWMn ECCFn

Type R/W R/W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7 PWM16n 16-bit Pulse Width Modulation Enable.

This bit enables 16-bit mode when Pulse Width Modulation mode is enabled.
0: 8 to 15-bit PWM selected.
1: 16-bit PWM selected.

6 ECOMn Comparator Function Enable. 

This bit enables the comparator function for PCA module n when set to 1.

5 CAPPn Capture Positive Function Enable. 

This bit enables the positive edge capture for PCA module n when set to 1. 

4 CAPNn Capture Negative Function Enable. 

This bit enables the negative edge capture for PCA module n when set to 1. 

3 MATn Match Function Enable. 

This bit enables the match function for PCA module n when set to 1. When enabled, 
matches of the PCA counter with a module's capture/compare register cause the CCFn 
bit in PCA0MD register to be set to logic 1. 

2 TOGn Toggle Function Enable. 

This bit enables the toggle function for PCA module n when set to 1. When enabled, 
matches of the PCA counter with a module's capture/compare register cause the logic 
level on the CEXn pin to toggle. If the PWMn bit is also set to logic 1, the module oper-
ates in Frequency Output Mode.

1 PWMn Pulse Width Modulation Mode Enable.

This bit enables the PWM function for PCA module n when set to 1. When enabled, a 
pulse width modulated signal is output on the CEXn pin. 8 to 15-bit PWM is used if 
PWM16n is cleared; 16-bit mode is used if PWM16n is set to logic 1. If the TOGn bit is 
also set, the module operates in Frequency Output Mode.

0 ECCFn Capture/Compare Flag Interrupt Enable. 

This bit sets the masking of the Capture/Compare Flag (CCFn) interrupt. 
0: Disable CCFn interrupts.
1: Enable a Capture/Compare Flag interrupt request when CCFn is set.

Note: When the WDTE bit is set to 1, the PCA0CPM2 register cannot be modified, and module 2 acts as the 
watchdog timer. To change the contents of the PCA0CPM2 register or the function of module 2, the Watchdog 
Timer must be disabled.
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C2 Address: 0x00

C2 Address: 0x01

C2 Register Definition 30.2. DEVICEID: C2 Device ID

Bit 7 6 5 4 3 2 1 0

Name DEVICEID[7:0]

Type R/W

Reset 1 1 1 0 0 0 0 1

Bit Name Function

7:0 DEVICEID[7:0] Device ID.

This read-only register returns the 8-bit device ID: 0x23 (C8051F80x-83x).

C2 Register Definition 30.3. REVID: C2 Revision ID

Bit 7 6 5 4 3 2 1 0

Name REVID[7:0]

Type R/W

Reset Varies Varies Varies Varies Varies Varies Varies Varies

Bit Name Function

7:0 REVID[7:0] Revision ID.

This read-only register returns the 8-bit revision ID. For example: 0x00 = Revision A.



C8051F80x-83x

Rev. 1.0 248

DOCUMENT CHANGE LIST

Revision 0.2 to Revision 1.0
 Updated Electrical Specification Tables to reflect production characterization data.

 Added Minimum SYSCLK specification for writing or erasing Flash.

 Added caution for going into suspend with wake source active (Section 20.3)

 Corrected VDM0CN reset values to "Varies".

 Removed mention of IDAC in Pinout table.


