
Silicon Labs - C8051F814-GMR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Not For New Designs

Core Processor 8051

Core Size 8-Bit

Speed 25MHz

Connectivity SMBus (2-Wire/I²C), SPI, UART/USART

Peripherals POR, PWM, Temp Sensor, WDT

Number of I/O 17

Program Memory Size 8KB (8K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 512 x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V

Data Converters A/D 16x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 20-VFQFN Exposed Pad

Supplier Device Package 20-QFN (4x4)

Purchase URL https://www.e-xfl.com/product-detail/silicon-labs/c8051f814-gmr

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/c8051f814-gmr-4401466
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

C8051F80x-83x

6 Rev. 1.0

26.4.4. Data Register .. 192
26.5. SMBus Transfer Modes... 193

26.5.1. Write Sequence (Master) .. 193
26.5.2. Read Sequence (Master) .. 194
26.5.3. Write Sequence (Slave) .. 195
26.5.4. Read Sequence (Slave) .. 196

26.6. SMBus Status Decoding.. 196
27. UART0... 201

27.1. Enhanced Baud Rate Generation.. 202
27.2. Operational Modes .. 203

27.2.1. 8-Bit UART.. 203
27.2.2. 9-Bit UART.. 204

27.3. Multiprocessor Communications ... 205
28. Timers ... 209

28.1. Timer 0 and Timer 1 .. 211
28.1.1. Mode 0: 13-bit Counter/Timer ... 211
28.1.2. Mode 1: 16-bit Counter/Timer ... 212
28.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload..................................... 212
28.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)................................ 213

28.2. Timer 2 .. 219
28.2.1. 16-bit Timer with Auto-Reload... 219
28.2.2. 8-bit Timers with Auto-Reload... 220

29. Programmable Counter Array... 225
29.1. PCA Counter/Timer ... 226
29.2. PCA0 Interrupt Sources... 227
29.3. Capture/Compare Modules ... 228

29.3.1. Edge-Triggered Capture Mode ... 229
29.3.2. Software Timer (Compare) Mode.. 230
29.3.3. High-Speed Output Mode ... 231
29.3.4. Frequency Output Mode ... 232
29.3.5. 8-bit through 15-bit Pulse Width Modulator Modes.............................. 232

29.3.5.1. 8-bit Pulse Width Modulator Mode... 233
29.3.5.2. 9-bit through 15-bit Pulse Width Modulator Mode 234

29.3.6. 16-Bit Pulse Width Modulator Mode... 235
29.4. Watchdog Timer Mode .. 236

29.4.1. Watchdog Timer Operation ... 236
29.4.2. Watchdog Timer Usage .. 237

29.5. Register Descriptions for PCA0... 237
30. C2 Interface .. 244

30.1. C2 Interface Registers... 244
30.2. C2CK Pin Sharing ... 247

Document Change List.. 248
Contact Information... 250

C8051F80x-83x

Rev. 1.0 9

List of Figures

1. System Overview
Figure 1.1. C8051F800, C8051F806, C8051F812, C8051F818 Block Diagram 16
Figure 1.2. C8051F801, C8051F807, C8051F813, C8051F819 Block Diagram 17
Figure 1.3. C8051F802, C8051F808, C8051F814, C8051F820 Block Diagram 18
Figure 1.4. C8051F803, C8051F809, C8051F815, C8051F821 Block Diagram 19
Figure 1.5. C8051F804, C8051F810, C8051F816, C8051F822 Block Diagram 20
Figure 1.6. C8051F805, C8051F811, C8051F817, C8051F823 Block Diagram 21
Figure 1.7. C8051F824, C8051F827, C8051F830, C8051F833 Block Diagram 22
Figure 1.8. C8051F825, C8051F828, C8051F831, C8051F834 Block Diagram 23
Figure 1.9. C8051F826, C8051F829, C8051F832, C8051F835 Block Diagram 24

2. Ordering Information
3. Pin Definitions

Figure 3.1. QFN-20 Pinout Diagram (Top View) ... 30
Figure 3.2. QSOP-24 Pinout Diagram (Top View) ... 31
Figure 3.3. SOIC-16 Pinout Diagram (Top View) .. 32

4. QFN-20 Package Specifications
Figure 4.1. QFN-20 Package Drawing .. 33
Figure 4.2. QFN-20 Recommended PCB Land Pattern .. 34

5. QSOP-24 Package Specifications
Figure 5.1. QSOP-24 Package Drawing .. 35
Figure 5.2. QSOP-24 PCB Land Pattern ... 36

6. SOIC-16 Package Specifications
Figure 6.1. SOIC-16 Package Drawing ... 37
Figure 6.2. SOIC-16 PCB Land Pattern .. 38

7. Electrical Characteristics
8. 10-Bit ADC (ADC0)

Figure 8.1. ADC0 Functional Block Diagram ... 46
Figure 8.2. 10-Bit ADC Track and Conversion Example Timing 48
Figure 8.3. ADC0 Equivalent Input Circuits ... 49
Figure 8.4. ADC Window Compare Example: Right-Justified Data 55
Figure 8.5. ADC Window Compare Example: Left-Justified Data 55
Figure 8.6. ADC0 Multiplexer Block Diagram .. 56

9. Temperature Sensor
Figure 9.1. Temperature Sensor Transfer Function .. 58
Figure 9.2. Temperature Sensor Error with 1-Point Calibration at 0 °C 59

10. Voltage and Ground Reference Options
Figure 10.1. Voltage Reference Functional Block Diagram 60

11. Voltage Regulator (REG0)
12. Comparator0

Figure 12.1. Comparator0 Functional Block Diagram ... 65
Figure 12.2. Comparator Hysteresis Plot .. 66
Figure 12.3. Comparator Input Multiplexer Block Diagram 69

13. Capacitive Sense (CS0)

C8051F80x-83x

Rev. 1.0 21

Figure 1.6. C8051F805, C8051F811, C8051F817, C8051F823 Block Diagram

System Clock
Configuration

Debug /
Programming

Hardware

CIP-51 8051
Controller Core

Flash Memory
‘F805, ‘F811: 16 kB
‘F817, ‘F823: 8 kB

256 Byte RAM

External
Clock
Circuit

Precision
Internal

Oscillator

XTAL2

Power On
Reset

Reset

P2.0/C2D

256 Byte XRAM

XTAL1

Regulator
Core PowerVDD

GND

Peripheral
Power

10-bit
500 ksps
ADC

A
M
U
X Temp Sensor

Comparator

+
-

VDD

VDD

VREF

SFR
Bus

(‘F805, ‘F817 Only)

RST/C2CK

SYSCLK

Digital Peripherals

UART

Timers
0, 1

PCA/
WDT

SMBus

Priority
Crossbar
Decoder

Crossbar Control

Port I/O Configuration

SPI

Port 0
Drivers

P0.0/VREF
P0.1/AGND
P0.2/XTAL1
P0.3/XTAL2
P0.4/TX
P0.5/RX
P0.6/CNVSTR
P0.7

Port 1
Drivers

P1.0
P1.1
P1.2
P1.3

Port 2
Drivers

P2.0/C2D

Timer 2 /
RTC

A
M
U
X

Analog Peripherals

VREG Output

VREG Output

12 Channels

C8051F80x-83x

47 Rev. 1.0

8.1. Output Code Formatting
The ADC measures the input voltage with reference to GND. The registers ADC0H and ADC0L contain the
high and low bytes of the output conversion code from the ADC at the completion of each conversion. Data
can be right-justified or left-justified, depending on the setting of the AD0LJST bit. Conversion codes are
represented as 10-bit unsigned integers. Inputs are measured from 0 to VREF x 1023/1024. Example
codes are shown below for both right-justified and left-justified data. Unused bits in the ADC0H and ADC0L
registers are set to 0.

8.2. 8-Bit Mode
Setting the ADC08BE bit in register ADC0CF to 1 will put the ADC in 8-bit mode. In 8-bit mode, only the 8
MSBs of data are converted, and the ADC0H register holds the results. The AD0LJST bit is ignored for 8-
bit mode. 8-bit conversions take two fewer SAR clock cycles than 10-bit conversions, so the conversion is
completed faster, and a 500 ksps sampling rate can be achieved with a slower SAR clock.

8.3. Modes of Operation
ADC0 has a maximum conversion speed of 500 ksps. The ADC0 conversion clock is a divided version of
the system clock, determined by the AD0SC bits in the ADC0CF register.

8.3.1. Starting a Conversion

A conversion can be initiated in one of six ways, depending on the programmed states of the ADC0 Start of
Conversion Mode bits (AD0CM2–0) in register ADC0CN. Conversions may be initiated by one of the fol-
lowing:

1. Writing a 1 to the AD0BUSY bit of register ADC0CN

2. A Timer 0 overflow (i.e., timed continuous conversions)

3. A Timer 2 overflow

4. A Timer 1 overflow

5. A rising edge on the CNVSTR input signal

Writing a 1 to AD0BUSY provides software control of ADC0 whereby conversions are performed "on-
demand". During conversion, the AD0BUSY bit is set to logic 1 and reset to logic 0 when the conversion is
complete. The falling edge of AD0BUSY triggers an interrupt (when enabled) and sets the ADC0 interrupt
flag (AD0INT). When polling for ADC conversion completions, the ADC0 interrupt flag (AD0INT) should be
used. Converted data is available in the ADC0 data registers, ADC0H:ADC0L, when bit AD0INT is logic 1.
When Timer 2 overflows are used as the conversion source, Low Byte overflows are used if Timer 2/3 is in
8-bit mode; High byte overflows are used if Timer 2 is in 16-bit mode. See Section “28. Timers” on
page 209 for timer configuration.

Important Note About Using CNVSTR: The CNVSTR input pin also functions as a Port I/O pin. When the
CNVSTR input is used as the ADC0 conversion source, the associated pin should be skipped by the Digi-
tal Crossbar. See Section “23. Port Input/Output” on page 138 for details on Port I/O configuration.

Input Voltage Right-Justified ADC0H:ADC0L
(AD0LJST = 0)

Left-Justified ADC0H:ADC0L
(AD0LJST = 1)

VREF x 1023/1024 0x03FF 0xFFC0
VREF x 512/1024 0x0200 0x8000
VREF x 256/1024 0x0100 0x4000
0 0x0000 0x0000

C8051F80x-83x

Rev. 1.0 69

12.1. Comparator Multiplexer
C8051F80x-83x devices include an analog input multiplexer to connect Port I/O pins to the comparator
inputs. The Comparator0 inputs are selected in the CPT0MX register (SFR Definition 12.3). The CMX0P3–
CMX0P0 bits select the Comparator0 positive input; the CMX0N3–CMX0N0 bits select the Comparator0
negative input. Important Note About Comparator Inputs: The Port pins selected as comparator inputs
should be configured as analog inputs in their associated Port configuration register, and configured to be
skipped by the Crossbar (for details on Port configuration, see Section “23.6. Special Function Registers
for Accessing and Configuring Port I/O” on page 152).

Figure 12.3. Comparator Input Multiplexer Block Diagram

 +

 -

CP0 +

CP0 -

CPT0MX

C
M

X
0P

0

C
M

X
0P

1

C
M

X
0P

2

C
M

X
0P

3

C
M

X
0N

3

C
M

X
0N

2

C
M

X
0N

1

C
M

X
0N

0

GND

VDD

P0.0
P0.2
P0.4
P0.6
P1.0
P1.2
P1.4
P1.6

VREG Output

P0.1
P0.3
P0.5
P0.7
P1.1
P1.3
P1.5
P1.7

VREG Output

Note: P1.4-P1.7
are not available
on the 16-pin
packages.

C8051F80x-83x

Rev. 1.0 77

SFR Address = 0xAC

SFR Address = 0xAB

SFR Definition 13.3. CS0DH: Capacitive Sense Data High Byte

Bit 7 6 5 4 3 2 1 0

Name CS0DH[7:0]

Type R R R R R R R R

Reset 0 0 0 0 0 0 0 0

Bit Name Description

7:0 CS0DH CS0 Data High Byte.

Stores the high byte of the last completed 16-bit Capacitive Sense conversion.

SFR Definition 13.4. CS0DL: Capacitive Sense Data Low Byte

Bit 7 6 5 4 3 2 1 0

Name CS0DL[7:0]

Type R R R R R R R R

Reset 0 0 0 0 0 0 0 0

Bit Name Description

7:0 CS0DL CS0 Data Low Byte.

Stores the low byte of the last completed 16-bit Capacitive Sense conversion.

C8051F80x-83x

Rev. 1.0 82

14. CIP-51 Microcontroller

The MCU system controller core is the CIP-51 microcontroller. The CIP-51 is fully compatible with the
MCS-51™ instruction set; standard 803x/805x assemblers and compilers can be used to develop soft-
ware. The MCU family has a superset of all the peripherals included with a standard 8051. The CIP-51
also includes on-chip debug hardware (see description in Section 30), and interfaces directly with the ana-
log and digital subsystems providing a complete data acquisition or control-system solution in a single inte-
grated circuit.

The CIP-51 Microcontroller core implements the standard 8051 organization and peripherals as well as
additional custom peripherals and functions to extend its capability (see Figure 14.1 for a block diagram).
The CIP-51 includes the following features:

Performance
The CIP-51 employs a pipelined architecture that greatly increases its instruction throughput over the stan-
dard 8051 architecture. In a standard 8051, all instructions except for MUL and DIV take 12 or 24 system
clock cycles to execute, and usually have a maximum system clock of 12 MHz. By contrast, the CIP-51
core executes 70% of its instructions in one or two system clock cycles, with no instructions taking more
than eight system clock cycles.

Figure 14.1. CIP-51 Block Diagram

Fully Compatible with MCS-51 Instruction Set
25 MIPS Peak Throughput with 25 MHz Clock
0 to 25 MHz Clock Frequency
Extended Interrupt Handler

Reset Input
Power Management Modes
On-chip Debug Logic
Program and Data Memory Security

DATA BUS

TMP1 TMP2

PRGM. ADDRESS REG.

PC INCREMENTER

ALU
PSW

DATA BUS

D
A

T
A

 B
U

S

MEMORY
INTERFACE

MEM_ADDRESSD8

PIPELINE

BUFFER

DATA POINTER

INTERRUPT
INTERFACE

SYSTEM_IRQs

EMULATION_IRQ

MEM_CONTROL

CONTROL
LOGIC

A16

PROGRAM COUNTER (PC)

STOP

CLOCK

RESET

IDLE
POWER CONTROL

REGISTER

D
A

T
A

 B
U

S

SFR
BUS

INTERFACE

SFR_ADDRESS

SFR_CONTROL

SFR_WRITE_DATA

SFR_READ_DATA

D8

D8

B REGISTER

D
8

D
8

ACCUMULATOR

D
8

D8

D8

D8

D
8

D
8

D
8

D8

MEM_WRITE_DATA

MEM_READ_DATA

D
8

SRAM
ADDRESS
REGISTER

SRAM

D
8

STACK POINTER

D
8

C8051F80x-83x

83 Rev. 1.0

With the CIP-51's maximum system clock at 25 MHz, it has a peak throughput of 25 MIPS. The CIP-51 has
a total of 109 instructions. The table below shows the total number of instructions that require each execu-
tion time.

14.1. Instruction Set
The instruction set of the CIP-51 System Controller is fully compatible with the standard MCS-51™ instruc-
tion set. Standard 8051 development tools can be used to develop software for the CIP-51. All CIP-51
instructions are the binary and functional equivalent of their MCS-51™ counterparts, including opcodes,
addressing modes and effect on PSW flags. However, instruction timing is different than that of the stan-
dard 8051.

14.1.1. Instruction and CPU Timing

In many 8051 implementations, a distinction is made between machine cycles and clock cycles, with
machine cycles varying from 2 to 12 clock cycles in length. However, the CIP-51 implementation is based
solely on clock cycle timing. All instruction timings are specified in terms of clock cycles.

Due to the pipelined architecture of the CIP-51, most instructions execute in the same number of clock
cycles as there are program bytes in the instruction. Conditional branch instructions take one less clock
cycle to complete when the branch is not taken as opposed to when the branch is taken. Table 14.1 is the
CIP-51 Instruction Set Summary, which includes the mnemonic, number of bytes, and number of clock
cycles for each instruction.

Clocks to Execute 1 2 2/3 3 3/4 4 4/5 5 8

Number of Instructions 26 50 5 14 6 3 2 2 1

C8051F80x-83x

105 Rev. 1.0

SFR Address = 0xA8; Bit-Addressable

SFR Definition 18.1. IE: Interrupt Enable

Bit 7 6 5 4 3 2 1 0

Name EA ESPI0 ET2 ES0 ET1 EX1 ET0 EX0

Type R/W R/W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7 EA Enable All Interrupts.
Globally enables/disables all interrupts. It overrides individual interrupt mask settings.
0: Disable all interrupt sources.
1: Enable each interrupt according to its individual mask setting.

6 ESPI0 Enable Serial Peripheral Interface (SPI0) Interrupt.
This bit sets the masking of the SPI0 interrupts.
0: Disable all SPI0 interrupts.
1: Enable interrupt requests generated by SPI0.

5 ET2 Enable Timer 2 Interrupt.
This bit sets the masking of the Timer 2 interrupt.
0: Disable Timer 2 interrupt.
1: Enable interrupt requests generated by the TF2L or TF2H flags.

4 ES0 Enable UART0 Interrupt.
This bit sets the masking of the UART0 interrupt.
0: Disable UART0 interrupt.
1: Enable UART0 interrupt.

3 ET1 Enable Timer 1 Interrupt.
This bit sets the masking of the Timer 1 interrupt.
0: Disable all Timer 1 interrupt.
1: Enable interrupt requests generated by the TF1 flag.

2 EX1 Enable External Interrupt 1.
This bit sets the masking of External Interrupt 1.
0: Disable external interrupt 1.
1: Enable interrupt requests generated by the INT1 input.

1 ET0 Enable Timer 0 Interrupt.
This bit sets the masking of the Timer 0 interrupt.
0: Disable all Timer 0 interrupt.
1: Enable interrupt requests generated by the TF0 flag.

0 EX0 Enable External Interrupt 0.
This bit sets the masking of External Interrupt 0.
0: Disable external interrupt 0.
1: Enable interrupt requests generated by the INT0 input.

C8051F80x-83x

Rev. 1.0 115

features of the C8051F80x-83x devices.

19.4. Flash Write and Erase Guidelines
Any system which contains routines which write or erase Flash memory from software involves some risk
that the write or erase routines will execute unintentionally if the CPU is operating outside its specified
operating range of VDD, system clock frequency, or temperature. This accidental execution of Flash modi-
fying code can result in alteration of Flash memory contents causing a system failure that is only recover-
able by re-Flashing the code in the device.

To help prevent the accidental modification of Flash by firmware, the VDD Monitor must be enabled and
enabled as a reset source on C8051F80x-83x devices for the Flash to be successfully modified. If either
the VDD Monitor or the VDD Monitor reset source is not enabled, a Flash Error Device Reset will be
generated when the firmware attempts to modify the Flash.

Table 19.1. Flash Security Summary

Action C2 Debug
Interface

User Firmware executing from:

an unlocked page a locked page

Read, Write or Erase unlocked pages
(except page with Lock Byte)

Permitted Permitted Permitted

Read, Write or Erase locked pages
(except page with Lock Byte)

Not Permitted FEDR Permitted

Read or Write page containing Lock Byte
(if no pages are locked)

Permitted Permitted Permitted

Read or Write page containing Lock Byte
(if any page is locked)

Not Permitted FEDR Permitted

Read contents of Lock Byte
(if no pages are locked)

Permitted Permitted Permitted

Read contents of Lock Byte
(if any page is locked)

Not Permitted FEDR Permitted

Erase page containing Lock Byte
(if no pages are locked)

Permitted FEDR FEDR

Erase page containing Lock Byte—Unlock all
pages (if any page is locked)

Only by C2DE FEDR FEDR

Lock additional pages
(change 1s to 0s in the Lock Byte)

Not Permitted FEDR FEDR

Unlock individual pages
(change 0s to 1s in the Lock Byte)

Not Permitted FEDR FEDR

Read, Write or Erase Reserved Area Not Permitted FEDR FEDR

C2DE—C2 Device Erase (Erases all Flash pages including the page containing the Lock Byte)
FEDR—Not permitted; Causes Flash Error Device Reset (FERROR bit in RSTSRC is 1 after reset)

 All prohibited operations that are performed via the C2 interface are ignored (do not cause device
reset).

 Locking any Flash page also locks the page containing the Lock Byte.

 Once written to, the Lock Byte cannot be modified except by performing a C2 Device Erase.

 If user code writes to the Lock Byte, the Lock does not take effect until the next device reset.

C8051F80x-83x

121 Rev. 1.0

20.2. Stop Mode
Setting the Stop Mode Select bit (PCON.1) causes the controller core to enter Stop mode as soon as the
instruction that sets the bit completes execution. In Stop mode the internal oscillator, CPU, and all digital
peripherals are stopped; the state of the external oscillator circuit is not affected. Each analog peripheral
(including the external oscillator circuit) may be shut down individually prior to entering Stop Mode. Stop
mode can only be terminated by an internal or external reset. On reset, the device performs the normal
reset sequence and begins program execution at address 0x0000.

If enabled, the Missing Clock Detector will cause an internal reset and thereby terminate the Stop mode.
The Missing Clock Detector should be disabled if the CPU is to be put to in STOP mode for longer than the
MCD timeout of 100 µs.

20.3. Suspend Mode
Suspend mode allows a system running from the internal oscillator to go to a very low power state similar
to Stop mode, but the processor can be awakened by certain events without requiring a reset of the device.
Setting the SUSPEND bit (OSCICN.5) causes the hardware to halt the CPU and the high-frequency inter-
nal oscillator, and go into Suspend mode as soon as the instruction that sets the bit completes execution.
All internal registers and memory maintain their original data. Most digital peripherals are not active in Sus-
pend mode. The exception to this is the Port Match feature and Timer 3, when it is run from an external
oscillator source.

The clock divider bits CLKDIV[2:0] in register CLKSEL must be set to "divide by 1" when entering suspend
mode.

Suspend mode can be terminated by five types of events, a port match (described in Section “23.5. Port
Match” on page 150), a Timer 2 overflow (described in Section “28.2. Timer 2” on page 219), a comparator
low output (if enabled), a capacitive sense greater-than comparator event, or a device reset event. In order
to run Timer 3 in suspend mode, the timer must be configured to clock from the external clock source.
When suspend mode is terminated, the device will continue execution on the instruction following the one
that set the SUSPEND bit. If the wake event (port match or Timer 2 overflow) was configured to generate
an interrupt, the interrupt will be serviced upon waking the device. If suspend mode is terminated by an
internal or external reset, the CIP-51 performs a normal reset sequence and begins program execution at
address 0x0000.

Note: The device will still enter suspend mode if a wake source is "pending", and the device will not wake on such
pending sources. It is important to ensure that the intended wake source will trigger after the device enters
suspend mode. For example, if a CS0 conversion completes and the interrupt fires before the device is in
suspend mode, that interrupt cannot trigger the wake event. Because port match events are level-sensitive,
pre-existing port match events will trigger a wake, as long as the match condition is still present when the
device enters suspend.

C8051F80x-83x

124 Rev. 1.0

21.1. Power-On Reset
During power-up, the device is held in a reset state and the RST pin is driven low until VDD settles above
VRST. A delay occurs before the device is released from reset; the delay decreases as the VDD ramp time
increases (VDD ramp time is defined as how fast VDD ramps from 0 V to VRST). Figure 21.2. plots the
power-on and VDD monitor reset timing. The maximum VDD ramp time is 1 ms; slower ramp times may
cause the device to be released from reset before VDD reaches the VRST level. For ramp times less than
1 ms, the power-on reset delay (TPORDelay) is typically less than 10 ms.

On exit from a power-on reset, the PORSF flag (RSTSRC.1) is set by hardware to logic 1. When PORSF is
set, all of the other reset flags in the RSTSRC Register are indeterminate (PORSF is cleared by all other
resets). Since all resets cause program execution to begin at the same location (0x0000) software can
read the PORSF flag to determine if a power-up was the cause of reset. The content of internal data mem-
ory should be assumed to be undefined after a power-on reset. The VDD monitor is enabled and selected
as a reset source following a power-on reset.

Figure 21.2. Power-On and VDD Monitor Reset Timing

Power-On
Reset

VDD
Monitor
Reset

RST

t

V
D

D
 S

up
pl

y

Logic HIGH

Logic LOW
TPORDelay

VDD

VRST

VDD

C8051F80x-83x

160 Rev. 1.0

24.1. 16-bit CRC Algorithm
The C8051F80x-83x CRC unit calculates the 16-bit CRC MSB-first, using a poly of 0x1021. The following
describes the 16-bit CRC algorithm performed by the hardware:

1. XOR the most-significant byte of the current CRC result with the input byte. If this is the first iteration of
the CRC unit, the current CRC result will be the set initial value (0x0000 or 0xFFFF).

2. If the MSB of the CRC result is set, left-shift the CRC result, and then XOR the CRC result with the
polynomial (0x1021).

3. If the MSB of the CRC result is not set, left-shift the CRC result.

4. Repeat at Step 2 for the number of input bits (8).

For example, the 16-bit C8051F80x-83x CRC algorithm can be described by the following code:

unsigned short UpdateCRC (unsigned short CRC_acc, unsigned char CRC_input){
unsigned char i; // loop counter
#define POLY 0x1021
// Create the CRC "dividend" for polynomial arithmetic (binary arithmetic
// with no carries)
CRC_acc = CRC_acc ^ (CRC_input << 8);
// "Divide" the poly into the dividend using CRC XOR subtraction
// CRC_acc holds the "remainder" of each divide
// Only complete this division for 8 bits since input is 1 byte
for (i = 0; i < 8; i++)
{

// Check if the MSB is set (if MSB is 1, then the POLY can "divide"
// into the "dividend")
if ((CRC_acc & 0x8000) == 0x8000)
{

// if so, shift the CRC value, and XOR "subtract" the poly
CRC_acc = CRC_acc << 1;
CRC_acc ^= POLY;

}
else
{

// if not, just shift the CRC value
CRC_acc = CRC_acc << 1;

}
}
return CRC_acc; // Return the final remainder (CRC value)

}

Table 24.1 lists example input values and the associated outputs using the 16-bit C8051F80x-83x CRC
algorithm (an initial value of 0xFFFF is used):

Table 24.1. Example 16-bit CRC Outputs

Input Output

0x63 0xBD35
0xAA, 0xBB, 0xCC 0x6CF6

0x00, 0x00, 0xAA, 0xBB, 0xCC 0xB166

C8051F80x-83x

166 Rev. 1.0

24.6. CRC0 Bit Reverse Feature
CRC0 includes hardware to reverse the bit order of each bit in a byte as shown in Figure 24.1. Each byte
of data written to CRC0FLIP is read back bit reversed. For example, if 0xC0 is written to CRC0FLIP, the
data read back is 0x03. Bit reversal is a useful mathematical function used in algorithms such as the FFT.

SFR Address = 0xCF

SFR Definition 24.6. CRC0FLIP: CRC Bit Flip

Bit 7 6 5 4 3 2 1 0

Name CRC0FLIP[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 CRC0FLIP[7:0] CRC0 Bit Flip.

Any byte written to CRC0FLIP is read back in a bit-reversed order, i.e. the written
LSB becomes the MSB. For example:
If 0xC0 is written to CRC0FLIP, the data read back will be 0x03.
If 0x05 is written to CRC0FLIP, the data read back will be 0xA0.

C8051F80x-83x

187 Rev. 1.0

26.4.2. SMB0CN Control Register

SMB0CN is used to control the interface and to provide status information (see SFR Definition 26.2). The
higher four bits of SMB0CN (MASTER, TXMODE, STA, and STO) form a status vector that can be used to
jump to service routines. MASTER indicates whether a device is the master or slave during the current
transfer. TXMODE indicates whether the device is transmitting or receiving data for the current byte.

STA and STO indicate that a START and/or STOP has been detected or generated since the last SMBus
interrupt. STA and STO are also used to generate START and STOP conditions when operating as a mas-
ter. Writing a 1 to STA will cause the SMBus interface to enter Master Mode and generate a START when
the bus becomes free (STA is not cleared by hardware after the START is generated). Writing a 1 to STO
while in Master Mode will cause the interface to generate a STOP and end the current transfer after the
next ACK cycle. If STO and STA are both set (while in Master Mode), a STOP followed by a START will be
generated.

The ARBLOST bit indicates that the interface has lost an arbitration. This may occur anytime the interface
is transmitting (master or slave). A lost arbitration while operating as a slave indicates a bus error condi-
tion. ARBLOST is cleared by hardware each time SI is cleared.

The SI bit (SMBus Interrupt Flag) is set at the beginning and end of each transfer, after each byte frame, or
when an arbitration is lost; see Table 26.3 for more details.

Important Note About the SI Bit: The SMBus interface is stalled while SI is set; thus SCL is held low, and
the bus is stalled until software clears SI.

26.4.2.1. Software ACK Generation

When the EHACK bit in register SMB0ADM is cleared to 0, the firmware on the device must detect incom-
ing slave addresses and ACK or NACK the slave address and incoming data bytes. As a receiver, writing
the ACK bit defines the outgoing ACK value; as a transmitter, reading the ACK bit indicates the value
received during the last ACK cycle. ACKRQ is set each time a byte is received, indicating that an outgoing
ACK value is needed. When ACKRQ is set, software should write the desired outgoing value to the ACK
bit before clearing SI. A NACK will be generated if software does not write the ACK bit before clearing SI.
SDA will reflect the defined ACK value immediately following a write to the ACK bit; however SCL will
remain low until SI is cleared. If a received slave address is not acknowledged, further slave events will be
ignored until the next START is detected.

26.4.2.2. Hardware ACK Generation

When the EHACK bit in register SMB0ADM is set to 1, automatic slave address recognition and ACK gen-
eration is enabled. More detail about automatic slave address recognition can be found in Section 26.4.3.
As a receiver, the value currently specified by the ACK bit will be automatically sent on the bus during the
ACK cycle of an incoming data byte. As a transmitter, reading the ACK bit indicates the value received on
the last ACK cycle. The ACKRQ bit is not used when hardware ACK generation is enabled. If a received
slave address is NACKed by hardware, further slave events will be ignored until the next START is
detected, and no interrupt will be generated.

Table 26.3 lists all sources for hardware changes to the SMB0CN bits. Refer to Table 26.5 for SMBus sta-
tus decoding using the SMB0CN register.

C8051F80x-83x

214 Rev. 1.0

Figure 28.3. T0 Mode 3 Block Diagram

TL0
(8 bits)

TMOD

0

1

 T
C

O
N

TF0
TR0

TR1
TF1

IE1
IT1
IE0
IT0

Interrupt

Interrupt

0

1SYSCLK

Pre-scaled Clock
TR1 TH0

(8 bits)

T
1
M
1

T
1
M
0

C
/
T
1

G
A
T
E
1

G
A
T
E
0

C
/
T
0

T
0
M
1

T
0
M
0

TR0

GATE0

IN0PL XOR
INT0

T0

Crossbar

T0M

C8051F80x-83x

Rev. 1.0 225

29. programmable Counter Array

The programmable counter array (PCA0) provides enhanced timer functionality while requiring less CPU
intervention than the standard 8051 counter/timers. The PCA consists of a dedicated 16-bit counter/timer
and three 16-bit capture/compare modules. Each capture/compare module has its own associated I/O line
(CEXn) which is routed through the Crossbar to Port I/O when enabled. The counter/timer is driven by a
programmable timebase that can select between six sources: system clock, system clock divided by four,
system clock divided by twelve, the external oscillator clock source divided by 8, Timer 0 overflows, or an
external clock signal on the ECI input pin. Each capture/compare module may be configured to operate
independently in one of six modes: Edge-Triggered Capture, Software Timer, High-Speed Output, Fre-
quency Output, 8 to 15-Bit PWM, or 16-Bit PWM (each mode is described in Section
“29.3. Capture/Compare Modules” on page 228). The external oscillator clock option is ideal for real-time
clock (RTC) functionality, allowing the PCA to be clocked by a precision external oscillator while the inter-
nal oscillator drives the system clock. The PCA is configured and controlled through the system controller's
Special Function Registers. The PCA block diagram is shown in Figure 29.1

Important Note: The PCA Module 2 may be used as a watchdog timer (WDT), and is enabled in this mode
following a system reset. Access to certain PCA registers is restricted while WDT mode is enabled.
See Section 29.4 for details.

Figure 29.1. PCA Block Diagram

Capture/Compare
Module 1

Capture/Compare
Module 0

Capture/Compare
Module 2 / WDT

C
E

X
1

E
C

I

Crossbar

C
E

X
2

C
E

X
0

Port I/O

16-Bit Counter/Timer
PCA

CLOCK
MUX

SYSCLK/12

SYSCLK/4

Timer 0 Overflow

 ECI

SYSCLK

External Clock/8

C8051F80x-83x

226 Rev. 1.0

29.1. PCA Counter/Timer
The 16-bit PCA counter/timer consists of two 8-bit SFRs: PCA0L and PCA0H. PCA0H is the high byte
(MSB) of the 16-bit counter/timer and PCA0L is the low byte (LSB). Reading PCA0L automatically latches
the value of PCA0H into a “snapshot” register; the following PCA0H read accesses this “snapshot” register.
Reading the PCA0L Register first guarantees an accurate reading of the entire 16-bit PCA0 counter.
Reading PCA0H or PCA0L does not disturb the counter operation. The CPS2–CPS0 bits in the PCA0MD
register select the timebase for the counter/timer as shown in Table 29.1.

When the counter/timer overflows from 0xFFFF to 0x0000, the Counter Overflow Flag (CF) in PCA0MD is
set to logic 1 and an interrupt request is generated if CF interrupts are enabled. Setting the ECF bit in
PCA0MD to logic 1 enables the CF flag to generate an interrupt request. The CF bit is not automatically
cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by soft-
ware. Clearing the CIDL bit in the PCA0MD register allows the PCA to continue normal operation while the
CPU is in Idle mode.

Figure 29.2. PCA Counter/Timer Block Diagram

Table 29.1. PCA Timebase Input Options

CPS2 CPS1 CPS0 Timebase

0 0 0 System clock divided by 12
0 0 1 System clock divided by 4
0 1 0 Timer 0 overflow

0 1 1
High-to-low transitions on ECI (max rate = system clock divided
by 4)

1 0 0 System clock
1 0 1 External oscillator source divided by 8 (Note)
1 1 x Reserved

Note: External oscillator source divided by 8 is synchronized with the system clock.

PCA0CN
C
F

C
R

C
C
F
0

C
C
F
2

C
C
F
1

PCA0MD
C
I
D
L

W
D
T
E

E
C
F

C
P
S
1

C
P
S
0

W
D
L
C
K

C
P
S
2

IDLE

0

1
PCA0H PCA0L

Snapshot
Register

To SFR Bus

Overflow
To PCA Interrupt System

CF

PCA0L
read

To PCA Modules

SYSCLK/12

SYSCLK/4

Timer 0 Overflow

ECI

000

001

010

011

100

101

SYSCLK

External Clock/8

C8051F80x-83x

230 Rev. 1.0

29.3.2. Software Timer (Compare) Mode

In Software Timer mode, the PCA counter/timer value is compared to the module's 16-bit capture/compare
register (PCA0CPHn and PCA0CPLn). When a match occurs, the Capture/Compare Flag (CCFn) in
PCA0CN is set to logic 1. An interrupt request is generated if the CCFn interrupt for that module is
enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt ser-
vice routine, and must be cleared by software. Setting the ECOMn and MATn bits in the PCA0CPMn regis-
ter enables Software Timer mode.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Cap-
ture/Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the
ECOMn bit to 0; writing to PCA0CPHn sets ECOMn to 1.

Figure 29.5. PCA Software Timer Mode Diagram

Match16-bit Comparator

PCA0H

PCA0CPHn

Enable

PCA0LPCA
Timebase

PCA0CPLn

0 0 0 0

0

1

x

ENB

ENB

0

1

Write to
PCA0CPLn

Write to
PCA0CPHn

Reset

PCA0CPMn
P
W
M
1
6
n

E
C
O
M
n

E
C
C
F
n

T
O
G
n

P
W
M
n

C
A
P
P
n

C
A
P
N
n

M
A
T
n

x

PCA0CN
C
F

C
R

C
C
F
0

C
C
F
2

C
C
F
1

PCA Interrupt

C8051F80x-83x

242 Rev. 1.0

SFR Address = 0xF9

SFR Address = 0xFA

SFR Definition 29.5. PCA0L: PCA0 Counter/Timer Low Byte

Bit 7 6 5 4 3 2 1 0

Name PCA0[7:0]

Type R/W R/W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 PCA0[7:0] PCA Counter/Timer Low Byte.

The PCA0L register holds the low byte (LSB) of the 16-bit PCA Counter/Timer.

Note: When the WDTE bit is set to 1, the PCA0L register cannot be modified by software. To change the contents of
the PCA0L register, the Watchdog Timer must first be disabled.

SFR Definition 29.6. PCA0H: PCA0 Counter/Timer High Byte

Bit 7 6 5 4 3 2 1 0

Name PCA0[15:8]

Type R/W R/W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 PCA0[15:8] PCA Counter/Timer High Byte.

The PCA0H register holds the high byte (MSB) of the 16-bit PCA Counter/Timer.
Reads of this register will read the contents of a “snapshot” register, whose contents
are updated only when the contents of PCA0L are read (see Section 29.1).

Note: When the WDTE bit is set to 1, the PCA0H register cannot be modified by software. To change the contents of
the PCA0H register, the Watchdog Timer must first be disabled.

