

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I²C), SPI, UART/USART
Peripherals	Cap Sense, POR, PWM, WDT
Number of I/O	17
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VFQFN Exposed Pad
Supplier Device Package	20-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f819-gmr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1. System Overview	15
2. Ordering Information	25
3. Pin Definitions	28
4. QFN-20 Package Specifications	33
5. QSOP-24 Package Specifications	35
6. SOIC-16 Package Specifications	37
7. Electrical Characteristics	39
7.1. Absolute Maximum Specifications	39
7.2. Electrical Characteristics	40
8. 10-Bit ADC (ADC0)	46
8.1. Output Code Formatting	47
8.2. 8-Bit Mode	47
8.3. Modes of Operation	47
8.3.1. Starting a Conversion	47
8.3.2. Tracking Modes	48
8.3.3. Settling Time Requirements	49
8.4. Programmable Window Detector	53
8.4.1. Window Detector Example	55
8.5. ADC0 Analog Multiplexer	56
9. Temperature Sensor	58
9.1. Calibration	58
10. Voltage and Ground Reference Options	60
10.1. External Voltage References	61
10.2. Internal Voltage Reference Options	61
10.3. Analog Ground Reference	61
10.4. Temperature Sensor Enable	61
11. Voltage Regulator (REG0)	63
12. Comparator0	65
12.1. Comparator Multiplexer	69
13. Capacitive Sense (CS0)	71
13.1. Configuring Port Pins as Capacitive Sense Inputs	72
13.2. Capacitive Sense Start-Of-Conversion Sources	72
13.3. Automatic Scanning	72
13.4. CS0 Comparator	73
13.5. CS0 Conversion Accumulator	74
13.6. Capacitive Sense Multiplexer	80
14. CIP-51 Microcontroller	82
14.1. Instruction Set	83
14.1.1. Instruction and CPU Timing	83
14.2. CIP-51 Register Descriptions	88
15. Memory Organization	92
15.1. Program Memory	93
15.1.1. MOVX Instruction and Program Memory	93

15.2 Data Memory	93
15.2.1 Internal RAM	00 Q3
15 2 1 1 General Purpose Registers	94
15 2 1 2 Bit Addressable Locations	94
15 2 1 3 Stack	94
16. In-System Device Identification	
17. Special Function Registers	
18 Interrunts	102
18.1 MCU Interrupt Sources and Vectors	103
18.1.1. Interrupt Priorities	. 103
18.1.2. Interrupt Latency	103
18.2. Interrupt Register Descriptions	104
18.3. INTO and INT1 External Interrupts	. 111
19. Flash Memory	. 113
19.1. Programming The Flash Memory	. 113
19.1.1. Flash Lock and Key Functions	. 113
19.1.2. Flash Erase Procedure	. 113
19.1.3. Flash Write Procedure	. 114
19.2. Non-volatile Data Storage	114
19.3. Security Options	114
19.4. Flash Write and Erase Guidelines	115
19.4.1. VDD Maintenance and the VDD Monitor	116
19.4.2. PSWE Maintenance	116
19.4.3. System Clock	. 117
20. Power Management Modes	. 120
20.1. Idle Mode	. 120
20.2. Stop Mode	. 121
20.3. Suspend Mode	. 121
21. Reset Sources	. 123
21.1. Power-On Reset	. 124
21.2. Power-Fail Reset / VDD Monitor	. 125
21.3. External Reset	. 126
21.4. Missing Clock Detector Reset	. 126
21.5. Comparator0 Reset	. 127
21.6. PCA Watchdog Timer Reset	. 127
21.7. Flash Error Reset	. 127
21.8. Software Reset	. 127
22. Oscillators and Clock Selection	. 129
22.1. System Clock Selection	. 129
22.2. Programmable Internal High-Frequency (H-F) Oscillator	. 131
22.3. External Oscillator Drive Circuit	. 133
22.3.1. External Crystal Example	. 135
22.3.2. External RC Example	. 136
22.3.3. External Capacitor Example	. 13/
23. Port input/Output	. 138

Figure 1.4. C8051F803, C8051F809, C8051F815, C8051F821 Block Diagram

Figure 1.5. C8051F804, C8051F810, C8051F816, C8051F822 Block Diagram

Figure 5.2. QSOP-24 PCB Land Pattern

Table 5.2. QSOP-24 PCB Land Pattern Dimensions

Dimension	Min	Мах	
С	5.20 5.30		
E	0.635	BSC	
Х	0.30	0.40	
Y	1.50	1.60	

Notes: General

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This land pattern design is based on the IPC-7351 guidelines.

Solder Mask Design

3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad.

Stencil Design

- **4.** A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 5. The stencil thickness should be 0.125 mm (5 mils).
- 6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.

Card Assembly

- 7. A No-Clean, Type-3 solder paste is recommended.
- 8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

7. Electrical Characteristics

7.1. Absolute Maximum Specifications

Table 7.1. Absolute Maximum Ratings

Parameter	Conditions	Min	Тур	Max	Units
Ambient temperature under bias		-55	—	125	°C
Storage Temperature		-65	—	150	°C
Voltage on RST or any Port I/O Pin with respect to GND		-0.3	—	5.8	V
Voltage on V _{DD} with respect to GND		-0.3	_	4.2	V
Maximum Total current through V _{DD} and GND		—	—	500	mA
Maximum output current sunk by RST or any Port pin		—	—	100	mA
Note: Stresses above those listed under "Al	bsolute Maximum Ratings" may	cause perm	nanent da	amage to the	device.

This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

8.3.2. Tracking Modes

The AD0TM bit in register ADC0CN enables "delayed conversions", and will delay the actual conversion start by three SAR clock cycles, during which time the ADC will continue to track the input. If AD0TM is left at logic 0, a conversion will begin immediately, without the extra tracking time. For internal start-of-conversion sources, the ADC will track anytime it is not performing a conversion. When the CNVSTR signal is used to initiate conversions, ADC0 will track either when AD0TM is logic 1, or when AD0TM is logic 0 and CNVSTR is held low. See Figure 8.2 for track and convert timing details. Delayed conversion mode is useful when AMUX settings are frequently changed, due to the settling time requirements described in Section "8.3.3. Settling Time Requirements" on page 49.

Figure 8.2. 10-Bit ADC Track and Conversion Example Timing

SFR Definition 12.3. CPT0MX: Comparator0 MUX Selection

Bit	7	6	5	4	3	2	1	0
Name		CMX0	N[3:0]		CMX0P[3:0]			
Туре		R/	W			R/	W	
Reset	1	1	1	1	1	1	1	1

SFR Address = 0x9F

Bit	Name	Function					
7:4	CMX0N[3:0]	Comparator0 Negative Input MUX Selection.					
			20-Pin and 24-Pin Devices	16-Pin Devices			
		0000	P0.1	P0.1			
		0001	P0.3	P0.3			
		0010	P0.5	P0.5			
		0011	P0.7	P0.7			
		0100	P1.1	P1.1			
		0101	P1.3	P1.3			
		0110	P1.5	Reserved.			
		0111	P1.7	Reserved.			
		1000	VREG Output.	VREG Output.			
		1001–1111	No input selected.	No input selected.			
3:0	CMX0P[3:0]	Comparato					
			20-Pin and 24-Pin Devices	16-Pin Devices			
		0000	P0.0	P0.0			
		0001	P0.2	P0.2			
		0010	P0.4	P0.4			
		0011	P0.6	P0.6			
		0100	P1.0	P1.0			
		0101	P1.2	P1.2			
		0110	P1.4	Reserved.			
		0111	P1.6	Reserved.			
		1000	VREG Output.	VREG Output.			
		1001–1111	No input selected.	No input selected.			

13.1. Configuring Port Pins as Capacitive Sense Inputs

In order for a port pin to be measured by CS0, that port pin must be configured as an analog input (see "23. Port Input/Output"). Configuring the input multiplexer to a port pin not configured as an analog input will cause the capacitive sense comparator to output incorrect measurements.

13.2. Capacitive Sense Start-Of-Conversion Sources

A capacitive sense conversion can be initiated in one of seven ways, depending on the programmed state of the CS0 start of conversion bits (CS0CF6:4). Conversions may be initiated by one of the following:

- 1. Writing a 1 to the CS0BUSY bit of register CS0CN
- 2. Timer 0 overflow
- 3. Timer 2 overflow
- 4. Timer 1 overflow
- 5. Convert continuously
- 6. Convert continuously with auto-scan enabled

Conversions can be configured to be initiated continuously through one of two methods. CS0 can be configured to convert at a single channel continuously or it can be configured to convert continuously with auto-scan enabled. When configured to convert continuously, conversions will begin after the CS0BUSY bit in CS0CF has been set.

An interrupt will be generated if CS0 conversion complete interrupts are enabled by setting the ECSCPT bit (EIE2.0).

Note: CS0 conversion complete interrupt behavior depends on the settings of the CS0 accumulator. If CS0 is configured to accumulate multiple conversions on an input channel, a CS0 conversion complete interrupt will be generated only after the last conversion completes.

13.3. Automatic Scanning

CS0 can be configured to automatically scan a sequence of contiguous CS0 input channels by configuring and enabling auto-scan. Using auto-scan with the CS0 comparator interrupt enabled allows a system to detect a change in measured capacitance without requiring any additional dedicated MCU resources.

Auto-scan is enabled by setting the CS0 start-of-conversion bits (CS0CF6:4) to 111b. After enabling autoscan, the starting and ending channels should be set to appropriate values in CS0SS and CS0SE, respectively. Writing to CS0SS when auto-scan is enabled will cause the value written to CS0SS to be copied into CS0MX. After being enabled, writing a 1 to CS0BUSY will start auto-scan conversions. When auto-scan completes the number of conversions defined in the CS0 accumulator bits (CS0CF1:0) (see "13.5. CS0 Conversion Accumulator"), auto-scan configures CS0MX to the next highest port pin configured as an analog input and begins a conversion on that channel. This scan sequence continues until CS0MX reaches the ending input channel value defined in CS0SE. After one or more conversions have been taken at this channel, auto-scan configures CS0MX back to the starting input channel. For an example system configured to use auto-scan, please see Figure "13.2 Auto-Scan Example" on page 73.

Note: Auto-scan attempts one conversion on a CS0MX channel regardless of whether that channel's port pin has been configured as an analog input.

If auto-scan is enabled when the device enters suspend mode, auto-scan will remain enabled and running. This feature allows the device to wake from suspend through CS0 greater-than comparator event on any configured capacitive sense input included in the auto-scan sequence of inputs.

15. Memory Organization

The memory organization of the CIP-51 System Controller is similar to that of a standard 8051. There are two separate memory spaces: program memory and data memory. Program and data memory share the same address space but are accessed via different instruction types. The memory organization of the C8051F80x-83x device family is shown in Figure 15.1

Figure 15.1. C8051F80x-83x Memory Map

Table 17.2. Special Function Registers (Continued)

SFRs are listed in alphabetical order. All undefined SFR locations are reserved

Register	Address	Description	Page
SBUF0	0x99	UART0 Data Buffer	207
SCON0	0x98	UART0 Control	206
SMB0ADM	0xD6	SMBus Slave Address mask	191
SMB0ADR	0xD7	SMBus Slave Address	191
SMB0CF	0xC1	SMBus Configuration	186
SMB0CN	0xC0	SMBus Control	188
SMB0DAT	0xC2	SMBus Data	192
SP	0x81	Stack Pointer	89
SPI0CFG	0xA1	SPI0 Configuration	174
SPIOCKR	0xA2	SPI0 Clock Rate Control	176
SPIOCN	0xF8	SPI0 Control	175
SPIODAT	0xA3	SPI0 Data	176
TCON	0x88	Timer/Counter Control	215
TH0	0x8C	Timer/Counter 0 High	218
TH1	0x8D	Timer/Counter 1 High	218
TL0	0x8A	Timer/Counter 0 Low	217
TL1	0x8B	Timer/Counter 1 Low	217
TMOD	0x89	Timer/Counter Mode	216
TMR2CN	0xC8	Timer/Counter 2 Control	222
TMR2H	0xCD	Timer/Counter 2 High	224
TMR2L	0xCC	Timer/Counter 2 Low	224
TMR2RLH	0xCB	Timer/Counter 2 Reload High	223
TMR2RLL	0xCA	Timer/Counter 2 Reload Low	223
VDM0CN	0xFF	VDD Monitor Control	126
XBR0	0xE1	Port I/O Crossbar Control 0	148
XBR1	0xE2	Port I/O Crossbar Control 1	149
All other SFR Loc	ations	Reserved	

SFR Definition 18.4. EIE2: Extended Interrupt Enable 2

Bit	7	6	5	4	3	2	1	0
Name							ECSGRT	ECSCPT
Туре	R	R	R	R	R	R	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xE7

Bit	Name	Function				
7:2	Unused	Read = 000000b; Write = don't care.				
1	ECSGRT	Enable Capacitive Sense Greater Than Comparator Interrupt. 0: Disable Capacitive Sense Greater Than Comparator interrupt. 1: Enable interrupt requests generated by CS0CMPF.				
0	ECSCPT	Enable Capacitive Sense Conversion Complete Interrupt. 0: Disable Capacitive Sense Conversion Complete interrupt. 1: Enable interrupt requests generated by CS0INT.				

20.2. Stop Mode

Setting the Stop Mode Select bit (PCON.1) causes the controller core to enter Stop mode as soon as the instruction that sets the bit completes execution. In Stop mode the internal oscillator, CPU, and all digital peripherals are stopped; the state of the external oscillator circuit is not affected. Each analog peripheral (including the external oscillator circuit) may be shut down individually prior to entering Stop Mode. Stop mode can only be terminated by an internal or external reset. On reset, the device performs the normal reset sequence and begins program execution at address 0x0000.

If enabled, the Missing Clock Detector will cause an internal reset and thereby terminate the Stop mode. The Missing Clock Detector should be disabled if the CPU is to be put to in STOP mode for longer than the MCD timeout of 100 μ s.

20.3. Suspend Mode

Suspend mode allows a system running from the internal oscillator to go to a very low power state similar to Stop mode, but the processor can be awakened by certain events without requiring a reset of the device. Setting the SUSPEND bit (OSCICN.5) causes the hardware to halt the CPU and the high-frequency internal oscillator, and go into Suspend mode as soon as the instruction that sets the bit completes execution. All internal registers and memory maintain their original data. Most digital peripherals are not active in Suspend mode. The exception to this is the Port Match feature and Timer 3, when it is run from an external oscillator source.

The clock divider bits CLKDIV[2:0] in register CLKSEL must be set to "divide by 1" when entering suspend mode.

Suspend mode can be terminated by five types of events, a port match (described in Section "23.5. Port Match" on page 150), a Timer 2 overflow (described in Section "28.2. Timer 2" on page 219), a comparator low output (if enabled), a capacitive sense greater-than comparator event, or a device reset event. In order to run Timer 3 in suspend mode, the timer must be configured to clock from the external clock source. When suspend mode is terminated, the device will continue execution on the instruction following the one that set the SUSPEND bit. If the wake event (port match or Timer 2 overflow) was configured to generate an interrupt, the interrupt will be serviced upon waking the device. If suspend mode is terminated by an internal or external reset, the CIP-51 performs a normal reset sequence and begins program execution at address 0x0000.

Note: The device will still enter suspend mode if a wake source is "pending", and the device will not wake on such pending sources. It is important to ensure that the intended wake source will trigger after the device enters suspend mode. For example, if a CS0 conversion completes and the interrupt fires before the device is in suspend mode, that interrupt cannot trigger the wake event. Because port match events are level-sensitive, pre-existing port match events will trigger a wake, as long as the match condition is still present when the device enters suspend.

21.5. Comparator0 Reset

Comparator0 can be configured as a reset source by writing a 1 to the CORSEF flag (RSTSRC.5). Comparator0 should be enabled and allowed to settle prior to writing to CORSEF to prevent any turn-on chatter on the output from generating an unwanted reset. The Comparator0 reset is active-low: if the non-inverting input voltage (on CP0+) is less than the inverting input voltage (on CP0-), the device is put into the reset state. After a Comparator0 reset, the CORSEF flag (RSTSRC.5) will read 1 signifying Comparator0 as the reset source; otherwise, this bit reads 0. The state of the RST pin is unaffected by this reset.

21.6. PCA Watchdog Timer Reset

The programmable Watchdog Timer (WDT) function of the Programmable Counter Array (PCA) can be used to prevent software from running out of control during a system malfunction. The PCA WDT function can be enabled or disabled by software as described in Section "29.4. Watchdog Timer Mode" on page 236; the WDT is enabled and clocked by SYSCLK / 12 following any reset. If a system malfunction prevents user software from updating the WDT, a reset is generated and the WDTRSF bit (RSTSRC.5) is set to '1'. The state of the RST pin is unaffected by this reset.

21.7. Flash Error Reset

If a Flash read/write/erase or program read targets an illegal address, a system reset is generated. This may occur due to any of the following:

- A Flash write or erase is attempted above user code space. This occurs when PSWE is set to 1 and a MOVX write operation targets an address above address 0x3DFF.
- A Flash read is attempted above user code space. This occurs when a MOVC operation targets an address above address 0x3DFF.
- A Program read is attempted above user code space. This occurs when user code attempts to branch to an address above 0x3DFF.
- A Flash read, write or erase attempt is restricted due to a Flash security setting (see Section "19.3. Security Options" on page 114).

The FERROR bit (RSTSRC.6) is set following a Flash error reset. The state of the \overline{RST} pin is unaffected by this reset.

21.8. Software Reset

Software may force a reset by writing a 1 to the SWRSF bit (RSTSRC.4). The SWRSF bit will read 1 following a software forced reset. The state of the RST pin is unaffected by this reset.

SFR Definition 23.1. XBR0: Port I/O Crossbar Register 0

Bit	7	6	5	4	3	2	1	0
Name			CP0AE	CP0E	SYSCKE	SMB0E	SPI0E	URT0E
Туре	R	R	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xE1

Bit	Name	Function
7:6	Unused	Read = 00b. Write = don't care.
5	CP0AE	Comparator0 Asynchronous Output Enable.
		0: Asynchronous CP0 unavailable at Port pin.
		1: Asynchronous CP0 routed to Port pin.
4	CP0E	Comparator0 Output Enable.
		0: CP0 unavailable at Port pin.
		1: CP0 routed to Port pin.
3	SYSCKE	SYSCLK Output Enable.
		0: SYSCLK unavailable at Port pin.
		1: SYSCLK output routed to Port pin.
2	SMB0E	SMBus I/O Enable.
		0: SMBus I/O unavailable at Port pins.
		1: SMBus I/O routed to Port pins.
1	SPI0E	SPI I/O Enable.
		0: SPI I/O unavailable at Port pins.
		1: SPI I/O routed to Port pins. Note that the SPI can be assigned either 3 or 4 GPIO
0	URIOE	UART I/O Output Enable.
		0: UART I/O unavailable at Port pin.
		1: UART TXU, KXU routed to Port pins PU.4 and PU.5.

imum setup and hold times for the two EXTHOLD settings. Setup and hold time extensions are typically necessary when SYSCLK is above 10 MHz.

EXTHOLD	Minimum SDA Setup Time	Minimum SDA Hold Time					
0	T _{low} – 4 system clocks or 1 system clock + s/w delay [*]	3 system clocks					
1	11 system clocks	12 system clocks					
Note: Setup Tin software a ACK is w that defin	Setup Time for ACK bit transmissions and the MSB of all data transfers. When using software acknowledgement, the s/w delay occurs between the time SMB0DAT or ACK is written and when SI is cleared. Note that if SI is cleared in the same write that defines the outgoing ACK value, s/w delay is zero.						

Table 26.2. Minimum SDA Setup and Hold Times

With the SMBTOE bit set, Timer 3 should be configured to overflow after 25 ms in order to detect SCL low timeouts (see Section "26.3.4. SCL Low Timeout" on page 182). The SMBus interface will force Timer 3 to reload while SCL is high, and allow Timer 3 to count when SCL is low. The Timer 3 interrupt service routine should be used to reset SMBus communication by disabling and re-enabling the SMBus.

SMBus Free Timeout detection can be enabled by setting the SMBFTE bit. When this bit is set, the bus will be considered free if SDA and SCL remain high for more than 10 SMBus clock source periods (see Figure 26.4).

26.5. SMBus Transfer Modes

The SMBus interface may be configured to operate as master and/or slave. At any particular time, it will be operating in one of the following four modes: Master Transmitter, Master Receiver, Slave Transmitter, or Slave Receiver. The SMBus interface enters Master Mode any time a START is generated, and remains in Master Mode until it loses an arbitration or generates a STOP. An SMBus interrupt is generated at the end of all SMBus byte frames. Note that the position of the ACK interrupt when operating as a receiver depends on whether hardware ACK generation is enabled. As a receiver, the interrupt for an ACK occurs **before** the ACK with hardware ACK generation disabled, and **after** the ACK when hardware ACK generation is enabled. As a transmitter, interrupts occur **after** the ACK, regardless of whether hardware ACK generation is enabled or not.

26.5.1. Write Sequence (Master)

During a write sequence, an SMBus master writes data to a slave device. The master in this transfer will be a transmitter during the address byte, and a transmitter during all data bytes. The SMBus interface generates the START condition and transmits the first byte containing the address of the target slave and the data direction bit. In this case the data direction bit (R/W) will be logic 0 (WRITE). The master then transmits one or more bytes of serial data. After each byte is transmitted, an acknowledge bit is generated by the slave. The transfer is ended when the STO bit is set and a STOP is generated. Note that the interface will switch to Master Receiver Mode if SMB0DAT is not written following a Master Transmitter interrupt. Figure 26.5 shows a typical master write sequence. Two transmit data bytes are shown, though any number of bytes may be transmitted. Notice that all of the "data byte transferred" interrupts occur **after** the ACK cycle in this mode, regardless of whether hardware ACK generation is enabled.

29.3.3. High-Speed Output Mode

In high-speed output mode, a module's associated CEXn pin is toggled each time a match occurs between the PCA Counter and the module's 16-bit capture/compare register (PCA0CPHn and PCA0CPLn). When a match occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1. An interrupt request is generated if the CCFn interrupt for that module is enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. Setting the TOGn, MATn, and ECOMn bits in the PCA0CPMn register enables the high-speed output mode. If ECOMn is cleared, the associated pin will retain its state, and not toggle on the next match event.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to 0; writing to PCA0CPHn sets ECOMn to 1.

Figure 29.6. PCA High-Speed Output Mode Diagram

SFR Definition 29.2. PCA0MD: PCA0 Mode

Bit	7	6	5	4	3	2	1	0
Nam	e CIDL	WDTE	WDLCK		CPS2	CPS1	CPS0	ECF
Тур	e R/W	R/W	R/W	R	R/W	R/W	R/W	R/W
Rese	et O	1	0	0	0	0	0	0
SFR Address = 0xD9								
Bit	Name	Function						
7	CIDL	PCA Counter/Timer Idle Control.						
		Specifies PCA behavior when CPU is in idle mode.						
		0: PCA continues to function normally while the system controller is in Idle mode.						
		1: PCA operation	tion is suspen	ded while t	he system c	ontroller is ir	n idle mode.	
6	WDTE	Watchdog Timer Enable.						
		If this bit is set, PCA Module 2 is used as the watchdog timer.						
		0: Watchdog Timer disabled.						
		1: PCA Module 2 enabled as Watchdog Timer.						
5	WDLCK	Watchdog Timer Lock.						
		This bit locks/unlocks the Watchdog Timer Enable. When WDLCK is set, the Watchdog					Watchdog	

Timer may not be disabled until the next system reset.

		0: Watchdog Timer Enable locked. 1: Watchdog Timer Enable locked.			
4	Unused	Read = 0b, Write = Don't care.			
3:1	CPS[2:0]	PCA Counter/Timer Pulse Select.			
		These bits select the timebase source for the PCA counter			
		000: System clock divided by 12			
		001: System clock divided by 4			
		010: Timer 0 overflow			
		011: High-to-low transitions on ECI (max rate = system clock divided by 4)			
		100: System clock			
		101: External clock divided by 8 (synchronized with the system clock)			
		11x: Reserved			
0	ECF	PCA Counter/Timer Overflow Interrupt Enable.			
		This bit sets the masking of the PCA Counter/Timer Overflow (CF) interrupt.			
		0: Disable the CF interrupt.			
		1: Enable a PCA Counter/Timer Overflow interrupt request when CF (PCA0CN.7) is			
		set.			
Note:	When the WDTE bit is set to 1, the other bits in the PCA0MD register cannot be modified. To change the contents of the PCA0MD register, the Watchdog Timer must first be disabled.				

30.2. C2CK Pin Sharing

The C2 protocol allows the C2 pins to be shared with user functions so that in-system debugging and Flash programming may be performed. This is possible because C2 communication is typically performed when the device is in the halt state, where all on-chip peripherals and user software are stalled. In this halted state, the C2 interface can safely "borrow" the C2CK (RST) and C2D pins. In most applications, external resistors are required to isolate C2 interface traffic from the user application. A typical isolation configuration is shown in Figure 30.1.

Figure 30.1. Typical C2 Pin Sharing

The configuration in Figure 30.1 assumes the following:

- 1. The user input (b) cannot change state while the target device is halted.
- 2. The RST pin on the target device is used as an input only.

Additional resistors may be necessary depending on the specific application.

