E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Cap Sense, POR, PWM, Temp Sensor, WDT
Number of I/O	13
Program Memory Size	8KB (8K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-SOIC (0.154", 3.90mm Width)
Supplier Device Package	16-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f824-gsr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

SFR Definition 28.8. TMR2CN: Timer 2 Control	222
SFR Definition 28.9. TMR2RLL: Timer 2 Reload Register Low Byte	223
SFR Definition 28.10. TMR2RLH: Timer 2 Reload Register High Byte	223
SFR Definition 28.11. TMR2L: Timer 2 Low Byte	224
SFR Definition 28.12. TMR2H Timer 2 High Byte	224
SFR Definition 29.1. PCA0CN: PCA0 Control	238
SFR Definition 29.2. PCA0MD: PCA0 Mode	239
SFR Definition 29.3. PCA0PWM: PCA0 PWM Configuration	240
SFR Definition 29.4. PCA0CPMn: PCA0 Capture/Compare Mode	241
SFR Definition 29.5. PCA0L: PCA0 Counter/Timer Low Byte	242
SFR Definition 29.6. PCA0H: PCA0 Counter/Timer High Byte	242
SFR Definition 29.7. PCA0CPLn: PCA0 Capture Module Low Byte	243
SFR Definition 29.8. PCA0CPHn: PCA0 Capture Module High Byte	243
C2 Register Definition 30.1. C2ADD: C2 Address	244
C2 Register Definition 30.3. REVID: C2 Revision ID	245
C2 Register Definition 30.2. DEVICEID: C2 Device ID	245
C2 Register Definition 30.4. FPCTL: C2 Flash Programming Control	246
C2 Register Definition 30.5. FPDAT: C2 Flash Programming Data	246

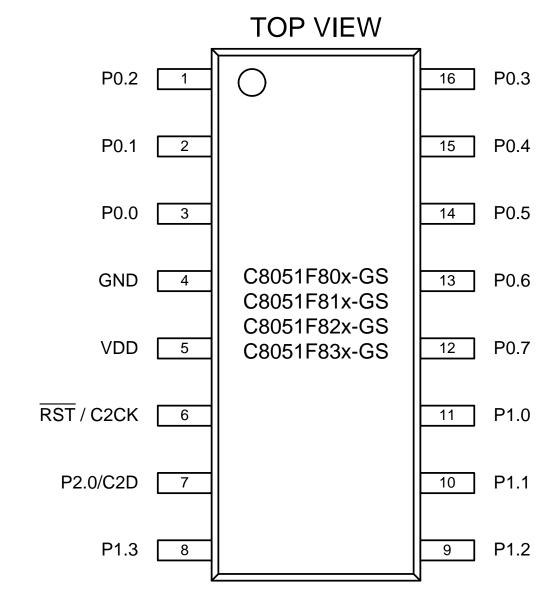


Figure 3.3. SOIC-16 Pinout Diagram (Top View)

Table 7.10. Power Management Electrical Characteristics

 V_{DD} = 1.8 to 3.6 V; T_A = -40 to +85 °C unless otherwise specified. Use factory-calibrated settings.

Parameter	Conditions	Min	Тур	Мах	Units
Idle Mode Wake-Up Time		2	_	3	SYSCLKs
Suspend Mode Wake-up Time		_	500	_	ns

Table 7.11. Temperature Sensor Electrical Characteristics

 V_{DD} = 3.0 V, -40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Linearity		-	1	—	°C
Slope		—	2.43	_	mV/°C
Slope Error*			±45	—	µV/°C
Offset	Temp = 0 °C	—	873	—	mV
Offset Error*	Temp = 0 °C		14.5	—	mV
*Note: Represents one st	andard deviation from the mean.				

Table 7.12. Voltage Reference Electrical Characteristics

 V_{DD} = 1.8 to 3.6 V; -40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units	
Internal High Speed Reference (REFSL[1:0] = 11)						
Output Voltage	25 °C ambient	1.55	1.65	1.75	V	
Turn-on Time		—	—	1.7	μs	
Supply Current			180		μA	
	External Reference (REF0E = 0)					
Input Voltage Range		0	—	V_{DD}		
Input Current	Sample Rate = 500 ksps; VREF = 3.0 V		7	_	μA	

8.4.1. Window Detector Example

Figure 8.4 shows two example window comparisons for right-justified data. with ADC0LTH:ADC0LTL = 0x0080 (128d) and ADC0GTH:ADC0GTL = 0x0040 (64d). The input voltage can range from 0 to VREF x (1023/1024) with respect to GND, and is represented by a 10-bit unsigned integer value. In the left example, an AD0WINT interrupt will be generated if the ADC0 conversion word (ADC0H:ADC0L) is within the range defined by ADC0GTH:ADC0GTL and ADC0LTH:ADC0LTL (if 0x0040 < ADC0H:ADC0L < 0x0080). In the right example, and AD0WINT interrupt will be generated if the ADC0 conversion word is outside of the range defined by the ADC0GT and ADC0LT registers (if ADC0H:ADC0L < 0x0040 or ADC0H:ADC0L > 0x0080). Figure 8.5 shows an example using left-justified data with the same comparison values.

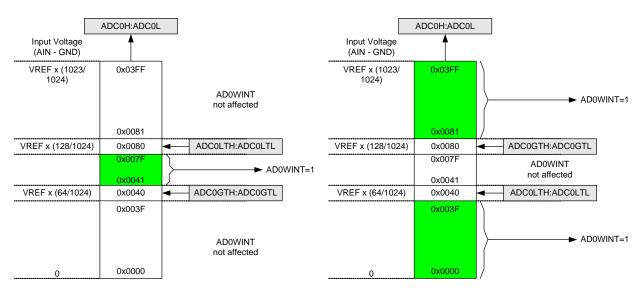


Figure 8.4. ADC Window Compare Example: Right-Justified Data

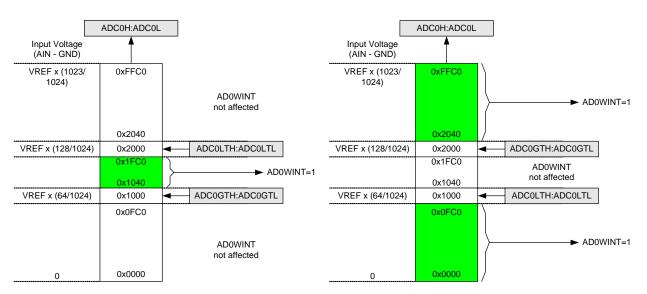


Figure 8.5. ADC Window Compare Example: Left-Justified Data

10. Voltage and Ground Reference Options

The voltage reference MUX is configurable to use an externally connected voltage reference, the on-chip voltage reference, or one of two power supply voltages (see Figure 10.1). The ground reference MUX allows the ground reference for ADC0 to be selected between the ground pin (GND) or a port pin dedicated to analog ground (P0.1/AGND).

The voltage and ground reference options are configured using the REF0CN SFR described on page 62. Electrical specifications are can be found in the Electrical Specifications Chapter.

Important Note About the V_{REF} and AGND Inputs: Port pins are used as the external V_{REF} and AGND inputs. When using an external voltage reference, P0.0/VREF should be configured as an analog input and skipped by the Digital Crossbar. When using AGND as the ground reference to ADC0, P0.1/AGND should be configured as an analog input and skipped by the Digital Crossbar. Refer to Section "23. Port Input/Output" on page 138 for complete Port I/O configuration details. The external reference voltage must be within the range $0 \le V_{REF} \le V_{DD}$ and the external ground reference must be at the same DC voltage potential as GND.

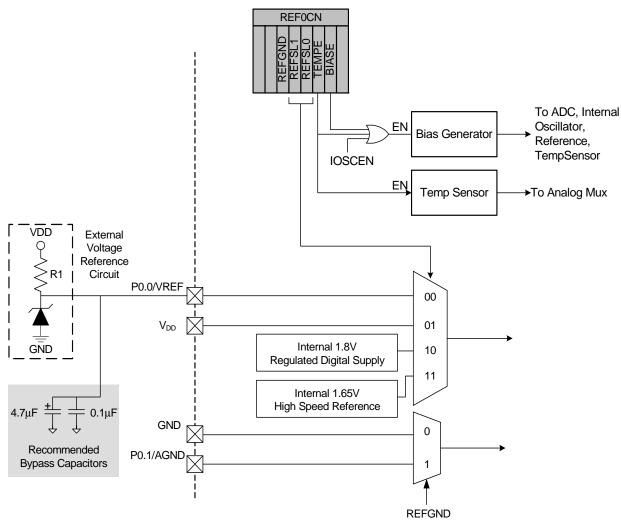


Figure 10.1. Voltage Reference Functional Block Diagram

Mnemonic	Description	Bytes	Clock Cycles
ANL C, bit	AND direct bit to Carry	2	2
ANL C, /bit	AND complement of direct bit to Carry	2	2
ORL C, bit	OR direct bit to carry	2	2
ORL C, /bit	OR complement of direct bit to Carry	2	2
MOV C, bit	Move direct bit to Carry	2	2
MOV bit, C	Move Carry to direct bit	2	2
JC rel	Jump if Carry is set	2	2/3
JNC rel	Jump if Carry is not set	2	2/3
JB bit, rel	Jump if direct bit is set	3	3/4
JNB bit, rel	Jump if direct bit is not set	3	3/4
JBC bit, rel	Jump if direct bit is set and clear bit	3	3/4
Program Branching			
ACALL addr11	CALL addr11 Absolute subroutine call		
LCALL addr16	Long subroutine call	3	4
RET	Return from subroutine	1	5
RETI	Return from interrupt	1	5
AJMP addr11	Absolute jump	2	3
LJMP addr16	Long jump	3	4
SJMP rel	Short jump (relative address)	2	3
JMP @A+DPTR	Jump indirect relative to DPTR	1	3
JZ rel	Jump if A equals zero	2	2/3
JNZ rel	Jump if A does not equal zero	2	2/3
CJNE A, direct, rel	Compare direct byte to A and jump if not equal	3	4/5
CJNE A, #data, rel	Compare immediate to A and jump if not equal	3	3/4
CJNE Rn, #data, rel	INE Rn, #data, rel Compare immediate to Register and jump if not equal		3/4
CJNE @Ri, #data, rel	NE @Ri, #data, rel Compare immediate to indirect and jump if not equal		4/5
DJNZ Rn, rel	Decrement Register and jump if not zero	2	2/3
DJNZ direct, rel	Decrement direct byte and jump if not zero	3	3/4
NOP	No operation	1	1

SFR Definition 14.5. B: B Register

Bit	7	6	5	4	3	2	1	0		
Nam	e	B[7:0]								
Туре	•	R/W								
Rese	et 0	0	0	0	0	0	0	0		
SFR A	SFR Address = 0xF0; Bit-Addressable									
Bit	Name	ne Function								
7:0	B[7:0]	B Register.								

This register serves as a second accumulator for certain arithmetic operations.
I This redister serves as a second accumulator for certain animmetic operations

15. Memory Organization

The memory organization of the CIP-51 System Controller is similar to that of a standard 8051. There are two separate memory spaces: program memory and data memory. Program and data memory share the same address space but are accessed via different instruction types. The memory organization of the C8051F80x-83x device family is shown in Figure 15.1

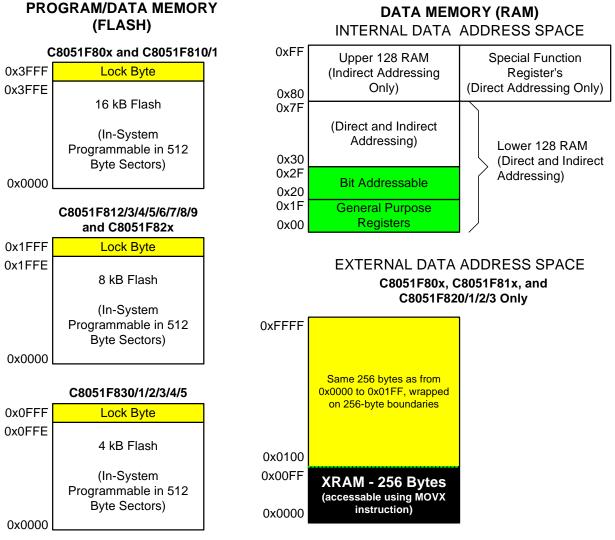


Figure 15.1. C8051F80x-83x Memory Map

16. In-System Device Identification

The C8051F80x-83x has SFRs that identify the device family and derivative. These SFRs can be read by firmware at runtime to determine the capabilities of the MCU that is executing code. This allows the same firmware image to run on MCUs with different memory sizes and peripherals, and dynamically changing functionality to suit the capabilities of that MCU.

In order for firmware to identify the MCU, it must read three SFRs. HWID describes the MCU's family, DERIVID describes the specific derivative within that device family, and REVID describes the hardware revision of the MCU.

SFR Definition 16.1. HWID: Hardware Identification Byte

Bit	7	6	5	4	3	2	1	0	
Name	HWID[7:0]								
Туре	R	R	R	R	R	R	R	R	
Reset	0	0	1	0	0	0	1	1	

SFR Address = 0xB5

Bit	Name	Description
7:0	HWID[7:0]	Hardware Identification Byte.
		Describes the MCU family. 0x23: Devices covered in this document (C8051F80x-83x)

17. Special Function Registers

The direct-access data memory locations from 0x80 to 0xFF constitute the special function registers (SFRs). The SFRs provide control and data exchange with the C8051F80x-83x's resources and peripherals. The CIP-51 controller core duplicates the SFRs found in a typical 8051 implementation as well as implementing additional SFRs used to configure and access the sub-systems unique to the C8051F80x-83x. This allows the addition of new functionality while retaining compatibility with the MCS-51[™] instruction set. Table 17.1 lists the SFRs implemented in the C8051F80x-83x device family.

The SFR registers are accessed anytime the direct addressing mode is used to access memory locations from 0x80 to 0xFF. SFRs with addresses ending in 0x0 or 0x8 (e.g., P0, TCON, SCON0, IE, etc.) are bit-addressable as well as byte-addressable. All other SFRs are byte-addressable only. Unoccupied addresses in the SFR space are reserved for future use. Accessing these areas will have an indeterminate effect and should be avoided. Refer to the corresponding pages of the data sheet, as indicated in Table 17.2, for a detailed description of each register.

F8	SPI0CN	PCA0L	PCA0H	PCA0CPL0	PCA0CPH0	P0MAT	P0MASK	VDM0CN
F0	В	P0MDIN	P1MDIN	EIP1	EIP2			PCA0PWM
E8	ADC0CN	PCA0CPL1	PCA0CPH1	PCA0CPL2	PCA0CPH2	P1MAT	P1MASK	RSTSRC
E0	ACC	XBR0	XBR1		IT01CF		EIE1	EIE2
D8	PCA0CN	PCA0MD	PCA0CPM0	PCA0CPM1	PCA0CPM2	CRC0IN	CRC0DATA	
D0	PSW	REF0CN	CRC0AUTO	CRC0CNT	P0SKIP	P1SKIP	SMB0ADM	SMB0ADR
C8	TMR2CN	REG0CN	TMR2RLL	TMR2RLH	TMR2L	TMR2H	CRC0CN	CRC0FLIP
C0	SMB0CN	SMB0CF	SMB0DAT	ADC0GTL	ADC0GTH	ADC0LTL	ADC0LTH	
B8	IP	CS0SS	CS0SE	ADC0MX	ADC0CF	ADC0L	ADC0H	
B0	CS0CN	OSCXCN	OSCICN	OSCICL		HWID	REVID	FLKEY
A8	IE	CLKSEL		CS0DL	CS0DH	DERVID		
A0	P2	SPI0CFG	SPI0CKR	SPI0DAT	POMDOUT	P1MDOUT	P2MDOUT	
98	SCON0	SBUF0		CPT0CN	CS0MX	CPT0MD	CS0CF	CPT0MX
90	P1						CS0THL	CS0THH
88	TCON	TMOD	TL0	TL1	TH0	TH1	CKCON	PSCTL
80	P0	SP	DPL	DPH				PCON
	0(8)	1(9)	2(A)	3(B)	4(C)	5(D)	6(E)	7(F)

Table 17.1. Special Function Register (SFR) Memory Map

Note: SFR Addresses ending in 0x0 or 0x8 are bit-addressable locations, and can be used with bitwise instructions.

SFR Definition 18.5. EIP1: Extended Interrupt Priority 1

Bit	7	6	5	4	3	2	1	0
Name	Reserved	Reserved	PCP0	PPCA0	A0 PADC0 PWADC0 PMAT		PSMB0	
Туре	W	W R/W R/W R/W		R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xF3

Bit	Name	Function
7:6	Reserved	Must write 0.
5	PCP0	Comparator0 (CP0) Interrupt Priority Control.
		This bit sets the priority of the CP0 rising edge or falling edge interrupt.
		0: CP0 interrupt set to low priority level.
		1: CP0 interrupt set to high priority level.
4	PPCA0	Programmable Counter Array (PCA0) Interrupt Priority Control.
		This bit sets the priority of the PCA0 interrupt.
		0: PCA0 interrupt set to low priority level.
	B4B00	1: PCA0 interrupt set to high priority level.
3	PADC0	ADC0 Conversion Complete Interrupt Priority Control.
		This bit sets the priority of the ADC0 Conversion Complete interrupt.
		0: ADC0 Conversion Complete interrupt set to low priority level.1: ADC0 Conversion Complete interrupt set to high priority level.
2	PWADC0	
2	PWADCU	ADC0 Window Comparator Interrupt Priority Control. This bit sets the priority of the ADC0 Window interrupt.
		0: ADC0 Window interrupt set to low priority level.
		1: ADC0 Window interrupt set to high priority level.
1	PMAT	Port Match Interrupt Priority Control.
	1 101/31	This bit sets the priority of the Port Match Event interrupt.
		0: Port Match interrupt set to low priority level.
		1: Port Match interrupt set to high priority level.
0	PSMB0	SMBus (SMB0) Interrupt Priority Control.
		This bit sets the priority of the SMB0 interrupt.
		0: SMB0 interrupt set to low priority level.
		1: SMB0 interrupt set to high priority level.

20.2. Stop Mode

Setting the Stop Mode Select bit (PCON.1) causes the controller core to enter Stop mode as soon as the instruction that sets the bit completes execution. In Stop mode the internal oscillator, CPU, and all digital peripherals are stopped; the state of the external oscillator circuit is not affected. Each analog peripheral (including the external oscillator circuit) may be shut down individually prior to entering Stop Mode. Stop mode can only be terminated by an internal or external reset. On reset, the device performs the normal reset sequence and begins program execution at address 0x0000.

If enabled, the Missing Clock Detector will cause an internal reset and thereby terminate the Stop mode. The Missing Clock Detector should be disabled if the CPU is to be put to in STOP mode for longer than the MCD timeout of 100 μ s.

20.3. Suspend Mode

Suspend mode allows a system running from the internal oscillator to go to a very low power state similar to Stop mode, but the processor can be awakened by certain events without requiring a reset of the device. Setting the SUSPEND bit (OSCICN.5) causes the hardware to halt the CPU and the high-frequency internal oscillator, and go into Suspend mode as soon as the instruction that sets the bit completes execution. All internal registers and memory maintain their original data. Most digital peripherals are not active in Suspend mode. The exception to this is the Port Match feature and Timer 3, when it is run from an external oscillator source.

The clock divider bits CLKDIV[2:0] in register CLKSEL must be set to "divide by 1" when entering suspend mode.

Suspend mode can be terminated by five types of events, a port match (described in Section "23.5. Port Match" on page 150), a Timer 2 overflow (described in Section "28.2. Timer 2" on page 219), a comparator low output (if enabled), a capacitive sense greater-than comparator event, or a device reset event. In order to run Timer 3 in suspend mode, the timer must be configured to clock from the external clock source. When suspend mode is terminated, the device will continue execution on the instruction following the one that set the SUSPEND bit. If the wake event (port match or Timer 2 overflow) was configured to generate an interrupt, the interrupt will be serviced upon waking the device. If suspend mode is terminated by an internal or external reset, the CIP-51 performs a normal reset sequence and begins program execution at address 0x0000.

Note: The device will still enter suspend mode if a wake source is "pending", and the device will not wake on such pending sources. It is important to ensure that the intended wake source will trigger after the device enters suspend mode. For example, if a CS0 conversion completes and the interrupt fires before the device is in suspend mode, that interrupt cannot trigger the wake event. Because port match events are level-sensitive, pre-existing port match events will trigger a wake, as long as the match condition is still present when the device enters suspend.

SFR Definition 22.4. OSCXCN: External Oscillator Control

Bit	7	6	5	4	3	2	0		
Name	XTLVLD	Х	(OSCMD[2:0)]		XFCN[2:0]			
Туре	R		R/W		R	R/W			
Reset	0	0	0 0 0 0 0				0		

SFR Address = 0xB1

Bit	Name			Function							
7	XTLVLD	Crystal	Oscillator Valid Flag.								
		•	nly when XOSCMD = 11								
		-	al Oscillator is unused or	•							
		,	al Oscillator is running ar								
6:4	XOSCMD[2:0]	Externa	I Oscillator Mode Selec	ct.							
			ernal Oscillator circuit of								
			ternal CMOS Clock Mode								
			External CMOS Clock Mode with divide by 2 stage.								
			RC Oscillator Mode.								
			: Capacitor Oscillator Mode.								
		-): Crystal Oscillator Mode. : Crystal Oscillator Mode with divide by 2 stage.								
3	Unused		Read = 0; Write = Don't Care								
2:0	XFCN[2:0]		I Oscillator Frequency								
			-	uency for Crystal or RC r	node.						
			ording to the desired K F								
		XFCN	Crystal Mode	RC Mode	C Mode						
		000	f ≤ 32 kHz	f ≤ 25 kHz	K Factor = 0.87						
		001	32 kHz < f ≤ 84 kHz	25 kHz < f ≤ 50 kHz	K Factor = 2.6						
		010	84 kHz < f ≤ 225 kHz	50 kHz < f ≤ 100 kHz	K Factor = 7.7						
		011	225 kHz < f ≤ 590 kHz	100 kHz < f ≤ 200 kHz	K Factor = 22						
		100	590 kHz < f ≤ 1.5 MHz	200 kHz < f \leq 400 kHz	K Factor = 65						
		101	$1.5 \text{ MHz} < f \le 4 \text{ MHz}$	400 kHz < f ≤ 800 kHz	K Factor = 180						
		110	$4 \text{ MHz} < f \le 10 \text{ MHz}$	800 kHz $<$ f \leq 1.6 MHz	K Factor = 664						
		111	10 MHz < f ≤ 30 MHz	$1.6 \text{ MHz} < f \le 3.2 \text{ MHz}$	K Factor = 1590						

SFR Definition 23.16. P2MDOUT: Port 2 Output Mode

Bit	7	6	5	4	3	2	1	0
Name								P2MDOUT[0]
Туре	R	R	R	R	R	R	R	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xA6

Bit	Name	Function
7:1	Unused	Read = 0000000b; Write = Don't Care
0	P2MDOUT[0]	Output Configuration Bits for P2.0.
		0: P2.0 Output is open-drain. 1: P2.0 Output is push-pull.

SFR Definition 25.1. SPI0CFG: SPI0 Configuration

Bit	7	6	5	4	3	2	1	0
Name	SPIBSY	MSTEN	СКРНА	CKPOL	SLVSEL	NSSIN	SRMT	RXBMT
Туре	R	R/W	R/W	R/W	R	R	R	R
Reset	0	0	0	0	0	1	1	1

SFR Address = 0xA1

Bit	Name	Function
7	SPIBSY	SPI Busy.
		This bit is set to logic 1 when a SPI transfer is in progress (master or slave mode).
6	MSTEN	Master Mode Enable.
		0: Disable master mode. Operate in slave mode.
		1: Enable master mode. Operate as a master.
5	CKPHA	SPI0 Clock Phase.
		0: Data centered on first edge of SCK period.*
		1: Data centered on second edge of SCK period.*
4	CKPOL	SPI0 Clock Polarity.
		0: SCK line low in idle state.
		1: SCK line high in idle state.
3	SLVSEL	Slave Selected Flag.
		This bit is set to logic 1 whenever the NSS pin is low indicating SPI0 is the selected
		slave. It is cleared to logic 0 when NSS is high (slave not selected). This bit does
		not indicate the instantaneous value at the NSS pin, but rather a de-glitched ver- sion of the pin input.
2	NSSIN	NSS Instantaneous Pin Input.
		This bit mimics the instantaneous value that is present on the NSS port pin at the
		time that the register is read. This input is not de-glitched.
1	SRMT	Shift Register Empty (valid in slave mode only).
		This bit will be set to logic 1 when all data has been transferred in/out of the shift
		register, and there is no new information available to read from the transmit buffer
		or write to the receive buffer. It returns to logic 0 when a data byte is transferred to
		the shift register from the transmit buffer or by a transition on SCK. SRMT = 1 when in Master Mode.
0	RXBMT	Receive Buffer Empty (valid in slave mode only).
		This bit will be set to logic 1 when the receive buffer has been read and contains no
		new information. If there is new information available in the receive buffer that has
		not been read, this bit will return to logic 0. RXBMT = 1 when in Master Mode.
Note:	In slave mode,	data on MOSI is sampled in the center of each data bit. In master mode, data on MISO is
		YSCLK before the end of each data bit, to provide maximum settling time for the slave device.
	See Table 25.1	for timing parameters.

Table 26.5. SMBus Status Decoding With Hardware ACK Generation Disabled (EHACK = 0)(Continued)

	Va	alue	es F	Rea	d				lues Vrit		itus ected
Mode	Status	Vector	ACKRQ	ARBLOST	ACK	Current SMbus State	Typical Response Options	STA	STO	ACK	Next Status Vector Expected
er			0	0	0	A slave byte was transmitted; NACK received.	No action required (expecting STOP condition).	0	0	Х	0001
smitte	010	00	0	0	0 1 A slave byte was transmitted; ACK received.		Load SMB0DAT with next data byte to transmit.	0	0	Х	0100
Slave Transmitter			0	1	Х	A Slave byte was transmitted; error detected.	No action required (expecting Master to end transfer).	0	0	Х	0001
Slav	010)1	0	х	x	An illegal STOP or bus error was detected while a Slave Transmission was in progress.	Clear STO.	0	0	Х	
							If Write, Acknowledge received address	0	0	1	0000
			1	0	Х	A slave address + R/W was received; ACK requested.	If Read, Load SMB0DAT with data byte; ACK received address	0	0	1	0100
							NACK received address.	0	0	0	—
	0010					If Write, Acknowledge received address	0	0	1	0000	
eiver				1	х	Lost arbitration as master; slave address + R/W received;	If Read, Load SMB0DAT with data byte; ACK received address	0	0	1	0100
ece				ACK requested.		ACK requested.	NACK received address.	0	0	0	—
Slave Receiver							Reschedule failed transfer; NACK received address.	1	0	0	1110
S	000)1	0	0	х	A STOP was detected while addressed as a Slave Trans- mitter or Slave Receiver.	Clear STO.	0	0	Х	_
		-	1	1	Х	Lost arbitration while attempt- ing a STOP.	No action required (transfer complete/aborted).	0	0	0	
	000	00	1	0	х	A slave byte was received; ACK requested.	Acknowledge received byte; Read SMB0DAT.	0	0	1	0000
						ACR lequested.	NACK received byte.	0	0	0	—
uo	001	0	0	1	Х	Lost arbitration while attempt-	Abort failed transfer.	0	0	Х	
diti	001		U	1	Λ	ing a repeated START.	Reschedule failed transfer.	1	0	Х	1110
Con	000)1	0	1	Х	Lost arbitration due to a	Abort failed transfer.	0	0	Х	—
or	000	, ,	U	1	Λ	detected STOP.	Reschedule failed transfer.	1	0	Х	1110
Bus Error Condition	000	0	1	1	Х	Lost arbitration while transmit-	Abort failed transfer.	0	0	0	—
Bus	000	.0	I	1	^	ting a data byte as master.	Reschedule failed transfer.	1	0	0	1110

	Valu	es I	Rea	d				lues Vrit		itus iected
Mode	Status Vector	ACKRQ	ARBLOST	ACK	Current SMbus State			STO	ACK	Next Status Vector Expected
	1110	0	0	Х	A master START was gener- ated.	Load slave address + R/W into SMB0DAT.	0	0	Х	1100
			_	_	A master data or address byte	Set STA to restart transfer.	1	0	Х	1110
er		0	0	0	was transmitted; NACK received.	Abort transfer.	0	1	Х	—
smitte						Load next data byte into SMB0DAT.	0	0	Х	1100
ran	Master Transmitter 1100 0 0			End transfer with STOP.	0	1	Х	_		
aster T		0	0	1	A master data or address byte was transmitted; ACK	End transfer with STOP and start another transfer.	1	1	Х	_
Ř		Ŭ	Ŭ		received.	Send repeated START.	1	0	Х	1110
						Switch to Master Receiver Mode (clear SI without writing new data to SMB0DAT). Set ACK for initial data byte.	0	0	1	1000
						Set ACK for next data byte; Read SMB0DAT.	0	0	1	1000
		0	0	1	A master data byte was	Set NACK to indicate next data byte as the last data byte; Read SMB0DAT.	0	0	0	1000
er					received; ACK sent.	Initiate repeated START.	1	0	0	1110
Aaster Receiver	1000					Switch to Master Transmitter Mode (write to SMB0DAT before clearing SI).	0	0	Х	1100
aste						Read SMB0DAT; send STOP.	0	1	0	—
Ŵ				A master data byte was	Read SMB0DAT; Send STOP followed by START.	1	1	0	1110	
		0	0	0	received; NACK sent (last	Initiate repeated START.	1	0	0	1110
					byte).	Switch to Master Transmitter Mode (write to SMB0DAT before clearing SI).	0	0	Х	1100

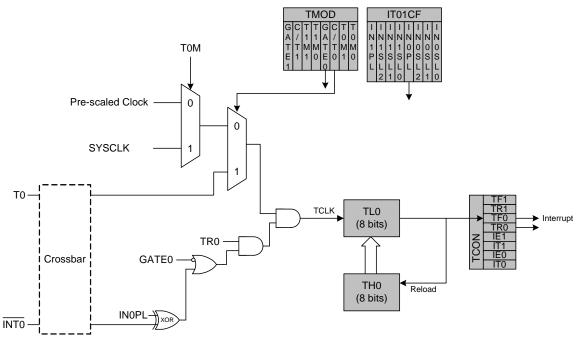


Figure 28.2. T0 Mode 2 Block Diagram

28.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)

In Mode 3, Timer 0 is configured as two separate 8-bit counter/timers held in TL0 and TH0. The counter/timer in TL0 is controlled using the Timer 0 control/status bits in TCON and TMOD: TR0, C/T0, GATE0 and TF0. TL0 can use either the system clock or an external input signal as its timebase. The TH0 register is restricted to a timer function sourced by the system clock or prescaled clock. TH0 is enabled using the Timer 1 run control bit TR1. TH0 sets the Timer 1 overflow flag TF1 on overflow and thus controls the Timer 1 interrupt.

Timer 1 is inactive in Mode 3. When Timer 0 is operating in Mode 3, Timer 1 can be operated in Modes 0, 1 or 2, but cannot be clocked by external signals nor set the TF1 flag and generate an interrupt. However, the Timer 1 overflow can be used to generate baud rates or overflow conditions for other peripherals. While Timer 0 is operating in Mode 3, Timer 1 run control is handled through its mode settings. To run Timer 1 while Timer 0 is in Mode 3, set the Timer 1 Mode as 0, 1, or 2. To disable Timer 1, configure it for Mode 3.

SFR Definition 28.6. TH0: Timer 0 High Byte

Bit	7	6	5	4	3	2	1	0			
Name	9			TH0	[7:0]						
Туре	•			R/	W						
Rese	t 0	0	0	0	0	0	0	0			
SFR A	ddress = 0x8	С									
Bit	Name				Function						
7:0	TH0[7:0]	Timer 0 Hig	Timer 0 High Byte.								
		The THO register is the high byte of the 16-bit Timer 0.									

SFR Definition 28.7. TH1: Timer 1 High Byte

Bit	7	6	5	4	3	2	1	0
Name	TH1[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0
SFR Address = 0x8D								
Bit	Name Function							

Bit	Name	Function				
7:0	TH1[7:0]	Timer 1 High Byte.				
		The TH1 register is the high byte of the 16-bit Timer 1.				

SFR Definition 28.11. TMR2L: Timer 2 Low Byte

Bit	7	6	5	4	3	2	1	0
Name	TMR2L[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0

Bit	Name	Function			
7:0	TMR2L[7:0]	Timer 2 Low Byte.			
		In 16-bit mode, the TMR2L register contains the low byte of the 16-bit Timer 2. In 8- bit mode, TMR2L contains the 8-bit low byte timer value.			

SFR Definition 28.12. TMR2H Timer 2 High Byte

Bit	7	6	5	4	3	2	1	0
Name	TMR2H[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xCD

Bit	Name	Function			
7:0	TMR2H[7:0]	Timer 2 Low Byte.			
		In 16-bit mode, the TMR2H register contains the high byte of the 16-bit Timer 2. In 8- bit mode, TMR2H contains the 8-bit high byte timer value.			

