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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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Figure 3.1. QFN-20 Pinout Diagram (Top View)
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8.4.1. Window Detector Example

Figure 8.4 shows two example window comparisons for right-justified data, with
ADC0LTH:ADC0LTL = 0x0080 (128d) and ADC0GTH:ADC0GTL = 0x0040 (64d). The input voltage can
range from 0 to VREF x (1023/1024) with respect to GND, and is represented by a 10-bit unsigned integer
value. In the left example, an AD0WINT interrupt will be generated if the ADC0 conversion word
(ADC0H:ADC0L) is within the range defined by ADC0GTH:ADC0GTL and ADC0LTH:ADC0LTL
(if 0x0040 < ADC0H:ADC0L < 0x0080). In the right example, and AD0WINT interrupt will be generated if
the ADC0 conversion word is outside of the range defined by the ADC0GT and ADC0LT registers
(if ADC0H:ADC0L < 0x0040 or ADC0H:ADC0L > 0x0080). Figure 8.5 shows an example using left-justi-
fied data with the same comparison values.

Figure 8.4. ADC Window Compare Example: Right-Justified Data

Figure 8.5. ADC Window Compare Example: Left-Justified Data
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SFR Address = 0xD1

SFR Definition 10.1. REF0CN: Voltage Reference Control

Bit 7 6 5 4 3 2 1 0

Name REFGND REFSL TEMPE BIASE

Type R R R/W R/W R/W R/W R/W R

Reset 0 0 0 1 0 0 0 0

Bit Name Function

7:6 Unused Read = 00b; Write = Don’t Care.

5 REFGND Analog Ground Reference.

Selects the ADC0 ground reference.
0: The ADC0 ground reference is the GND pin.
1: The ADC0 ground reference is the P0.1/AGND pin.

4:3 REFSL Voltage Reference Select. 

Selects the ADC0 voltage reference.
00: The ADC0 voltage reference is the P0.0/VREF pin.
01: The ADC0 voltage reference is the VDD pin.
10: The ADC0 voltage reference is the internal 1.8 V digital supply voltage.
11: The ADC0 voltage reference is the internal 1.65 V high speed voltage reference.

2 TEMPE Temperature Sensor Enable.

Enables/Disables the internal temperature sensor.
0: Temperature Sensor Disabled.
1: Temperature Sensor Enabled.

1 BIASE Internal Analog Bias Generator Enable Bit.

0: Internal Bias Generator off.
1: Internal Bias Generator on.

0 Unused Read = 0b; Write = Don’t Care.
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SFR Address = 0x9F

SFR Definition 12.3. CPT0MX: Comparator0 MUX Selection

Bit 7 6 5 4 3 2 1 0

Name CMX0N[3:0] CMX0P[3:0]

Type R/W R/W

Reset 1 1 1 1 1 1 1 1

Bit Name Function

7:4 CMX0N[3:0] Comparator0 Negative Input MUX Selection.

20-Pin and 24-Pin Devices 16-Pin Devices

0000 P0.1 P0.1

0001 P0.3 P0.3

0010 P0.5 P0.5

0011 P0.7 P0.7

0100 P1.1 P1.1

0101 P1.3 P1.3

0110 P1.5 Reserved.

0111 P1.7 Reserved.

1000 VREG Output. VREG Output.

1001–1111 No input selected. No input selected.

3:0 CMX0P[3:0] Comparator0 Positive Input MUX Selection.

20-Pin and 24-Pin Devices 16-Pin Devices

0000 P0.0 P0.0

0001 P0.2 P0.2

0010 P0.4 P0.4

0011 P0.6 P0.6

0100 P1.0 P1.0

0101 P1.2 P1.2

0110 P1.4 Reserved.

0111 P1.6 Reserved.

1000 VREG Output. VREG Output.

1001–1111 No input selected. No input selected.
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With the CIP-51's maximum system clock at 25 MHz, it has a peak throughput of 25 MIPS. The CIP-51 has
a total of 109 instructions. The table below shows the total number of instructions that require each execu-
tion time.

14.1.  Instruction Set
The instruction set of the CIP-51 System Controller is fully compatible with the standard MCS-51™ instruc-
tion set. Standard 8051 development tools can be used to develop software for the CIP-51. All CIP-51
instructions are the binary and functional equivalent of their MCS-51™ counterparts, including opcodes,
addressing modes and effect on PSW flags. However, instruction timing is different than that of the stan-
dard 8051. 

14.1.1. Instruction and CPU Timing

In many 8051 implementations, a distinction is made between machine cycles and clock cycles, with
machine cycles varying from 2 to 12 clock cycles in length. However, the CIP-51 implementation is based
solely on clock cycle timing.   All instruction timings are specified in terms of clock cycles.

Due to the pipelined architecture of the CIP-51, most instructions execute in the same number of clock
cycles as there are program bytes in the instruction. Conditional branch instructions take one less clock
cycle to complete when the branch is not taken as opposed to when the branch is taken. Table 14.1 is the
CIP-51 Instruction Set Summary, which includes the mnemonic, number of bytes, and number of clock
cycles for each instruction.

Clocks to Execute 1 2 2/3 3 3/4 4 4/5 5 8

Number of Instructions 26 50 5 14 6 3 2 2 1
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16.  In-System Device Identification

The C8051F80x-83x has SFRs that identify the device family and derivative. These SFRs can be read by
firmware at runtime to determine the capabilities of the MCU that is executing code. This allows the same
firmware image to run on MCUs with different memory sizes and peripherals, and dynamically changing
functionality to suit the capabilities of that MCU.

In order for firmware to identify the MCU, it must read three SFRs. HWID describes the MCU’s family,
DERIVID describes the specific derivative within that device family, and REVID describes the hardware
revision of the MCU.

SFR Address = 0xB5

SFR Definition 16.1. HWID: Hardware Identification Byte

Bit 7 6 5 4 3 2 1 0

Name HWID[7:0]

Type R R R R R R R R

Reset 0 0 1 0 0 0 1 1

Bit Name Description

7:0 HWID[7:0] Hardware Identification Byte.

Describes the MCU family.
0x23: Devices covered in this document (C8051F80x-83x) 
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18.2.  Interrupt Register Descriptions
The SFRs used to enable the interrupt sources and set their priority level are described in this section.
Refer to the data sheet section associated with a particular on-chip peripheral for information regarding
valid interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).

Table 18.1. Interrupt Summary

Interrupt Source Interrupt 
Vector

Priority 
Order

Pending Flag

B
it

 a
d

d
re

s
sa

b
le

?

C
le

a
re

d
 b

y
 H

W
? Enable 

Flag
Priority 
Control

Reset 0x0000 Top None N/A N/A Always 
Enabled

Always 
Highest

External Interrupt 0 
(INT0)

0x0003 0 IE0 (TCON.1) Y Y EX0 (IE.0) PX0 (IP.0)

Timer 0 Overflow 0x000B 1 TF0 (TCON.5) Y Y ET0 (IE.1) PT0 (IP.1)
External Interrupt 1 
(INT1)

0x0013 2 IE1 (TCON.3) Y Y EX1 (IE.2) PX1 (IP.2)

Timer 1 Overflow 0x001B 3 TF1 (TCON.7) Y Y ET1 (IE.3) PT1 (IP.3)
UART0 0x0023 4 RI0 (SCON0.0)

TI0 (SCON0.1)
Y N ES0 (IE.4) PS0 (IP.4)

Timer 2 Overflow 0x002B 5 TF2H (TMR2CN.7)
TF2L (TMR2CN.6)

Y N ET2 (IE.5) PT2 (IP.5)

SPI0 0x0033 6 SPIF (SPI0CN.7) 
WCOL (SPI0CN.6) 
MODF (SPI0CN.5) 
RXOVRN (SPI0CN.4)

Y ESPI0
(IE.6)

PSPI0 
(IP.6)

SMB0 0x003B 7 SI (SMB0CN.0) Y N ESMB0 
(EIE1.0)

PSMB0 
(EIP1.0)

Port Match 0x0043 8 None N/A N/A EMAT 
(EIE1.1)

PMAT 
(EIP1.1)

ADC0
Window Compare

0x004B 9 AD0WINT (ADC0CN.3) Y N EWADC0 
(EIE1.2)

PWADC0 
(EIP1.2)

ADC0
Conversion Complete

0x0053 10 AD0INT (ADC0CN.5) Y N EADC0 
(EIE1.3)

PADC0 
(EIP1.3)

Programmable
Counter Array

0x005B 11 CF (PCA0CN.7)
CCFn (PCA0CN.n)

Y N EPCA0 
(EIE1.4)

PPCA0 
(EIP1.4)

Comparator0 0x0063 12 CP0FIF (CPT0CN.4)
CP0RIF (CPT0CN.5)

N N ECP0 
(EIE1.5)

PCP0 
(EIP1.5)

RESERVED
RESERVED
CS0 Conversion Com-
plete

0x007B 15 CS0INT (CS0CN.5) N N ECSCPT 
(EIE2.0)

PSCCPT 
(EIP2.0)

CS0 Greater Than 0x0083 16 CS0CMPF (CS0CN.0) N N ECSGRT 
(EIE2.1)

PSCGRT 
(EIP2.1)
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The following guidelines are recommended for any system that contains routines which write or erase
Flash from code.

19.4.1. VDD Maintenance and the VDD Monitor

1. If the system power supply is subject to voltage or current "spikes," add sufficient transient protection 
devices to the power supply to ensure that the supply voltages listed in the Absolute Maximum Ratings 
table are not exceeded.

2. Make certain that the minimum VDD rise time specification of 1 ms is met. If the system cannot meet 
this rise time specification, then add an external VDD brownout circuit to the RST pin of the device that 
holds the device in reset until VDD reaches the minimum device operating voltage and re-asserts RST 
if VDD drops below the minimum device operating voltage.

3. Keep the on-chip VDD Monitor enabled and enable the VDD Monitor as a reset source as early in code 
as possible. This should be the first set of instructions executed after the Reset Vector. For C-based 
systems, this will involve modifying the startup code added by the C compiler. See your compiler 
documentation for more details. Make certain that there are no delays in software between enabling the 
VDD Monitor and enabling the VDD Monitor as a reset source. Code examples showing this can be 
found in “AN201: Writing to Flash from Firmware," available from the Silicon Laboratories website.

Note: On C8051F80x-83x devices, both the VDD Monitor and the VDD Monitor reset source must be enabled to write 
or erase Flash without generating a Flash Error Device Reset.

On C8051F80x-83x devices, both the VDD Monitor and the VDD Monitor reset source are enabled by hardware 
after a power-on reset.

4. As an added precaution, explicitly enable the VDD Monitor and enable the VDD Monitor as a reset 
source inside the functions that write and erase Flash memory. The VDD Monitor enable instructions 
should be placed just after the instruction to set PSWE to a 1, but before the Flash write or erase 
operation instruction.

5. Make certain that all writes to the RSTSRC (Reset Sources) register use direct assignment operators 
and explicitly DO NOT use the bit-wise operators (such as AND or OR). For example, "RSTSRC = 
0x02" is correct, but "RSTSRC |= 0x02" is incorrect.

6. Make certain that all writes to the RSTSRC register explicitly set the PORSF bit to a 1. Areas to check 
are initialization code which enables other reset sources, such as the Missing Clock Detector or 
Comparator, for example, and instructions which force a Software Reset. A global search on "RSTSRC" 
can quickly verify this.

19.4.2. PSWE Maintenance

1. Reduce the number of places in code where the PSWE bit (b0 in PSCTL) is set to a 1. There should be 
exactly one routine in code that sets PSWE to a 1 to write Flash bytes and one routine in code that sets 
both PSWE and PSEE both to a 1 to erase Flash pages.

2. Minimize the number of variable accesses while PSWE is set to a 1. Handle pointer address updates 
and loop maintenance outside the "PSWE = 1;... PSWE = 0;" area. Code examples showing this can be 
found in “AN201: Writing to Flash from Firmware," available from the Silicon Laboratories website.

3. Disable interrupts prior to setting PSWE to a 1 and leave them disabled until after PSWE has been 
reset to 0. Any interrupts posted during the Flash write or erase operation will be serviced in priority 
order after the Flash operation has been completed and interrupts have been re-enabled by software.

4. Make certain that the Flash write and erase pointer variables are not located in XRAM. See your 
compiler documentation for instructions regarding how to explicitly locate variables in different memory 
areas.

5. Add address bounds checking to the routines that write or erase Flash memory to ensure that a routine 
called with an illegal address does not result in modification of the Flash.
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21.2.  Power-Fail Reset / VDD Monitor

When a power-down transition or power irregularity causes VDD to drop below VRST, the power supply
monitor will drive the RST pin low and hold the CIP-51 in a reset state (see Figure 21.2). When VDD returns
to a level above VRST, the CIP-51 will be released from the reset state. Even though internal data memory
contents are not altered by the power-fail reset, it is impossible to determine if VDD dropped below the level
required for data retention. If the PORSF flag reads 1, the data may no longer be valid. The VDD monitor is
enabled and selected as a reset source after power-on resets. Its defined state (enabled/disabled) is not
altered by any other reset source. For example, if the VDD monitor is disabled by code and a software reset
is performed, the VDD monitor will still be disabled after the reset. 

Important Note: If the VDD monitor is being turned on from a disabled state, it should be enabled before it
is selected as a reset source. Selecting the VDD monitor as a reset source before it is enabled and stabi-
lized may cause a system reset. In some applications, this reset may be undesirable. If this is not desirable
in the application, a delay should be introduced between enabling the monitor and selecting it as a reset
source. The procedure for enabling the VDD monitor and configuring it as a reset source from a disabled
state is shown below:

1. Enable the VDD monitor (VDMEN bit in VDM0CN = 1).

2. If necessary, wait for the VDD monitor to stabilize.

3. Select the VDD monitor as a reset source (PORSF bit in RSTSRC = 1).

See Figure 21.2 for VDD monitor timing; note that the power-on-reset delay is not incurred after a VDD

monitor reset. See Section “7. Electrical Characteristics” on page 39 for complete electrical characteristics
of the VDD monitor.
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23.2.2. Assigning Port I/O Pins to Digital Functions

Any Port pins not assigned to analog functions may be assigned to digital functions or used as GPIO. Most
digital functions rely on the Crossbar for pin assignment; however, some digital functions bypass the
Crossbar in a manner similar to the analog functions listed above. Port pins used by these digital func-
tions and any Port pins selected for use as GPIO should have their corresponding bit in PnSKIP set
to 1. Table 23.2 shows all available digital functions and the potential mapping of Port I/O to each digital
function.

Table 23.1. Port I/O Assignment for Analog Functions

Analog Function Potentially Assignable 
Port Pins

SFR(s) used for 
Assignment

ADC Input P0.0–P1.7 ADC0MX, PnSKIP, 
PnMDIN

Comparator0 Input P0.0–P1.7 CPT0MX, PnSKIP, 
PnMDIN

CS0 Input P0.0–P1.7 CS0MX, CS0SS, 
CS0SE, PnMDIN

Voltage Reference (VREF0) P0.0 REF0CN, P0SKIP, 
PnMDIN

Ground Reference (AGND) P0.1 REF0CN, P0SKIP

External Oscillator in Crystal Mode (XTAL1) P0.2 OSCXCN, P0SKIP, 
P0MDIN

External Oscillator in RC, C, or Crystal Mode (XTAL2) P0.3 OSCXCN, P0SKIP, 
P0MDIN
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24.2.  32-bit CRC Algorithm
The C8051F80x-83x CRC unit calculates the 32-bit CRC using a poly of 0x04C11DB7. The CRC-32 algo-
rithm is "reflected", meaning that all of the input bytes and the final 32-bit output are bit-reversed in the pro-
cessing engine. The following is a description of a simplified CRC algorithm that produces results identical
to the hardware:

1. XOR the least-significant byte of the current CRC result with the input byte. If this is the first iteration of 
the CRC unit, the current CRC result will be the set initial value (0x00000000 or 0xFFFFFFFF).

2. Right-shift the CRC result.

3. If the LSB of the CRC result is set, XOR the CRC result with the reflected polynomial (0xEDB88320).

4. Repeat at Step 2 for the number of input bits (8).

For example, the 32-bit C8051F80x-83x CRC algorithm can be described by the following code:

unsigned long UpdateCRC (unsigned long CRC_acc, unsigned char CRC_input){
unsigned char i; // loop counter
#define POLY 0xEDB88320 // bit-reversed version of the poly 0x04C11DB7
// Create the CRC "dividend" for polynomial arithmetic (binary arithmetic
// with no carries)
CRC_acc = CRC_acc ^ CRC_input;
// "Divide" the poly into the dividend using CRC XOR subtraction
// CRC_acc holds the "remainder" of each divide
// Only complete this division for 8 bits since input is 1 byte
for (i = 0; i < 8; i++)
{

// Check if the MSB is set (if MSB is 1, then the POLY can "divide"
// into the "dividend")
if ((CRC_acc & 0x00000001) == 0x00000001)
{

// if so, shift the CRC value, and XOR "subtract" the poly
CRC_acc = CRC_acc >> 1;
CRC_acc ^= POLY;

}
else
{

// if not, just shift the CRC value
CRC_acc = CRC_acc >> 1;

}
}
return CRC_acc; // Return the final remainder (CRC value)

}
Table 24.2 lists example input values and the associated outputs using the 32-bit C8051F80x-83x CRC
algorithm (an initial value of 0xFFFFFFFF is used):

Table 24.2. Example 32-bit CRC Outputs

Input Output

0x63 0xF9462090
0xAA, 0xBB, 0xCC 0x41B207B3

0x00, 0x00, 0xAA, 0xBB, 0xCC 0x78D129BC
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SFR Address = 0xC1 

SFR Definition 26.1. SMB0CF: SMBus Clock/Configuration

Bit 7 6 5 4 3 2 1 0

Name ENSMB INH BUSY EXTHOLD SMBTOE SMBFTE SMBCS[1:0]

Type R/W R/W R R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7 ENSMB SMBus Enable.

This bit enables the SMBus interface when set to 1. When enabled, the interface 
constantly monitors the SDA and SCL pins.

6 INH SMBus Slave Inhibit.

When this bit is set to logic 1, the SMBus does not generate an interrupt when slave 
events occur. This effectively removes the SMBus slave from the bus. Master Mode 
interrupts are not affected.

5 BUSY SMBus Busy Indicator.

This bit is set to logic 1 by hardware when a transfer is in progress. It is cleared to 
logic 0 when a STOP or free-timeout is sensed.

4 EXTHOLD SMBus Setup and Hold Time Extension Enable.

This bit controls the SDA setup and hold times according to Table 26.2.
0: SDA Extended Setup and Hold Times disabled.
1: SDA Extended Setup and Hold Times enabled.

3 SMBTOE SMBus SCL Timeout Detection Enable.

This bit enables SCL low timeout detection. If set to logic 1, the SMBus forces 
Timer 3 to reload while SCL is high and allows Timer 3 to count when SCL goes low. 
If Timer 3 is configured to Split Mode, only the High Byte of the timer is held in reload 
while SCL is high. Timer 3 should be programmed to generate interrupts at 25 ms, 
and the Timer 3 interrupt service routine should reset SMBus communication.

2 SMBFTE SMBus Free Timeout Detection Enable.

When this bit is set to logic 1, the bus will be considered free if SCL and SDA remain 
high for more than 10 SMBus clock source periods.

1:0 SMBCS[1:0] SMBus Clock Source Selection.

These two bits select the SMBus clock source, which is used to generate the SMBus 
bit rate. The selected device should be configured according to Equation 26.1.
00: Timer 0 Overflow
01: Timer 1 Overflow
10: Timer 2 High Byte Overflow
11: Timer 2 Low Byte Overflow
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26.4.3. Hardware Slave Address Recognition

The SMBus hardware has the capability to automatically recognize incoming slave addresses and send an
ACK without software intervention. Automatic slave address recognition is enabled by setting the EHACK
bit in register SMB0ADM to 1. This will enable both automatic slave address recognition and automatic
hardware ACK generation for received bytes (as a master or slave). More detail on automatic hardware
ACK generation can be found in Section 26.4.2.2.

The registers used to define which address(es) are recognized by the hardware are the SMBus Slave
Address register (SFR Definition 26.3) and the SMBus Slave Address Mask register (SFR Definition 26.4).
A single address or range of addresses (including the General Call Address 0x00) can be specified using
these two registers. The most-significant seven bits of the two registers are used to define which
addresses will be ACKed. A 1 in bit positions of the slave address mask SLVM[6:0] enable a comparison
between the received slave address and the hardware’s slave address SLV[6:0] for those bits. A 0 in a bit
of the slave address mask means that bit will be treated as a “don’t care” for comparison purposes. In this

Table 26.3. Sources for Hardware Changes to SMB0CN

Bit Set by Hardware When: Cleared by Hardware When:

MASTER
 A START is generated.  A STOP is generated.

 Arbitration is lost.

TXMODE

 START is generated.

 SMB0DAT is written before the start of an 
SMBus frame.

 A START is detected.

 Arbitration is lost.

 SMB0DAT is not written before the 
start of an SMBus frame.

STA
 A START followed by an address byte is 

received.
 Must be cleared by software.

STO
 A STOP is detected while addressed as a 

slave.

 Arbitration is lost due to a detected STOP.

 A pending STOP is generated.

ACKRQ
 A byte has been received and an ACK 

response value is needed (only when 
hardware ACK is not enabled).

 After each ACK cycle.

ARBLOST

 A repeated START is detected as a 
MASTER when STA is low (unwanted 
repeated START).

 SCL is sensed low while attempting to 
generate a STOP or repeated START 
condition.

 SDA is sensed low while transmitting a 1 
(excluding ACK bits).

 Each time SI is cleared.

ACK
 The incoming ACK value is low 

(ACKNOWLEDGE).
 The incoming ACK value is high 

(NOT ACKNOWLEDGE).

SI

 A START has been generated.

 Lost arbitration.

 A byte has been transmitted and an 
ACK/NACK received.

 A byte has been received.

 A START or repeated START followed by a 
slave address + R/W has been received. 

 A STOP has been received. 

 Must be cleared by software.
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26.5.2. Read Sequence (Master)

During a read sequence, an SMBus master reads data from a slave device. The master in this transfer will
be a transmitter during the address byte, and a receiver during all data bytes. The SMBus interface gener-
ates the START condition and transmits the first byte containing the address of the target slave and the
data direction bit. In this case the data direction bit (R/W) will be logic 1 (READ). Serial data is then
received from the slave on SDA while the SMBus outputs the serial clock. The slave transmits one or more
bytes of serial data. 

If hardware ACK generation is disabled, the ACKRQ is set to 1 and an interrupt is generated after each
received byte. Software must write the ACK bit at that time to ACK or NACK the received byte. 

With hardware ACK generation enabled, the SMBus hardware will automatically generate the ACK/NACK,
and then post the interrupt. It is important to note that the appropriate ACK or NACK value should be
set up by the software prior to receiving the byte when hardware ACK generation is enabled.

Writing a 1 to the ACK bit generates an ACK; writing a 0 generates a NACK. Software should write a 0 to
the ACK bit for the last data transfer, to transmit a NACK. The interface exits Master Receiver Mode after
the STO bit is set and a STOP is generated. The interface will switch to Master Transmitter Mode if SMB0-
DAT is written while an active Master Receiver. Figure 26.6 shows a typical master read sequence. Two
received data bytes are shown, though any number of bytes may be received. Notice that the ‘data byte
transferred’ interrupts occur at different places in the sequence, depending on whether hardware ACK gen-
eration is enabled. The interrupt occurs before the ACK with hardware ACK generation disabled, and after
the ACK when hardware ACK generation is enabled.

Figure 26.6. Typical Master Read Sequence

Data ByteData Byte A NAS R PSLA

S = START
P = STOP
A = ACK
N = NACK
R = READ
SLA = Slave Address

Received by SMBus 
Interface

Transmitted by 
SMBus Interface

Interrupts with Hardware ACK Disabled (EHACK = 0)

Interrupts with Hardware ACK Enabled (EHACK = 1)
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27.  UART0

UART0 is an asynchronous, full duplex serial port offering modes 1 and 3 of the standard 8051 UART.
Enhanced baud rate support allows a wide range of clock sources to generate standard baud rates (details
in Section “27.1. Enhanced Baud Rate Generation” on page 202). Received data buffering allows UART0
to start reception of a second incoming data byte before software has finished reading the previous data
byte. 

UART0 has two associated SFRs: Serial Control Register 0 (SCON0) and Serial Data Buffer 0 (SBUF0).
The single SBUF0 location provides access to both transmit and receive registers. Writes to SBUF0
always access the Transmit register. Reads of SBUF0 always access the buffered Receive register;
it is not possible to read data from the Transmit register.

With UART0 interrupts enabled, an interrupt is generated each time a transmit is completed (TI0 is set in
SCON0), or a data byte has been received (RI0 is set in SCON0). The UART0 interrupt flags are not
cleared by hardware when the CPU vectors to the interrupt service routine. They must be cleared manually
by software, allowing software to determine the cause of the UART0 interrupt (transmit complete or receive
complete).

Figure 27.1. UART0 Block Diagram
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27.3.  Multiprocessor Communications
9-Bit UART mode supports multiprocessor communication between a master processor and one or more
slave processors by special use of the ninth data bit. When a master processor wants to transmit to one or
more slaves, it first sends an address byte to select the target(s). An address byte differs from a data byte
in that its ninth bit is logic 1; in a data byte, the ninth bit is always set to logic 0.

Setting the MCE0 bit (SCON0.5) of a slave processor configures its UART such that when a stop bit is
received, the UART will generate an interrupt only if the ninth bit is logic 1 (RB80 = 1) signifying an address
byte has been received. In the UART interrupt handler, software will compare the received address with
the slave's own assigned 8-bit address. If the addresses match, the slave will clear its MCE0 bit to enable
interrupts on the reception of the following data byte(s). Slaves that weren't addressed leave their MCE0
bits set and do not generate interrupts on the reception of the following data bytes, thereby ignoring the
data. Once the entire message is received, the addressed slave resets its MCE0 bit to ignore all transmis-
sions until it receives the next address byte.

Multiple addresses can be assigned to a single slave and/or a single address can be assigned to multiple
slaves, thereby enabling "broadcast" transmissions to more than one slave simultaneously. The master
processor can be configured to receive all transmissions or a protocol can be implemented such that the
master/slave role is temporarily reversed to enable half-duplex transmission between the original master
and slave(s).

Figure 27.6. UART Multi-Processor Mode Interconnect Diagram

Master
Device

Slave
Device

TXRX RX TX

Slave
Device

RX TX

Slave
Device

RX TX

V+



C8051F80x-83x

214 Rev. 1.0

Figure 28.3. T0 Mode 3 Block Diagram
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29.3.6. 16-Bit Pulse Width Modulator Mode

A PCA module may be operated in 16-Bit PWM mode. 16-bit PWM mode is independent of the other (8-bit
through 15-bit) PWM modes. In this mode, the 16-bit capture/compare module defines the number of PCA
clocks for the low time of the PWM signal. When the PCA counter matches the module contents, the out-
put on CEXn is asserted high; when the 16-bit counter overflows, CEXn is asserted low. 16-Bit PWM Mode
is enabled by setting the ECOMn, PWMn, and PWM16n bits in the PCA0CPMn register. 

The duty cycle of the PWM output signal can be varied by writing to an “Auto-Reload” Register, which is
dual-mapped into the PCA0CPHn and PCA0CPLn register locations. The auto-reload registers are
accessed (read or written) when the bit ARSEL in PCA0PWM is set to 1. The capture/compare registers
are accessed when ARSEL is set to 0. This synchronous update feature allows software to asynchro-
nously write a new PWM high time, which will then take effect on the following PWM period.

For backwards-compatibility with the 16-bit PWM mode available on other devices, the PWM duty cycle
can also be changed without using the “Auto-Reload” register. To output a varying duty cycle without using
the “Auto-Reload” register, new value writes should be synchronized with PCA CCFn match interrupts.
Match interrupts should be enabled (ECCFn = 1 AND MATn = 1) to help synchronize the capture/compare
register writes. If the MATn bit is set to 1, the CCFn flag for the module will be set each time a 16-bit com-
parator match (rising edge) occurs. The CF flag in PCA0CN can be used to detect the overflow (falling
edge). The duty cycle for 16-Bit PWM Mode is given by Equation 29.4. 

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Cap-
ture/Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the
ECOMn bit to 0; writing to PCA0CPHn sets ECOMn to 1.

Equation 29.4. 16-Bit PWM Duty Cycle

Using Equation 29.4, the largest duty cycle is 100% (PCA0CPn = 0), and the smallest duty cycle is
0.0015% (PCA0CPn = 0xFFFF). A 0% duty cycle may be generated by clearing the ECOMn bit to 0.

Figure 29.10. PCA 16-Bit PWM Mode
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SFR Address = 0xD8; Bit-Addressable 

SFR Definition 29.1. PCA0CN: PCA0 Control

Bit 7 6 5 4 3 2 1 0

Name CF CR CCF2 CCF1 CCF0

Type R/W R/W R R R R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7 CF PCA Counter/Timer Overflow Flag.

Set by hardware when the PCA Counter/Timer overflows from 0xFFFF to 0x0000. 
When the Counter/Timer Overflow (CF) interrupt is enabled, setting this bit causes the 
CPU to vector to the PCA interrupt service routine. This bit is not automatically cleared 
by hardware and must be cleared by software.

6 CR PCA Counter/Timer Run Control. 

This bit enables/disables the PCA Counter/Timer. 
0: PCA Counter/Timer disabled.
1: PCA Counter/Timer enabled.

5:3 Unused Read = 000b, Write = Don't care.

2 CCF2 PCA Module 2 Capture/Compare Flag. 

This bit is set by hardware when a match or capture occurs. When the CCF2 interrupt 
is enabled, setting this bit causes the CPU to vector to the PCA interrupt service rou-
tine. This bit is not automatically cleared by hardware and must be cleared by software.

1 CCF1 PCA Module 1 Capture/Compare Flag. 

This bit is set by hardware when a match or capture occurs. When the CCF1 interrupt 
is enabled, setting this bit causes the CPU to vector to the PCA interrupt service rou-
tine. This bit is not automatically cleared by hardware and must be cleared by software.

0 CCF0 PCA Module 0 Capture/Compare Flag. 

This bit is set by hardware when a match or capture occurs. When the CCF0 interrupt 
is enabled, setting this bit causes the CPU to vector to the PCA interrupt service rou-
tine. This bit is not automatically cleared by hardware and must be cleared by software.
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SFR Address = 0xD9 

SFR Definition 29.2. PCA0MD: PCA0 Mode

Bit 7 6 5 4 3 2 1 0

Name CIDL WDTE WDLCK CPS2 CPS1 CPS0 ECF

Type R/W R/W R/W R R/W R/W R/W R/W

Reset 0 1 0 0 0 0 0 0

Bit Name Function

7 CIDL PCA Counter/Timer Idle Control.

Specifies PCA behavior when CPU is in idle mode.
0: PCA continues to function normally while the system controller is in Idle mode.
1: PCA operation is suspended while the system controller is in idle mode.

6 WDTE Watchdog Timer Enable.

If this bit is set, PCA Module 2 is used as the watchdog timer.
0: Watchdog Timer disabled.
1: PCA Module 2 enabled as Watchdog Timer.

5 WDLCK Watchdog Timer Lock.

This bit locks/unlocks the Watchdog Timer Enable. When WDLCK is set, the Watchdog 
Timer may not be disabled until the next system reset.
0: Watchdog Timer Enable unlocked.
1: Watchdog Timer Enable locked.

4 Unused Read = 0b, Write = Don't care.

3:1 CPS[2:0] PCA Counter/Timer Pulse Select. 

These bits select the timebase source for the PCA counter
000: System clock divided by 12
001: System clock divided by 4
010: Timer 0 overflow
011: High-to-low transitions on ECI (max rate = system clock divided by 4)
100: System clock
101: External clock divided by 8 (synchronized with the system clock)
11x: Reserved

0 ECF PCA Counter/Timer Overflow Interrupt Enable. 

This bit sets the masking of the PCA Counter/Timer Overflow (CF) interrupt. 
0: Disable the CF interrupt.
1: Enable a PCA Counter/Timer Overflow interrupt request when CF (PCA0CN.7) is 
set.

Note: When the WDTE bit is set to 1, the other bits in the PCA0MD register cannot be modified. To change the 
contents of the PCA0MD register, the Watchdog Timer must first be disabled.


