E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Cap Sense, POR, PWM, Temp Sensor, WDT
Number of I/O	13
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-SOIC (0.154", 3.90mm Width)
Supplier Device Package	16-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f830-gs

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

15.2 Data Memory	93
15.2.1 Internal RAM	00 Q3
15 2 1 1 General Purpose Registers	94
15 2 1 2 Bit Addressable Locations	94
15 2 1 3 Stack	94
16. In-System Device Identification	
17. Special Function Registers	
18 Interrunts	102
18.1 MCU Interrupt Sources and Vectors	103
18.1.1. Interrupt Priorities	. 103
18.1.2. Interrupt Latency	103
18.2. Interrupt Register Descriptions	104
18.3. INTO and INT1 External Interrupts	. 111
19. Flash Memory	. 113
19.1. Programming The Flash Memory	. 113
19.1.1. Flash Lock and Key Functions	. 113
19.1.2. Flash Erase Procedure	. 113
19.1.3. Flash Write Procedure	. 114
19.2. Non-volatile Data Storage	114
19.3. Security Options	114
19.4. Flash Write and Erase Guidelines	115
19.4.1. VDD Maintenance and the VDD Monitor	116
19.4.2. PSWE Maintenance	116
19.4.3. System Clock	. 117
20. Power Management Modes	. 120
20.1. Idle Mode	. 120
20.2. Stop Mode	. 121
20.3. Suspend Mode	. 121
21. Reset Sources	. 123
21.1. Power-On Reset	. 124
21.2. Power-Fail Reset / VDD Monitor	. 125
21.3. External Reset	. 126
21.4. Missing Clock Detector Reset	. 126
21.5. Comparator0 Reset	. 127
21.6. PCA Watchdog Timer Reset	. 127
21.7. Flash Error Reset	. 127
21.8. Software Reset	. 127
22. Oscillators and Clock Selection	. 129
22.1. System Clock Selection	. 129
22.2. Programmable Internal High-Frequency (H-F) Oscillator	. 131
22.3. External Oscillator Drive Circuit	. 133
22.3.1. External Crystal Example	. 135
22.3.2. External RC Example	. 136
22.3.3. External Capacitor Example	. 13/
23. Port input/Output	. 138

List of Tables

1.	System Overview	
2.	Ordering Information	
	Table 2.1. Product Selection Guide	26
3.	Pin Definitions	
	Table 3.1. Pin Definitions for the C8051F80x-83x	28
4.	QFN-20 Package Specifications	
	Table 4.1. QFN-20 Package Dimensions	33
	Table 4.2. QFN-20 PCB Land Pattern Dimensions	34
5.	QSOP-24 Package Specifications	
	Table 5.1. QSOP-24 Package Dimensions	35
	Table 5.2. QSOP-24 PCB Land Pattern Dimensions	36
6.	SOIC-16 Package Specifications	
	Table 6.1. SOIC-16 Package Dimensions	37
	Table 6.2. SOIC-16 PCB Land Pattern Dimensions	38
7.	Electrical Characteristics	
	Table 7.1. Absolute Maximum Ratings	39
	Table 7.2. Global Electrical Characteristics	40
	Table 7.3. Port I/O DC Electrical Characteristics	41
	Table 7.4. Reset Electrical Characteristics	41
	Table 7.5. Internal Voltage Regulator Electrical Characteristics	41
	Table 7.6. Flash Electrical Characteristics	42
	Table 7.7. Internal High-Frequency Oscillator Electrical Characteristics	42
	Table 7.8. Capacitive Sense Electrical Characteristics	42
	Table 7.9. ADC0 Electrical Characteristics	43
	Table 7.10. Power Management Electrical Characteristics	44
	Table 7.11. Temperature Sensor Electrical Characteristics	44
	Table 7.12. Voltage Reference Electrical Characteristics	44
	Table 7.13. Comparator Electrical Characteristics	45
8.	10-Bit ADC (ADC0)	
9.	Temperature Sensor	
10). Voltage and Ground Reference Options	
11	. Voltage Regulator (REG0)	
12	2. Comparator0	
13	8. Capacitive Sense (CS0)	
	Table 13.1. Operation with Auto-scan and Accumulate	74
14	. CIP-51 Microcontroller	
	Table 14.1. CIP-51 Instruction Set Summary	84
15	5. Memory Organization	
16	6. In-System Device Identification	
17	7. Special Function Registers	
	Table 17.1. Special Function Register (SFR) Memory Map	97
	Table 17.2. Special Function Registers	98
18	B. Interrupts	

Figure 26.3. SMBus Transaction 182 Figure 26.4. Typical SMBus SCL Generation 184 Figure 26.5. Typical Master Write Sequence 193 Figure 26.6. Typical Master Read Sequence 194 Figure 26.7. Typical Slave Write Sequence 194 Figure 26.8. Typical Slave Read Sequence 194 Figure 26.8. Typical Slave Read Sequence 194
Figure 27.1. UARTO Block Diagram
Figure 27.2. UARTO Baud Rate Logic 202
Figure 27.3. UAR I Interconnect Diagram
Figure 27.4. 8-Bit UART Timing Diagram 203
Figure 27.5. 9-Bit UART Timing Diagram 204
Figure 27.6. UAR I Multi-Processor Mode Interconnect Diagram
28. Timers
Figure 28.1. T0 Mode 0 Block Diagram 212
Figure 28.2. T0 Mode 2 Block Diagram 21:
Figure 28.3. T0 Mode 3 Block Diagram 214
Figure 28.4. Timer 2 16-Bit Mode Block Diagram 219
Figure 28.5. Timer 2 8-Bit Mode Block Diagram 220
29. Programmable Counter Array
Figure 29.1. PCA Block Diagram 22
Figure 29.2. PCA Counter/Timer Block Diagram 220
Figure 29.3. PCA Interrupt Block Diagram 22
Figure 29.4. PCA Capture Mode Diagram 229
Figure 29.5. PCA Software Timer Mode Diagram 230
Figure 29.6. PCA High-Speed Output Mode Diagram 23
Figure 29.7. PCA Frequency Output Mode 232
Figure 29.8. PCA 8-Bit PWM Mode Diagram 233
Figure 29.9. PCA 9-bit through 15-Bit PWM Mode Diagram 234
Figure 29.10. PCA 16-Bit PWM Mode 23
Figure 29.11. PCA Module 2 with Watchdog Timer Enabled 230
30. C2 Interface
Figure 30.1. Typical C2 Pin Sharing 24

Figure 1.2. C8051F801, C8051F807, C8051F813, C8051F819 Block Diagram

Figure 1.4. C8051F803, C8051F809, C8051F815, C8051F821 Block Diagram

SFR Definition 11.1. REG0CN: Voltage Regulator Control

Bit	7	6	5	4	3	2	1	0
Name	STOPCF							
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xC9

Bit	Name	Function
7	STOPCF	Stop Mode Configuration.
		This bit configures the regulator's behavior when the device enters STOP mode. 0: Regulator is still active in STOP mode. Any enabled reset source will reset the device. 1: Regulator is shut down in STOP mode. Only the RST pin or power cycle can reset the device.
6:0	Reserved	Must write to 000000b.

SFR Definition 16.2. DERIVID: Derivative Identification Byte

Bit	7	6	5	4	3	2	1	0
Name	DERIVID[7:0]							
Туре	R	R	R	R	R	R	R	R
Reset	Varies	Varies	Varies	Varies	Varies	Varies	Varies	Varies

SFR Address = 0xAD

Bit	Name	Description
7:0	DERIVID[7:0]	Derivative Identification Byte.
		Shows the C8051F80x-83x derivative being used.
		0xD0: C8051F800; 0xD1: C8051F801; 0xD2: C8051F802; 0xD3: C8051F803
		0xD4: C8051F804; 0xD5: C8051F805; 0xD6: C8051F806; 0xD7: C8051F807
		0xD8: C8051F808; 0xD9: C8051F809; 0xDA: C8051F810; 0xDB: C8051F811
		0xDC: C8051F812; 0xDD: C8051F813; 0xDE: C8051F814; 0xDF: C8051F815
		0xE0: C8051F816; 0xE1: C8051F817; 0xE2: C8051F818; 0xE3: C8051F819
		0xE4: C8051F820; 0xE5: C8051F821; 0xE6: C8051F822; 0xE7: C8051F823
		0xE8: C8051F824; 0xE9: C8051F825; 0xEA: C8051F826; 0xEB: C8051F827
		0xEC: C8051F828; 0xED: C8051F829; 0xEE: C8051F830; 0xEF: C8051F831
		0xF0: C8051F832; 0xF1: C8051F833; 0xF2: C8051F834; 0xF3: C8051F835

SFR Definition 16.3. REVID: Hardware Revision Identification Byte

Bit	7	6	5	4	3	2	1	0
Name	REVID[7:0]							
Туре	R	R	R	R	R	R	R	R
Reset	Varies	Varies	Varies	Varies	Varies	Varies	Varies	Varies

SFR Address = 0xB6

Bit	Name	Description
7:0	REVID[7:0]	Hardware Revision Identification Byte.
		Shows the C8051F80x-83x hardware revision being used. For example, 0x00 = Revision A.

SFR Definition 18.3. EIE1: Extended Interrupt Enable 1

Bit	7	6	5	4	3	2	1	0
Name	Reserved	Reserved	ECP0	EADC0	EPCA0	EWADC0	EMAT	ESMB0
Туре	W	W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xE6

Name	Function
Reserved	Must write 0.
Reserved	Reserved.
	Must write 0.
ECP0	Enable Comparator0 (CP0) Interrupt.
	0: Disable CP0 interrupts.
	1: Enable interrupt requests generated by the CP0RIF and CP0FIF flags.
EADC0	Enable ADC0 Conversion Complete Interrupt.
	This bit sets the masking of the ADC0 Conversion Complete interrupt.
	1: Enable interrupt requests generated by the AD0INT flag.
EPCA0	Enable Programmable Counter Array (PCA0) Interrupt.
	This bit sets the masking of the PCA0 interrupts.
	1: Enable interrupt requests generated by PCA0.
EWADC0	Enable Window Comparison ADC0 interrupt.
	This bit sets the masking of ADC0 Window Comparison interrupt.
	1: Enable interrupt requests generated by ADC0 Window Compare flag (AD0WINT).
EMAT	Enable Port Match Interrupts.
	This bit sets the masking of the Port Match event interrupt.
	1: Enable interrupt requests generated by a Port Match.
ESMB0	Enable SMBus (SMB0) Interrupt.
	This bit sets the masking of the SMB0 interrupt.
	1: Enable interrupt requests generated by SMB0.
	Reserved Reserved ECP0 EADC0 EPCA0 EWADC0

8. Restore previous interrupt state.

Steps 4–6 must be repeated for each 512-byte page to be erased.

Note: Flash security settings may prevent erasure of some Flash pages, such as the reserved area and the page containing the lock bytes. For a summary of Flash security settings and restrictions affecting Flash erase operations, please see Section "19.3. Security Options" on page 114.

19.1.3. Flash Write Procedure

A write to Flash memory can clear bits to logic 0 but cannot set them; only an erase operation can set bits to logic 1 in Flash. A byte location to be programmed should be erased before a new value is written.

The recommended procedure for writing a single byte in Flash is as follows:

- 1. Save current interrupt state and disable interrupts.
- 2. Ensure that the Flash byte has been erased (has a value of 0xFF).
- 3. Set the PSWE bit (register PSCTL).
- 4. Clear the PSEE bit (register PSCTL).
- 5. Write the first key code to FLKEY: 0xA5.
- 6. Write the second key code to FLKEY: 0xF1.
- 7. Using the MOVX instruction, write a single data byte to the desired location within the 512-byte sector.
- 8. Clear the PSWE bit.
- 9. Restore previous interrupt state.

Steps 5–7 must be repeated for each byte to be written.

Note: Flash security settings may prevent writes to some areas of Flash, such as the reserved area. For a summary of Flash security settings and restrictions affecting Flash write operations, please see Section "19.3. Security Options" on page 114.

19.2. Non-volatile Data Storage

The Flash memory can be used for non-volatile data storage as well as program code. This allows data such as calibration coefficients to be calculated and stored at run time. Data is written using the MOVX write instruction and read using the MOVC instruction.

Note: MOVX read instructions always target XRAM.

19.3. Security Options

The CIP-51 provides security options to protect the Flash memory from inadvertent modification by software as well as to prevent the viewing of proprietary program code and constants. The Program Store Write Enable (bit PSWE in register PSCTL) and the Program Store Erase Enable (bit PSEE in register PSCTL) bits protect the Flash memory from accidental modification by software. PSWE must be explicitly set to 1 before software can modify the Flash memory; both PSWE and PSEE must be set to 1 before software can erase Flash memory. Additional security features prevent proprietary program code and data constants from being read or altered across the C2 interface.

A Security Lock Byte located at the last byte of Flash user space offers protection of the Flash program memory from access (reads, writes, and erases) by unprotected code or the C2 interface. The Flash security mechanism allows the user to lock all Flash pages, starting at page 0, by writing a non-0xFF value to the lock byte. Note that writing a non-0xFF value to the lock byte will lock all pages of FLASH from reads, writes, and erases, including the page containing the lock byte.

The level of Flash security depends on the Flash access method. The three Flash access methods that can be restricted are reads, writes, and erases from the C2 debug interface, user firmware executing on unlocked pages, and user firmware executing on locked pages. Table 19.1 summarizes the Flash security

SFR Definition 22.1. CLKSEL: Clock Select

Bit	7	6	5	4	3	2	1	0
Name	CLKRDY	(CLKDIV[2:0]			CLKSEL[2:0]		
Туре	R	R/W	R/W	R/W	R	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xA9

Bit	Name	Function
7	CLKRDY	System Clock Divider Clock Ready Flag.
		0: The selected clock divide setting has not been applied to the system clock.
		1: The selected clock divide setting has been applied to the system clock.
6:4	CLKDIV	System Clock Divider Bits.
		Selects the clock division to be applied to the selected source (internal or external).
		000: Selected clock is divided by 1.
		001: Selected clock is divided by 2.
		010: Selected clock is divided by 4.
		011: Selected clock is divided by 8.
		100: Selected clock is divided by 16.
		101: Selected clock is divided by 32.
		110: Selected clock is divided by 64.
		111: Selected clock is divided by 128.
3	Unused	Read = 0b. Must write 0b.
2:0	CLKSEL[2:0]	System Clock Select.
		Selects the oscillator to be used as the undivided system clock source.
		000: Internal Oscillator
		001: External Oscillator
		All other values reserved.

SFR Definition 22.3. OSCICN: Internal H-F Oscillator Control

Bit	7	6	5	4	3	2	1	0
Name	IOSCEN	IFRDY	SUSPEND	STSYNC	SSE		IFCN	I [1:0]
Туре	R/W	R	R/W	R	R/W	R	R/W	
Reset	1	1	0	0	0	0	0	0

SFR Address = 0xB2

Bit	Name	Function
7	IOSCEN	Internal H-F Oscillator Enable Bit.
		0: Internal H-F Oscillator Disabled.
		1: Internal H-F Oscillator Enabled.
6	IFRDY	Internal H-F Oscillator Frequency Ready Flag.
		0: Internal H-F Oscillator is not running at programmed frequency.
		1: Internal H-F Oscillator is running at programmed frequency.
5	SUSPEND	Internal Oscillator Suspend Enable Bit.
		Setting this bit to logic 1 places the internal oscillator in SUSPEND mode. The inter- nal oscillator resumes operation when one of the SUSPEND mode awakening events occurs.
4	STSYNC	Suspend Timer Synchronization Bit.
		This bit is used to indicate when it is safe to read and write the registers associated with the suspend wake-up timer. If a suspend wake-up source other than Timer 2 has brought the oscillator out of suspend mode, it make take up to three timer clocks before the timer can be read or written.
		0: Timer 2 registers can be read safely.
		1: Timer 2 register reads and writes should not be performed.
3	SSE	Spread Spectrum Enable.
		Spread spectrum enable bit.
		0: Spread Spectrum clock dithering disabled.
		1: Spread Spectrum clock dithering enabled.
2	Unused	Read = 0b; Write = Don't Care
1:0	IFCN[1:0]	Internal H-F Oscillator Frequency Divider Control Bits.
		00: SYSCLK derived from Internal H-F Oscillator divided by 8.
		01: SYSCLK derived from Internal H-F Oscillator divided by 4.
		10: SYSULK derived from Internal H-F Oscillator divided by 2.
		11. STSCER derived from memai H-F Oscillator divided by 1.

25.4. SPI0 Interrupt Sources

When SPI0 interrupts are enabled, the following four flags will generate an interrupt when they are set to logic 1:

All of the following bits must be cleared by software.

- The SPI Interrupt Flag, SPIF (SPI0CN.7) is set to logic 1 at the end of each byte transfer. This flag can occur in all SPI0 modes.
- The Write Collision Flag, WCOL (SPI0CN.6) is set to logic 1 if a write to SPI0DAT is attempted when the transmit buffer has not been emptied to the SPI shift register. When this occurs, the write to SPI0DAT will be ignored, and the transmit buffer will not be written. This flag can occur in all SPI0 modes.
- The Mode Fault Flag MODF (SPI0CN.5) is set to logic 1 when SPI0 is configured as a master, and for multi-master mode and the NSS pin is pulled low. When a Mode Fault occurs, the MSTEN and SPIEN bits in SPI0CN are set to logic 0 to disable SPI0 and allow another master device to access the bus.
- The Receive Overrun Flag RXOVRN (SPI0CN.4) is set to logic 1 when configured as a slave, and a transfer is completed and the receive buffer still holds an unread byte from a previous transfer. The new byte is not transferred to the receive buffer, allowing the previously received data byte to be read. The data byte which caused the overrun is lost.

25.5. Serial Clock Phase and Polarity

Four combinations of serial clock phase and polarity can be selected using the clock control bits in the SPI0 Configuration Register (SPI0CFG). The CKPHA bit (SPI0CFG.5) selects one of two clock phases (edge used to latch the data). The CKPOL bit (SPI0CFG.4) selects between an active-high or active-low clock. Both master and slave devices must be configured to use the same clock phase and polarity. SPI0 should be disabled (by clearing the SPIEN bit, SPI0CN.0) when changing the clock phase or polarity. The clock and data line relationships for master mode are shown in Figure 25.5. For slave mode, the clock and data relationships are shown in Figure 25.6 and Figure 25.7. Note that CKPHA should be set to 0 on both the master and slave SPI when communicating between two Silicon Labs C8051 devices.

The SPI0 Clock Rate Register (SPI0CKR) as shown in SFR Definition 25.3 controls the master mode serial clock frequency. This register is ignored when operating in slave mode. When the SPI is configured as a master, the maximum data transfer rate (bits/sec) is one-half the system clock frequency or 12.5 MHz, whichever is slower. When the SPI is configured as a slave, the maximum data transfer rate (bits/sec) for full-duplex operation is 1/10 the system clock frequency, provided that the master issues SCK, NSS (in 4-wire slave mode), and the serial input data synchronously with the slave's system clock. If the master issues SCK, NSS, and the serial input data asynchronously, the maximum data transfer rate (bits/sec) must be less than 1/10 the system clock frequency. In the special case where the master only wants to transmit data to the slave and does not need to receive data from the slave (i.e. half-duplex operation), the SPI slave can receive data at a maximum data transfer rate (bits/sec) of 1/4 the system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data transfer rate (bits/sec) of 1/4 the system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data synchronously with the slave's system clock frequency.

SFR Definition 25.1. SPI0CFG: SPI0 Configuration

Bit	7	6	5	4	3	2	1	0
Name	SPIBSY	MSTEN	СКРНА	CKPOL	SLVSEL	NSSIN	SRMT	RXBMT
Туре	R	R/W	R/W	R/W	R	R	R	R
Reset	0	0	0	0	0	1	1	1

SFR Address = 0xA1

Bit	Name	Function
7	SPIBSY	SPI Busy.
		This bit is set to logic 1 when a SPI transfer is in progress (master or slave mode).
6	MSTEN	Master Mode Enable.
		0: Disable master mode. Operate in slave mode.
		1: Enable master mode. Operate as a master.
5	СКРНА	SPI0 Clock Phase.
		0: Data centered on first edge of SCK period.*
		1: Data centered on second edge of SCK period.
4	CKPOL	SPI0 Clock Polarity.
		0: SCK line low in idle state.
		1: SCK line high in idle state.
3	SLVSEL	Slave Selected Flag.
		This bit is set to logic 1 whenever the NSS pin is low indicating SPI0 is the selected
		slave. It is cleared to logic 0 when NSS is high (slave not selected). This bit does
		sion of the pin input.
2	NSSIN	NSS Instantaneous Pin Input.
		This bit mimics the instantaneous value that is present on the NSS port pin at the
		time that the register is read. This input is not de-glitched.
1	SRMT	Shift Register Empty (valid in slave mode only).
		This bit will be set to logic 1 when all data has been transferred in/out of the shift
		register, and there is no new information available to read from the transmit buffer
		the shift register from the transmit buffer or by a transition on SCK_SRMT = 1 when
		in Master Mode.
0	RXBMT	Receive Buffer Empty (valid in slave mode only).
		This bit will be set to logic 1 when the receive buffer has been read and contains no
		new information. If there is new information available in the receive buffer that has
		not been read, this bit will return to logic 0. RXBMT = 1 when in Master Mode.
Note:	In slave mode, o	data on MOSI is sampled in the center of each data bit. In master mode, data on MISO is
	See Table 25.1 1	for timing parameters.

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

Figure 25.9. SPI Master Timing (CKPHA = 1)

Bit	Set by Hardware When:	Cleared by Hardware When:
MASTED	A START is generated.	A STOP is generated.
WASTER		 Arbitration is lost.
	 START is generated. 	A START is detected.
	 SMB0DAT is written before the start of an 	 Arbitration is lost.
TAMODE	SMBus frame.	 SMB0DAT is not written before the start of an SMBus frame.
STA	 A START followed by an address byte is received. 	 Must be cleared by software.
	A STOP is detected while addressed as a	A pending STOP is generated.
STO	slave.	
	 Arbitration is lost due to a detected STOP. 	
	A byte has been received and an ACK	After each ACK cycle.
ACKRQ	hardware ACK is not enabled)	
	 A repeated START is detected as a 	 Each time SL is cleared
	MASTER when STA is low (unwanted repeated START).	
ARBLOST	 SCL is sensed low while attempting to generate a STOP or repeated START condition. 	
	 SDA is sensed low while transmitting a 1 (excluding ACK bits). 	
ACK	The incoming ACK value is low	The incoming ACK value is high
	(ACKNOWLEDGE).	(NOT ACKNOWLEDGE).
	A START has been generated.	Must be cleared by software.
	Lost arbitration.	
<u>e</u> i	 A byte has been transmitted and an ACK/NACK received. 	
51	A byte has been received.	
	 A START or repeated START followed by a slave address + R/W has been received. 	
	A STOP has been received.	

Table 26.3. Sources for Hardware Changes to SMB0CN

26.4.3. Hardware Slave Address Recognition

The SMBus hardware has the capability to automatically recognize incoming slave addresses and send an ACK without software intervention. Automatic slave address recognition is enabled by setting the EHACK bit in register SMB0ADM to 1. This will enable both automatic slave address recognition and automatic hardware ACK generation for received bytes (as a master or slave). More detail on automatic hardware ACK generation can be found in Section 26.4.2.2.

The registers used to define which address(es) are recognized by the hardware are the SMBus Slave Address register (SFR Definition 26.3) and the SMBus Slave Address Mask register (SFR Definition 26.4). A single address or range of addresses (including the General Call Address 0x00) can be specified using these two registers. The most-significant seven bits of the two registers are used to define which addresses will be ACKed. A 1 in bit positions of the slave address mask SLVM[6:0] enable a comparison between the received slave address and the hardware's slave address SLV[6:0] for those bits. A 0 in a bit of the slave address mask means that bit will be treated as a "don't care" for comparison purposes. In this

26.5.4. Read Sequence (Slave)

During a read sequence, an SMBus master reads data from a slave device. The slave in this transfer will be a receiver during the address byte, and a transmitter during all data bytes. When slave events are enabled (INH = 0), the interface enters Slave Receiver Mode (to receive the slave address) when a START followed by a slave address and direction bit (READ in this case) is received. If hardware ACK generation is disabled, upon entering Slave Receiver Mode, an interrupt is generated and the ACKRQ bit is set. The software must respond to the received slave address with an ACK, or ignore the received slave address with a NACK. If hardware ACK generation is enabled, the hardware will apply the ACK for a slave address which matches the criteria set up by SMB0ADR and SMB0ADM. The interrupt will occur after the ACK cycle.

If the received slave address is ignored (by software or hardware), slave interrupts will be inhibited until the next START is detected. If the received slave address is acknowledged, zero or more data bytes are transmitted. If the received slave address is acknowledged, data should be written to SMB0DAT to be transmitted. The interface enters slave transmitter mode, and transmits one or more bytes of data. After each byte is transmitted, the master sends an acknowledge bit; if the acknowledge bit is an ACK, SMB0DAT should be written with the next data byte. If the acknowledge bit is a NACK, SMB0DAT should not be written to before SI is cleared (an error condition may be generated if SMB0DAT is written following a received NACK while in slave transmitter mode). The interface exits slave transmitter mode after receiving a STOP. Note that the interface will switch to slave receiver mode if SMB0DAT is not written following a Slave Transmitter interrupt. Figure 26.8 shows a typical slave read sequence. Two transmitted data bytes are shown, though any number of bytes may be transmitted. Notice that all of the "data byte transferred" interrupts occur **after** the ACK cycle in this mode, regardless of whether hardware ACK generation is enabled.

26.6. SMBus Status Decoding

The current SMBus status can be easily decoded using the SMB0CN register. The appropriate actions to take in response to an SMBus event depend on whether hardware slave address recognition and ACK generation is enabled or disabled. Table 26.5 describes the typical actions when hardware slave address recognition and ACK generation is disabled. Table 26.6 describes the typical actions when hardware slave address recognition and ACK generation is enabled. In the tables, STATUS VECTOR refers to the four upper bits of SMB0CN: MASTER, TXMODE, STA, and STO. The shown response options are only the typical responses; application-specific procedures are allowed as long as they conform to the SMBus specification. Highlighted responses are allowed by hardware but do not conform to the SMBus specification.

Table 26.6. SMBus	Status Decoding	With Hardware ACK	Generation E	nabled (EHACK = 1)
-------------------	-----------------	-------------------	---------------------	--------------------

	Valu	es F	Rea	d			Val V	lues Vrit	e to	tus ected	
Mode	Status Vector	ACKRQ	ARBLOST	ACK	Current SMbus State	Typical Response Options	STA	STO	ACK	Next Sta Vector Exp	
	1110	0	0	Х	A master START was gener- ated.	Load slave address + R/W into SMB0DAT.	0	0	Х	1100	
					A master data or address byte	Set STA to restart transfer.	1	0	Х	1110	
er		0	0	0	was transmitted; NACK received.	Abort transfer.	0	1	Х	_	
smitt						Load next data byte into SMB0DAT.	0	0	Х	1100	
Iran					A master data or address byte was transmitted; ACK received.	End transfer with STOP.	0	1	Х	_	
aster 1	1100	0	0	1		End transfer with STOP and start another transfer.	1	1 1 X —		-	
Ř		Ŭ	Ũ	.		Send repeated START.	1	0	Х	1110	
						Switch to Master Receiver Mode (clear SI without writing new data to SMB0DAT). Set ACK for initial data byte.	0	0	1	1000	
						Set ACK for next data byte; Read SMB0DAT.	0	0	1	1000	
		0	0	1	1	A master data byte was	Set NACK to indicate next data byte as the last data byte; Read SMB0DAT.	0	0	0	1000
er						Initiate repeated START.	1	0	0	1110	
er Receiv	1000					Switch to Master Transmitter Mode (write to SMB0DAT before clearing SI).	0	0	Х	1100	
aste						Read SMB0DAT; send STOP.	0	1	0	—	
Ň					A master data byte was	Read SMB0DAT; Send STOP followed by START.	1	1	0	1110	
		0	0	0	received; NACK sent (last	Initiate repeated START.	1	0	0	1110	
					byte <i>j</i> .	Switch to Master Transmitter Mode (write to SMB0DAT before clearing SI).	0	0	Х	1100	

set is then given (in PCA clocks) by Equation 29.5, where PCA0L is the value of the PCA0L register at the time of the update.

 $Offset = (256 \times PCA0CPL2) + (256 - PCA0L)$

Equation 29.5. Watchdog Timer Offset in PCA Clocks

The WDT reset is generated when PCA0L overflows while there is a match between PCA0CPH2 and PCA0H. Software may force a WDT reset by writing a 1 to the CCF2 flag (PCA0CN.2) while the WDT is enabled.

29.4.2. Watchdog Timer Usage

To configure the WDT, perform the following tasks:

- 1. Disable the WDT by writing a 0 to the WDTE bit.
- 2. Select the desired PCA clock source (with the CPS2–CPS0 bits).
- 3. Load PCA0CPL2 with the desired WDT update offset value.
- 4. Configure the PCA Idle mode (set CIDL if the WDT should be suspended while the CPU is in Idle mode).
- 5. Enable the WDT by setting the WDTE bit to 1.
- 6. Reset the WDT timer by writing to PCA0CPH2.

The PCA clock source and Idle mode select cannot be changed while the WDT is enabled. The watchdog timer is enabled by setting the WDTE or WDLCK bits in the PCA0MD register. When WDLCK is set, the WDT cannot be disabled until the next system reset. If WDLCK is not set, the WDT is disabled by clearing the WDTE bit.

The WDT is enabled following any reset. The PCA0 counter clock defaults to the system clock divided by 12, PCA0L defaults to 0x00, and PCA0CPL2 defaults to 0x00. Using Equation 29.5, this results in a WDT timeout interval of 256 PCA clock cycles, or 3072 system clock cycles. Table 29.3 lists some example timeout intervals for typical system clocks.

System Clock (Hz)	PCA0CPL2	Timeout Interval (ms)				
24,500,000	255	32.1				
24,500,000	128	16.2				
24,500,000	32	4.1				
3,062,500 ²	255	257				
3,062,500 ²	128	129.5				
3,062,500 ²	32	33.1				
32,000	255	24576				
32,000	128	12384				
32,000	32	3168				
Notes: 1. Assumes SYSCLK/12 as the PCA clock source, and a PCA0L value						
of 0x00 at the update time. 2. Internal SYSCI K reset frequency = Internal Oscillator divided by 8						

Table 29.3. Watchdog Timer Timeout Intervals¹

29.5. Register Descriptions for PCA0

Following are detailed descriptions of the special function registers related to the operation of the PCA.

SFR Definition 29.5. PCA0L: PCA0 Counter/Timer Low Byte

Bit	7	6	5	4	3	2	1	0
Name	PCA0[7:0]							
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xF9

Bit	Name	Function
7:0	PCA0[7:0]	PCA Counter/Timer Low Byte.
		The PCA0L register holds the low byte (LSB) of the 16-bit PCA Counter/Timer.
Note:	When the WI the PCA0L re	DTE bit is set to 1, the PCA0L register cannot be modified by software. To change the contents of egister, the Watchdog Timer must first be disabled.

SFR Definition 29.6. PCA0H: PCA0 Counter/Timer High Byte

Bit	7	6	5	4	3	2	1	0
Name	PCA0[15:8]							
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xFA

Bit	Name	Function				
7:0	PCA0[15:8]	PCA Counter/Timer High Byte.				
		The PCA0H register holds the high byte (MSB) of the 16-bit PCA Counter/Timer. Reads of this register will read the contents of a "snapshot" register, whose contents are updated only when the contents of PCA0L are read (see Section 29.1).				
Note:	When the WDTE bit is set to 1, the PCA0H register cannot be modified by software. To change the contents of the PCA0H register, the Watchdog Timer must first be disabled.					

Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific to result in significant personal injury or death. Silicon Laboratories products are generally not intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com