E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I²C), SPI, UART/USART
Peripherals	Cap Sense, POR, PWM, Temp Sensor, WDT
Number of I/O	13
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-SOIC (0.154", 3.90mm Width)
Supplier Device Package	16-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f830-gsr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

C8051F80x-83x

15.2 Data Memory	93
15.2.1 Internal RAM	00 Q3
15 2 1 1 General Purpose Registers	94
15 2 1 2 Bit Addressable Locations	94
15 2 1 3 Stack	94
16. In-System Device Identification	
17. Special Function Registers	
18 Interrunts	102
18.1 MCU Interrupt Sources and Vectors	103
18.1.1. Interrupt Priorities	. 103
18.1.2. Interrupt Latency	103
18.2. Interrupt Register Descriptions	104
18.3. INTO and INT1 External Interrupts	. 111
19. Flash Memory	. 113
19.1. Programming The Flash Memory	. 113
19.1.1. Flash Lock and Key Functions	. 113
19.1.2. Flash Erase Procedure	. 113
19.1.3. Flash Write Procedure	. 114
19.2. Non-volatile Data Storage	114
19.3. Security Options	114
19.4. Flash Write and Erase Guidelines	115
19.4.1. VDD Maintenance and the VDD Monitor	116
19.4.2. PSWE Maintenance	116
19.4.3. System Clock	. 117
20. Power Management Modes	. 120
20.1. Idle Mode	. 120
20.2. Stop Mode	. 121
20.3. Suspend Mode	. 121
21. Reset Sources	. 123
21.1. Power-On Reset	. 124
21.2. Power-Fail Reset / VDD Monitor	. 125
21.3. External Reset	. 126
21.4. Missing Clock Detector Reset	. 126
21.5. Comparator0 Reset	. 127
21.6. PCA Watchdog Timer Reset	. 127
21.7. Flash Error Reset	. 127
21.8. Software Reset	. 127
22. Oscillators and Clock Selection	. 129
22.1. System Clock Selection	. 129
22.2. Programmable Internal High-Frequency (H-F) Oscillator	. 131
22.3. External Oscillator Drive Circuit	. 133
22.3.1. External Crystal Example	. 135
22.3.2. External RC Example	. 136
22.3.3. External Capacitor Example	. 13/
23. Port input/Output	. 138

	23.1. Port I/O Modes of Operation	139
	23.1.1. Port Pins Configured for Analog I/O	139
	23.1.2. Port Pins Configured For Digital I/O	139
	23.1.3. Interfacing Port I/O to 5 V Logic	140
	23.2. Assigning Port I/O Pins to Analog and Digital Functions	140
	23.2.1. Assigning Port I/O Pins to Analog Functions	140
	23.2.2. Assigning Port I/O Pins to Digital Functions	141
	23.2.3. Assigning Port I/O Pins to External Digital Event Capture Functions	142
	23.3. Priority Crossbar Decoder	143
	23.4. Port I/O Initialization	147
	23.5. Port Match	150
	23.6. Special Function Registers for Accessing and Configuring Port I/O	152
24	Cvclic Redundancy Check Unit (CRC0)	159
	24.1. 16-bit CRC Algorithm.	160
	24.2. 32-bit CRC Algorithm	161
	24.3. Preparing for a CRC Calculation	162
	24.4 Performing a CRC Calculation	162
	24.5 Accessing the CRC0 Result	162
	24.6 CRC0 Bit Reverse Feature	166
25	Enhanced Serial Perinheral Interface (SPI0)	167
	25.1. Signal Descriptions	168
	25.1.1. Master Out, Slave In (MOSI)	168
	25.1.2 Master In Slave Out (MISO)	168
	25.1.3 Serial Clock (SCK)	168
	25.1.4. Slave Select (NSS)	168
	25.2 SPI0 Master Mode Operation	168
	25.3 SPI0 Slave Mode Operation	170
	25.4 SPI0 Interrupt Sources	171
	25.5 Serial Clock Phase and Polarity	171
	25.6 SPI Special Function Registers	173
26	SMBus	180
	26.1. Supporting Documents	181
	26.2. SMBus Configuration	181
	26.3. SMBus Operation	181
	26.3.1. Transmitter Vs. Receiver.	182
	26.3.2. Arbitration	182
	26.3.3. Clock Low Extension	182
	26.3.4. SCL Low Timeout	182
	26.3.5. SCL High (SMBus Free) Timeout	183
	26.4. Using the SMBus	183
	26.4.1. SMBus Configuration Register	183
	26.4.2. SMB0CN Control Register	187
	26.4.2.1. Software ACK Generation	187
	26.4.2.2. Hardware ACK Generation	187
	26.4.3. Hardware Slave Address Recognition	189
	5	

4. QFN-20 Package Specifications

Figure 4.1. QFN-20 Package Drawing

Dimension	Min	Тур	Max	Dimension	Min	Тур	Max
A	0.80	0.90	1.00	L	0.45	0.55	0.65
A1	0.00	0.02	0.05	L1	0.00	—	0.15
b	0.18	0.25	0.30	aaa	_	—	0.15
D	4.00 BSC.			bbb		—	0.10
D2	2.00	2.15	2.25	ddd	_	—	0.05
е	0.50 BSC.			eee	_	—	0.08
E	4.00 BSC.			Z	_	0.43	—
E2	2.00	2.15	2.25	Y	—	0.18	—

Table 4.1. QFN-20 Package Dimensions

Notes:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
- **3.** This drawing conforms to the JEDEC Solid State Outline MO-220, variation VGGD except for custom features D2, E2, Z, Y, and L which are toleranced per supplier designation.
- **4.** Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Table 7.6. Flash Electrical Characteristics

Parameter	Conditions	Min	Тур	Max	Units
Flash Size (Note 1)	C8051F80x and C8051F810/1		16384	1	bytes
	C8051F812/3/4/5/6/7/8/9 and C8051F82x		8192		bytes
	C8051F830/1/2/3/4/5		4096		bytes
Endurance (Erase/Write)		10000	—		cycles
Erase Cycle Time	25 MHz Clock	15	20	26	ms
Write Cycle Time	25 MHz Clock	15	20	26	μs
Clock Speed during Flash Write/Erase Operations		1	—	—	MHz
Note: Includes Security Lock Byt	ie.				

Table 7.7. Internal High-Frequency Oscillator Electrical Characteristics

 V_{DD} = 1.8 to 3.6 V; T_A = -40 to +85 °C unless otherwise specified. Use factory-calibrated settings.

Parameter	Conditions	Min	Тур	Мах	Units
Oscillator Frequency	IFCN = 11b	24	24.5	25	MHz
Oscillator Supply Current	25 °C, V _{DD} = 3.0 V,	_	350	650	μA
	OSCICN.7 = 1,				
	OCSICN.5 = 0				

Table 7.8. Capacitive Sense Electrical Characteristics

 V_{DD} = 1.8 to 3.6 V; T_A = -40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Conversion Time	Single Conversion	26	38	50	μs
Capacitance per Code		—	1	—	fF
External Capacitive Load		—	—	45	pF
Quantization Noise ¹	RMS	—	3	_	fF
	Peak-to-Peak	—	20	—	fF
Supply Current	CS module bias current, 25 °C	—	40	60	μA
	CS module alone, maximum code output, 25 °C	—	75	105	μA
	Wake-on-CS Threshold ² , 25 °C	—	150	165	μA

Notes:

1. RMS Noise is equivalent to one standard deviation. Peak-to-peak noise encompasses ±3.3 standard deviations.

2. Includes only current from regulator, CS module, and MCU in suspend mode.

10.1. External Voltage References

To use an external voltage reference, REFSL[1:0] should be set to 00. Bypass capacitors should be added as recommended by the manufacturer of the external voltage reference.

10.2. Internal Voltage Reference Options

A 1.65 V high-speed reference is included on-chip. The high speed internal reference is selected by setting REFSL[1:0] to 11. When selected, the high speed internal reference will be automatically enabled on an as-needed basis by ADC0.

For applications with a non-varying power supply voltage, using the power supply as the voltage reference can provide ADC0 with added dynamic range at the cost of reduced power supply noise rejection. To use the 1.8 to 3.6 V power supply voltage (V_{DD}) or the 1.8 V regulated digital supply voltage as the reference source, REFSL[1:0] should be set to 01 or 10, respectively.

10.3. Analog Ground Reference

To prevent ground noise generated by switching digital logic from affecting sensitive analog measurements, a separate analog ground reference option is available. When enabled, the ground reference for ADC0 is taken from the P0.1/AGND pin. Any external sensors sampled by ADC0 should be referenced to the P0.1/AGND pin. The separate analog ground reference option is enabled by setting REFGND to 1. Note that when using this option, P0.1/AGND must be connected to the same potential as GND.

10.4. Temperature Sensor Enable

The TEMPE bit in register REF0CN enables the temperature sensor. While disabled, the temperature sensor defaults to a high impedance state and any ADC0 measurements performed on the sensor result in meaningless data.

C8051F80x-83x

The Comparator response time may be configured in software via the CPT0MD register (see SFR Definition 12.2). Selecting a longer response time reduces the Comparator supply current.

Figure 12.2. Comparator Hysteresis Plot

The Comparator hysteresis is software-programmable via its Comparator Control register CPT0CN. The user can program both the amount of hysteresis voltage (referred to the input voltage) and the positive and negative-going symmetry of this hysteresis around the threshold voltage.

The Comparator hysteresis is programmed using bits 3:0 in the Comparator Control Register CPT0CN (shown in SFR Definition 12.1). The amount of negative hysteresis voltage is determined by the settings of the CP0HYN bits. As shown in Figure 12.2, settings of 20, 10 or 5 mV of negative hysteresis can be programmed, or negative hysteresis can be disabled. In a similar way, the amount of positive hysteresis is determined by the setting the CP0HYP bits.

Comparator interrupts can be generated on both rising-edge and falling-edge output transitions. (For Interrupt enable and priority control, see Section "18.1. MCU Interrupt Sources and Vectors" on page 103). The CP0FIF flag is set to logic 1 upon a Comparator falling-edge occurrence, and the CP0RIF flag is set to logic 1 upon the Comparator rising-edge occurrence. Once set, these bits remain set until cleared by software. The Comparator rising-edge interrupt mask is enabled by setting CP0RIE to a logic 1. The Comparator0 falling-edge interrupt mask is enabled by setting CP0FIE to a logic 1.

The output state of the Comparator can be obtained at any time by reading the CP0OUT bit. The Comparator is enabled by setting the CP0EN bit to logic 1, and is disabled by clearing this bit to logic 0.

Note that false rising edges and falling edges can be detected when the comparator is first powered on or if changes are made to the hysteresis or response time control bits. Therefore, it is recommended that the rising-edge and falling-edge flags be explicitly cleared to logic 0 a short time after the comparator is enabled or its mode bits have been changed.

Mnemonic	Description	Bytes	Clock Cycles
ANL C, bit	AND direct bit to Carry	2	2
ANL C, /bit	AND complement of direct bit to Carry	2	2
ORL C, bit	OR direct bit to carry	2	2
ORL C, /bit	OR complement of direct bit to Carry	2	2
MOV C, bit	Move direct bit to Carry	2	2
MOV bit, C	Move Carry to direct bit	2	2
JC rel	Jump if Carry is set	2	2/3
JNC rel	Jump if Carry is not set	2	2/3
JB bit, rel	Jump if direct bit is set	3	3/4
JNB bit, rel	Jump if direct bit is not set	3	3/4
JBC bit, rel	Jump if direct bit is set and clear bit	3	3/4
Program Branching	·		
ACALL addr11	Absolute subroutine call	2	3
LCALL addr16	Long subroutine call	3	4
RET	Return from subroutine	1	5
RETI	Return from interrupt	1	5
AJMP addr11	Absolute jump	2	3
LJMP addr16	Long jump	3	4
SJMP rel	Short jump (relative address)	2	3
JMP @A+DPTR	Jump indirect relative to DPTR	1	3
JZ rel	Jump if A equals zero	2	2/3
JNZ rel	Jump if A does not equal zero	2	2/3
CJNE A, direct, rel	Compare direct byte to A and jump if not equal	3	4/5
CJNE A, #data, rel	Compare immediate to A and jump if not equal	3	3/4
CJNE Rn, #data, rel	Compare immediate to Register and jump if not equal	3	3/4
CJNE @Ri, #data, rel	Compare immediate to indirect and jump if not equal	3	4/5
DJNZ Rn, rel	Decrement Register and jump if not zero	2	2/3
DJNZ direct, rel	Decrement direct byte and jump if not zero	3	3/4
NOP	No operation	1	1

Table 14.1.	CIP-51	Instruction Se	t Summar	v	(Continued)
	0		e Ouman	<i>,</i> ,	(0011111404)

Table 17.2. Special Function Registers (Continued)

SFRS are listed in alphabetical order. All undelined SFR i	locations are reserved
--	------------------------

Register	Address	Description	Page
CS0CF	0x9E	CS0 Configuration	76
CSOMX	0x9C	CS0 Mux	81
CS0SE	0xBA	Auto Scan End Channel	78
CS0SS	0xB9	Auto Scan Start Channel	78
DERIVID	0xAD	Derivative Identification	96
DPH	0x83	Data Pointer High	88
DPL	0x82	Data Pointer Low	88
EIE1	0xE6	Extended Interrupt Enable 1	107
EIE2	0xE7	Extended Interrupt Enable 2	108
EIP1	0xF3	Extended Interrupt Priority 1	109
EIP2	0xF4	Extended Interrupt Priority 2	110
FLKEY	0xB7	Flash Lock And Key	119
HWID	0xB5	Hardware Identification	95
IE	0xA8	Interrupt Enable	105
IP	0xB8	Interrupt Priority	106
IT01CF	0xE4	INT0/INT1 Configuration	112
OSCICL	0xB3	Internal Oscillator Calibration	131
OSCICN	0xB2	Internal Oscillator Control	132
OSCXCN	0xB1	External Oscillator Control	134
P0	0x80	Port 0 Latch	153
POMASK	0xFE	Port 0 Mask	151
POMAT	0xFD	Port 0 Match	151
POMDIN	0xF1	Port 0 Input Mode Configuration	154
POMDOUT	0xA4	Port 0 Output Mode Configuration	154
POSKIP	0xD4	Port 0 Skip	155
P1	0x90	Port 1 Latch	155
P1MASK	0xEE	P0 Mask	152

SFR Definition 18.6. EIP2: Extended Interrupt Priority 2

Bit	7	6	5	4	3	2	1	0
Name	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	PSCGRT	PSCCPT
Туре	R	R	R	R	R	R	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xF4

Bit	Name	Function
7:2	Reserved	
1	PSCGRT	Capacitive Sense Greater Than Comparator Priority Control.
		This bit sets the priority of the Capacitive Sense Greater Than Comparator interrupt. 0: CS0 Greater Than Comparator interrupt set to low priority level. 1: CS0 Greater Than Comparator set to high priority level.
0	PSCCPT	Capacitive Sense Conversion Complete Priority Control.
		This bit sets the priority of the Capacitive Sense Conversion Complete interrupt.
		0: CS0 Conversion Complete set to low priority level.
		1: CS0 Conversion Complete set to high priority level.

SFR Definition 19.1. PSCTL: Program Store R/W Control

Bit	7	6	5	4	3	2	1	0
Name							PSEE	PSWE
Туре	R	R	R	R	R	R	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address =0x8F

Bit	Name	Function
7:2	Unused	Read = 000000b, Write = don't care.
1	PSEE	Program Store Erase Enable.
		 Setting this bit (in combination with PSWE) allows an entire page of Flash program memory to be erased. If this bit is logic 1 and Flash writes are enabled (PSWE is logic 1), a write to Flash memory using the MOVX instruction will erase the entire page that contains the location addressed by the MOVX instruction. The value of the data byte written does not matter. 0: Flash program memory erasure disabled. 1: Flash program memory erasure enabled.
0	PSWE	Program Store Write Enable.
		 Setting this bit allows writing a byte of data to the Flash program memory using the MOVX write instruction. The Flash location should be erased before writing data. 0: Writes to Flash program memory disabled. 1: Writes to Flash program memory enabled; the MOVX write instruction targets Flash memory.

C8051F80x-83x

SFR Definition 22.4. OSCXCN: External Oscillator Control

Bit	7	6	5	4	3	2	1	0			
Name	XTLVLD	>	(OSCMD[2:0)]		XFCN[2:0]					
Туре	R		R/W		R	R/W					
Reset	0	0	0	0	0	0	0	0			

SFR Address = 0xB1

Bit	Name		Function										
7	XTLVLD	Crystal	Crystal Oscillator Valid Flag.										
		(Read o	(Read only when XOSCMD = 11x.)										
		0: Cryst	0: Crystal Oscillator is unused or not yet stable.										
		1: Cryst	1: Crystal Oscillator is running and stable.										
6:4	XOSCMD[2:0]	Externa	I Oscillator Mode Selec	et.									
		00x: Ext	ternal Oscillator circuit of	f.									
		010: Ex	ternal CMOS Clock Mode	э.									
		011: Ext	ernal CMOS Clock Mode	e with divide by 2 stage.									
		100: RC	Coscillator Mode.										
		101: Ca	pacitor Oscillator Mode.										
		110: Cry	stal Oscillator Mode.										
		111: Cry	stal Oscillator Mode with	divide by 2 stage.									
3	Unused	Read =	0; Write = Don't Care										
2:0	XFCN[2:0]	Externa	I Oscillator Frequency	Control Bits.									
		Set acc	ording to the desired freq	uency for Crystal or RC r	node.								
		Set acc	ording to the desired K F	actor for C mode.									
		XFCN	Crystal Mode	RC Mode	C Mode								
		000	f ≤ 32 kHz	f ≤ 25 kHz	K Factor = 0.87								
		001	32 kHz < f ≤ 84 kHz	25 kHz < f ≤ 50 kHz	K Factor = 2.6								
		010	84 kHz < f ≤ 225 kHz	50 kHz < f ≤ 100 kHz	K Factor = 7.7								
		011	225 kHz < f ≤ 590 kHz	100 kHz < f ≤ 200 kHz	K Factor = 22								
		100	100 590 kHz < f \leq 1.5 MHz 200 kHz < f \leq 400 kHz K Factor = 65										
		101	$1.5 \text{ MHz} < f \le 4 \text{ MHz}$	400 kHz < f ≤ 800 kHz	K Factor = 180								
		110	$4 \text{ MHz} < f \le 10 \text{ MHz}$	800 kHz $<$ f \leq 1.6 MHz	K Factor = 664								
		111	$10 \text{ MHz} < f \le 30 \text{ MHz}$	1.6 MHz $< f \le 3.2$ MHz	K Factor = 1590								

Figure 23.4. Priority Crossbar Decoder Potential Pin Assignments

SMBCS1	SMBCS0	SMBus Clock Source
0	0	Timer 0 Overflow
0 1		Timer 1 Overflow
1 0		Timer 2 High Byte Overflow
1 1		Timer 2 Low Byte Overflow

Table 26.1. SMBus Clock Source Selection

The SMBCS1–0 bits select the SMBus clock source, which is used only when operating as a master or when the Free Timeout detection is enabled. When operating as a master, overflows from the selected source determine the absolute minimum SCL low and high times as defined in Equation 26.1. Note that the selected clock source may be shared by other peripherals so long as the timer is left running at all times. For example, Timer 1 overflows may generate the SMBus and UART baud rates simultaneously. Timer configuration is covered in Section "28. Timers" on page 209.

$$T_{HighMin} = T_{LowMin} = \frac{1}{f_{ClockSourceOverflow}}$$

Equation 26.1. Minimum SCL High and Low Times

The selected clock source should be configured to establish the minimum SCL High and Low times as per Equation 26.1. When the interface is operating as a master (and SCL is not driven or extended by any other devices on the bus), the typical SMBus bit rate is approximated by Equation 26.2.

$$BitRate = \frac{f_{ClockSourceOverflow}}{3}$$

Equation 26.2. Typical SMBus Bit Rate

Figure 26.4 shows the typical SCL generation described by Equation 26.2. Notice that T_{HIGH} is typically twice as large as T_{LOW} . The actual SCL output may vary due to other devices on the bus (SCL may be extended low by slower slave devices, or driven low by contending master devices). The bit rate when operating as a master will never exceed the limits defined by equation Equation 26.1.

Figure 26.4. Typical SMBus SCL Generation

Setting the EXTHOLD bit extends the minimum setup and hold times for the SDA line. The minimum SDA setup time defines the absolute minimum time that SDA is stable before SCL transitions from low-to-high. The minimum SDA hold time defines the absolute minimum time that the current SDA value remains stable after SCL transitions from high-to-low. EXTHOLD should be set so that the minimum setup and hold times meet the SMBus Specification requirements of 250 ns and 300 ns, respectively. Table 26.2 shows the minimum setup.

imum setup and hold times for the two EXTHOLD settings. Setup and hold time extensions are typically necessary when SYSCLK is above 10 MHz.

EXTHOLD	Minimum SDA Setup Time	Minimum SDA Hold Time
0	T _{low} – 4 system clocks or 1 system clock + s/w delay [*]	3 system clocks
1	11 system clocks	12 system clocks
Note: Setup Tin software ACK is w that defin	ne for ACK bit transmissions and the acknowledgement, the s/w delay occ ritten and when SI is cleared. Note th es the outgoing ACK value, s/w dela	MSB of all data transfers. When using curs between the time SMB0DAT or nat if SI is cleared in the same write y is zero.

Table 26.2. Minimum SDA Setup and Hold Times

With the SMBTOE bit set, Timer 3 should be configured to overflow after 25 ms in order to detect SCL low timeouts (see Section "26.3.4. SCL Low Timeout" on page 182). The SMBus interface will force Timer 3 to reload while SCL is high, and allow Timer 3 to count when SCL is low. The Timer 3 interrupt service routine should be used to reset SMBus communication by disabling and re-enabling the SMBus.

SMBus Free Timeout detection can be enabled by setting the SMBFTE bit. When this bit is set, the bus will be considered free if SDA and SCL remain high for more than 10 SMBus clock source periods (see Figure 26.4).

27. UART0

UART0 is an asynchronous, full duplex serial port offering modes 1 and 3 of the standard 8051 UART. Enhanced baud rate support allows a wide range of clock sources to generate standard baud rates (details in Section "27.1. Enhanced Baud Rate Generation" on page 202). Received data buffering allows UART0 to start reception of a second incoming data byte before software has finished reading the previous data byte.

UART0 has two associated SFRs: Serial Control Register 0 (SCON0) and Serial Data Buffer 0 (SBUF0). The single SBUF0 location provides access to both transmit and receive registers. Writes to SBUF0 always access the Transmit register. Reads of SBUF0 always access the buffered Receive register; it is not possible to read data from the Transmit register.

With UART0 interrupts enabled, an interrupt is generated each time a transmit is completed (TI0 is set in SCON0), or a data byte has been received (RI0 is set in SCON0). The UART0 interrupt flags are not cleared by hardware when the CPU vectors to the interrupt service routine. They must be cleared manually by software, allowing software to determine the cause of the UART0 interrupt (transmit complete or receive complete).

27.2.2. 9-Bit UART

9-bit UART mode uses a total of eleven bits per data byte: a start bit, 8 data bits (LSB first), a programmable ninth data bit, and a stop bit. The state of the ninth transmit data bit is determined by the value in TB80 (SCON0.3), which is assigned by user software. It can be assigned the value of the parity flag (bit P in register PSW) for error detection, or used in multiprocessor communications. On receive, the ninth data bit goes into RB80 (SCON0.2) and the stop bit is ignored.

Data transmission begins when an instruction writes a data byte to the SBUF0 register. The TI0 Transmit Interrupt Flag (SCON0.1) is set at the end of the transmission (the beginning of the stop-bit time). Data reception can begin any time after the REN0 Receive Enable bit (SCON0.4) is set to 1. After the stop bit is received, the data byte will be loaded into the SBUF0 receive register if the following conditions are met: (1) RI0 must be logic 0, and (2) if MCE0 is logic 1, the 9th bit must be logic 1 (when MCE0 is logic 0, the state of the ninth data bit is unimportant). If these conditions are met, the eight bits of data are stored in SBUF0, the ninth bit is stored in RB80, and the RI0 flag is set to 1. If the above conditions are not met, SBUF0 and RB80 will not be loaded and the RI0 flag will not be set to 1. A UART0 interrupt will occur if enabled when either TI0 or RI0 is set to 1.

			Fre	quency: 24.5 M	IHz						
	Target Baud Rate (bps)	Baud Rate % Error	Oscillator Divide Factor	Timer Clock Source	SCA1–SCA0 (pre-scale select) ¹	T1M ¹	Timer 1 Reload Value (hex)				
	230400	-0.32%	106	SYSCLK	XX ²	1	0xCB				
E	115200	-0.32%	212	SYSCLK	XX	1	0x96				
ror Sc	57600	0.15%	426	SYSCLK	XX	1	0x2B				
Υ Ψ	28800	-0.32%	848	SYSCLK/4	01	0	0x96				
ц я	14400	14400 0.15% 1704 SYSCLK/12		00	0	0xB9					
YS	9600	-0.32%	2544	SYSCLK/12	00	0	0x96				
– v	2400	-0.32%	10176	SYSCLK/48	10	0	0x96				
	1200	1200 0.15% 20448 SYSCLK/48		10	0	0x2B					
Notes: 1. 2.	 Notes: 1. SCA1–SCA0 and T1M bit definitions can be found in Section 28.1. 2. X = Don't care. 										

Table 27.1. Timer Settings for Standard Baud RatesUsing The Internal 24.5 MHz Oscillator

Table 27.2. Timer Settings for Standard Baud RatesUsing an External 22.1184 MHz Oscillator

			Frequ	Jency: 22.1184	MHz			
	Target Baud Rate (bps)	Baud Rate % Error	Oscillator Divide Factor	Timer Clock Source	SCA1–SCA0 (pre-scale select) ¹	T1M ¹	Timer 1 Reload Value (hex)	
	230400	0.00%	96	SYSCLK	XX ²	1	0xD0	
ہ ع	115200	0.00%	192	SYSCLK	XX	1	0xA0	
ror Dsc	57600	0.00%	384	SYSCLK	XX	1	0x40	
K f al C	28800	0.00%	768	SYSCLK / 12	00	0	0xE0	
CL	14400	0.00%	1536	SYSCLK / 12	00	0	0xC0	
ΥS xte	9600	0.00%	2304	SYSCLK / 12	00	0	0xA0	
ŚШ	2400	0.00%	9216	SYSCLK / 48	10	0	0xA0	
	1200	0.00%	18432	SYSCLK / 48	10	0	0x40	
۲. ۲	230400	0.00%	96	EXTCLK / 8	11	0	0xFA	
ror Sc	115200	0.00%	192	EXTCLK / 8	11	0	0xF4	
K f I O	57600	0.00%	384	EXTCLK / 8	11	0	0xE8	
CL rna	28800	0.00%	768	EXTCLK / 8	11	0	0xD0	
YS(14400	0.00%	1536	EXTCLK / 8	11	0	0xA0	
s =	9600	0.00%	2304	EXTCLK / 8	11	0	0x70	
Mateau								

Notes:

1. SCA1–SCA0 and T1M bit definitions can be found in Section 28.1.

2. X = Don't care.

Figure 28.2. T0 Mode 2 Block Diagram

28.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)

In Mode 3, Timer 0 is configured as two separate 8-bit counter/timers held in TL0 and TH0. The counter/timer in TL0 is controlled using the Timer 0 control/status bits in TCON and TMOD: TR0, C/T0, GATE0 and TF0. TL0 can use either the system clock or an external input signal as its timebase. The TH0 register is restricted to a timer function sourced by the system clock or prescaled clock. TH0 is enabled using the Timer 1 run control bit TR1. TH0 sets the Timer 1 overflow flag TF1 on overflow and thus controls the Timer 1 interrupt.

Timer 1 is inactive in Mode 3. When Timer 0 is operating in Mode 3, Timer 1 can be operated in Modes 0, 1 or 2, but cannot be clocked by external signals nor set the TF1 flag and generate an interrupt. However, the Timer 1 overflow can be used to generate baud rates or overflow conditions for other peripherals. While Timer 0 is operating in Mode 3, Timer 1 run control is handled through its mode settings. To run Timer 1 while Timer 0 is in Mode 3, set the Timer 1 Mode as 0, 1, or 2. To disable Timer 1, configure it for Mode 3.

28.2.3. Comparator 0 Capture Mode

The capture mode in Timer 2 allows Comparator 0 rising edges to be captured with the timer clocking from the system clock or the system clock divided by 12. Timer 2 capture mode is enabled by setting TF2CEN to 1 and T2SPLIT to 0.

When capture mode is enabled, a capture event will be generated on every Comparator 0 rising edge. When the capture event occurs, the contents of Timer 2 (TMR2H:TMR2L) are loaded into the Timer 2 reload registers (TMR2RLH:TMR2RLL) and the TF2H flag is set (triggering an interrupt if Timer 2 interrupts are enabled). By recording the difference between two successive timer capture values, the Comparator 0 period can be determined with respect to the Timer 2 clock. The Timer 2 clock should be much faster than the capture clock to achieve an accurate reading.

This mode allows software to determine the time between consecutive Comparator 0 rising edges, which can be used for detecting changes in the capacitance of a capacitive switch, or measuring the frequency of a low-level analog signal.

Figure 28.6. Timer 2 Capture Mode Block Diagram

29.3. Capture/Compare Modules

Each module can be configured to operate independently in one of six operation modes: edge-triggered capture, software timer, high-speed output, frequency output, 8-bit through 15-bit pulse width modulator, or 16-bit pulse width modulator. Each module has Special Function Registers (SFRs) associated with it in the CIP-51 system controller. These registers are used to exchange data with a module and configure the module's mode of operation. Table 29.2 summarizes the bit settings in the PCA0CPMn and PCA0PWM registers used to select the PCA capture/compare module's operating mode. Note that all modules set to use 8-bit through 15-bit PWM mode must use the same cycle length (8–15 bits). Setting the ECCFn bit in a PCA0CPMn register enables the module's CCFn interrupt.

Operational Mode	PCA0CPMn PCA0PWM												Λ	
Bit Number	7	6	5	4	3	2	1	0	7	6	5	4	3	2–0
Capture triggered by positive edge on CEXn	Х	Х	1	0	0	0	0	А	0	Х	В	Х	Х	XXX
Capture triggered by negative edge on CEXn	Х	Х	0	1	0	0	0	А	0	Х	В	Х	Х	XXX
Capture triggered by any transition on CEXn	Х	Х	1	1	0	0	0	А	0	Х	В	Х	Х	XXX
Software Timer	Х	С	0	0	1	0	0	А	0	Х	В	Х	Х	XXX
High Speed Output	Х	С	0	0	1	1	0	А	0	Х	В	Х	Х	XXX
Frequency Output	Х	С	0	0	0	1	1	А	0	Х	В	Х	Х	XXX
8-Bit Pulse Width Modulator ⁷	0	С	0	0	Е	0	1	А	0	Х	В	Х	Х	000
9-Bit Pulse Width Modulator ⁷	0	С	0	0	Е	0	1	А	D	Х	В	Х	Х	001
10-Bit Pulse Width Modulator ⁷	0	С	0	0	Е	0	1	А	D	Х	В	Х	Х	010
11-Bit Pulse Width Modulator ⁷	0	С	0	0	Е	0	1	А	D	Х	В	Х	Х	011
12-Bit Pulse Width Modulator ⁷	0	С	0	0	Е	0	1	Α	D	Х	В	Х	Х	100
13-Bit Pulse Width Modulator ⁷	0	С	0	0	Е	0	1	Α	D	Х	В	Х	Х	101
14-Bit Pulse Width Modulator ⁷	0	С	0	0	Е	0	1	А	D	Х	В	Х	Х	110
15-Bit Pulse Width Modulator ⁷	0	С	0	0	Е	0	1	А	D	Х	В	Х	Х	111
16-Bit Pulse Width Modulator	1	С	0	0	Е	0	1	А	0	Х	В	Х	0	XXX
16-Bit Pulse Width Modulator with Auto-Reload	1	С	0	0	Е	0	1	А	D	Х	В	Х	1	XXX

Table 29.2. PCA0CPM and PCA0PWM Bit Settings for PCA Capture/Compare Modules^{1,2,3,4,5,6}

Notes:

- 1. X = Don't Care (no functional difference for individual module if 1 or 0).
- 2. A = Enable interrupts for this module (PCA interrupt triggered on CCFn set to 1).
- 3. B = Enable 8th through 15th bit overflow interrupt (Depends on setting of CLSEL[2:0]).
- **4.** C = When set to 0, the digital comparator is off. For high speed and frequency output modes, the associated pin will not toggle. In any of the PWM modes, this generates a 0% duty cycle (output = 0).
- 5. D = Selects whether the Capture/Compare register (0) or the Auto-Reload register (1) for the associated channel is accessed via addresses PCA0CPHn and PCA0CPLn.
- 6. E = When set, a match event will cause the CCFn flag for the associated channel to be set.
- 7. All modules set to 8-bit through 15-bit PWM mode use the same cycle length setting.

