
Silicon Labs - C8051F831-GS Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Not For New Designs

Core Processor 8051

Core Size 8-Bit

Speed 25MHz

Connectivity SMBus (2-Wire/I²C), SPI, UART/USART

Peripherals Cap Sense, POR, PWM, Temp Sensor, WDT

Number of I/O 13

Program Memory Size 4KB (4K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 256 x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V

Data Converters A/D 12x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 16-SOIC (0.154", 3.90mm Width)

Supplier Device Package 16-SOIC

Purchase URL https://www.e-xfl.com/product-detail/silicon-labs/c8051f831-gs

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/c8051f831-gs-4401706
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

C8051F80x-83x

Rev. 1.0 37

6. SOIC-16 Package Specifications

Figure 6.1. SOIC-16 Package Drawing

Table 6.1. SOIC-16 Package Dimensions

Dimension Min Nom Max Dimension Min Nom Max

A — 1.75 L 0.40 1.27

A1 0.10 0.25 L2 0.25 BSC

A2 1.25 — h 0.25 0.50

b 0.31 0.51 θ 0º 8º

c 0.17 0.25 aaa 0.10

D 9.90 BSC bbb 0.20

E 6.00 BSC ccc 0.10

E1 3.90 BSC ddd 0.25

e 1.27 BSC

Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to the JEDEC Solid State Outline MS-012, Variation AC.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body

Components.

C8051F80x-83x

100 Rev. 1.0

P1MAT 0xED P1 Match 152

P1MDIN 0xF2 Port 1 Input Mode Configuration 156

P1MDOUT 0xA5 Port 1 Output Mode Configuration 156

P1SKIP 0xD5 Port 1 Skip 157

P2 0xA0 Port 2 Latch 157

P2MDOUT 0xA6 Port 2 Output Mode Configuration 158

PCA0CN 0xD8 PCA Control 238

PCA0CPH0 0xFC PCA Capture 0 High 243

PCA0CPH1 0xEA PCA Capture 1 High 243

PCA0CPH2 0xEC PCA Capture 2 High 243

PCA0CPL0 0xFB PCA Capture 0 Low 243

PCA0CPL1 0xE9 PCA Capture 1 Low 243

PCA0CPL2 0xEB PCA Capture 2 Low 243

PCA0CPM0 0xDA PCA Module 0 Mode Register 241

PCA0CPM1 0xDB PCA Module 1 Mode Register 241

PCA0CPM2 0xDC PCA Module 2 Mode Register 241

PCA0H 0xFA PCA Counter High 242

PCA0L 0xF9 PCA Counter Low 242

PCA0MD 0xD9 PCA Mode 239

PCA0PWM 0xF7 PCA PWM Configuration 240

PCON 0x87 Power Control 122

PSCTL 0x8F Program Store R/W Control 118

PSW 0xD0 Program Status Word 91

REF0CN 0xD1 Voltage Reference Control 62

REG0CN 0xC9 Voltage Regulator Control 64

REVID 0xB6 Revision ID 96

RSTSRC 0xEF Reset Source Configuration/Status 128

Table 17.2. Special Function Registers (Continued)

SFRs are listed in alphabetical order. All undefined SFR locations are reserved

Register Address Description Page

C8051F80x-83x

Rev. 1.0 110

SFR Address = 0xF4

SFR Definition 18.6. EIP2: Extended Interrupt Priority 2

Bit 7 6 5 4 3 2 1 0

Name Reserved Reserved Reserved Reserved Reserved Reserved PSCGRT PSCCPT

Type R R R R R R R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:2 Reserved

1 PSCGRT Capacitive Sense Greater Than Comparator Priority Control.

This bit sets the priority of the Capacitive Sense Greater Than Comparator interrupt.
0: CS0 Greater Than Comparator interrupt set to low priority level.
1: CS0 Greater Than Comparator set to high priority level.

0 PSCCPT Capacitive Sense Conversion Complete Priority Control.

This bit sets the priority of the Capacitive Sense Conversion Complete interrupt.
0: CS0 Conversion Complete set to low priority level.
1: CS0 Conversion Complete set to high priority level.

C8051F80x-83x

Rev. 1.0 113

19. Flash Memory

On-chip, re-programmable Flash memory is included for program code and non-volatile data storage. The
Flash memory can be programmed in-system through the C2 interface or by software using the MOVX
write instruction. Once cleared to logic 0, a Flash bit must be erased to set it back to logic 1. Flash bytes
would typically be erased (set to 0xFF) before being reprogrammed. The write and erase operations are
automatically timed by hardware for proper execution; data polling to determine the end of the write/erase
operations is not required. Code execution is stalled during Flash write/erase operations. Refer to
Table 7.6 for complete Flash memory electrical characteristics.

19.1. Programming The Flash Memory
The simplest means of programming the Flash memory is through the C2 interface using programming
tools provided by Silicon Laboratories or a third party vendor. This is the only means for programming a
non-initialized device. For details on the C2 commands to program Flash memory, see Section “30. C2
Interface” on page 244.

The Flash memory can be programmed by software using the MOVX write instruction with the address and
data byte to be programmed provided as normal operands. Before programming Flash memory using
MOVX, Flash programming operations must be enabled by: (1) setting the PSWE Program Store Write
Enable bit (PSCTL.0) to logic 1 (this directs the MOVX writes to target Flash memory); and (2) Writing the
Flash key codes in sequence to the Flash Lock register (FLKEY). The PSWE bit remains set until cleared
by software. For detailed guidelines on programming Flash from firmware, please see Section “19.4. Flash
Write and Erase Guidelines” on page 115.

Note: A minimum SYSCLK frequency is required for writing or erasing Flash memory, as detailed in “7. Electrical
Characteristics” on page 39.

To ensure the integrity of the Flash contents, the on-chip VDD Monitor must be enabled and enabled as a
reset source in any system that includes code that writes and/or erases Flash memory from software. Fur-
thermore, there should be no delay between enabling the VDD Monitor and enabling the VDD Monitor as a
reset source. Any attempt to write or erase Flash memory while the VDD Monitor is disabled, or not
enabled as a reset source, will cause a Flash Error device reset.

19.1.1. Flash Lock and Key Functions

Flash writes and erases by user software are protected with a lock and key function. The Flash Lock and
Key Register (FLKEY) must be written with the correct key codes, in sequence, before Flash operations
may be performed. The key codes are: 0xA5, 0xF1. The timing does not matter, but the codes must be
written in order. If the key codes are written out of order, or the wrong codes are written, Flash writes and
erases will be disabled until the next system reset. Flash writes and erases will also be disabled if a Flash
write or erase is attempted before the key codes have been written properly. The Flash lock resets after
each write or erase; the key codes must be written again before a following Flash operation can be per-
formed. The FLKEY register is detailed in SFR Definition 19.2.

19.1.2. Flash Erase Procedure

The Flash memory is organized in 512-byte pages. The erase operation applies to an entire page (setting
all bytes in the page to 0xFF). To erase an entire 512-byte page, perform the following steps:

1. Save current interrupt state and disable interrupts.

2. Set the PSEE bit (register PSCTL).

3. Set the PSWE bit (register PSCTL).

4. Write the first key code to FLKEY: 0xA5.

5. Write the second key code to FLKEY: 0xF1.

6. Using the MOVX instruction, write a data byte to any location within the 512-byte page to be erased.

7. Clear the PSWE and PSEE bits.

C8051F80x-83x

114 Rev. 1.0

8. Restore previous interrupt state.

Steps 4–6 must be repeated for each 512-byte page to be erased.

Note: Flash security settings may prevent erasure of some Flash pages, such as the reserved area and the page
containing the lock bytes. For a summary of Flash security settings and restrictions affecting Flash erase
operations, please see Section “19.3. Security Options” on page 114.

19.1.3. Flash Write Procedure

A write to Flash memory can clear bits to logic 0 but cannot set them; only an erase operation can set bits
to logic 1 in Flash. A byte location to be programmed should be erased before a new value is written.

The recommended procedure for writing a single byte in Flash is as follows:

1. Save current interrupt state and disable interrupts.

2. Ensure that the Flash byte has been erased (has a value of 0xFF).

3. Set the PSWE bit (register PSCTL).

4. Clear the PSEE bit (register PSCTL).

5. Write the first key code to FLKEY: 0xA5.

6. Write the second key code to FLKEY: 0xF1.

7. Using the MOVX instruction, write a single data byte to the desired location within the 512-byte sector.

8. Clear the PSWE bit.

9. Restore previous interrupt state.

Steps 5–7 must be repeated for each byte to be written.

Note: Flash security settings may prevent writes to some areas of Flash, such as the reserved area. For a summary
of Flash security settings and restrictions affecting Flash write operations, please see Section “19.3. Security
Options” on page 114.

19.2. Non-volatile Data Storage
The Flash memory can be used for non-volatile data storage as well as program code. This allows data
such as calibration coefficients to be calculated and stored at run time. Data is written using the MOVX
write instruction and read using the MOVC instruction.

Note: MOVX read instructions always target XRAM.

19.3. Security Options
The CIP-51 provides security options to protect the Flash memory from inadvertent modification by soft-
ware as well as to prevent the viewing of proprietary program code and constants. The Program Store
Write Enable (bit PSWE in register PSCTL) and the Program Store Erase Enable (bit PSEE in register
PSCTL) bits protect the Flash memory from accidental modification by software. PSWE must be explicitly
set to 1 before software can modify the Flash memory; both PSWE and PSEE must be set to 1 before soft-
ware can erase Flash memory. Additional security features prevent proprietary program code and data
constants from being read or altered across the C2 interface.

A Security Lock Byte located at the last byte of Flash user space offers protection of the Flash program
memory from access (reads, writes, and erases) by unprotected code or the C2 interface. The Flash secu-
rity mechanism allows the user to lock all Flash pages, starting at page 0, by writing a non-0xFF value to
the lock byte. Note that writing a non-0xFF value to the lock byte will lock all pages of FLASH from
reads, writes, and erases, including the page containing the lock byte.

The level of Flash security depends on the Flash access method. The three Flash access methods that
can be restricted are reads, writes, and erases from the C2 debug interface, user firmware executing on
unlocked pages, and user firmware executing on locked pages. Table 19.1 summarizes the Flash security

C8051F80x-83x

Rev. 1.0 117

19.4.3. System Clock

1. If operating from an external crystal, be advised that crystal performance is susceptible to electrical
interference and is sensitive to layout and to changes in temperature. If the system is operating in an
electrically noisy environment, use the internal oscillator or use an external CMOS clock.

2. If operating from the external oscillator, switch to the internal oscillator during Flash write or erase
operations. The external oscillator can continue to run, and the CPU can switch back to the external
oscillator after the Flash operation has completed.

Additional Flash recommendations and example code can be found in “AN201: Writing to Flash from Firm-
ware," available from the Silicon Laboratories website.

C8051F80x-83x

Rev. 1.0 122

SFR Address = 0x87

SFR Definition 20.1. PCON: Power Control

Bit 7 6 5 4 3 2 1 0

Name GF[5:0] STOP IDLE

Type R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:2 GF[5:0] General Purpose Flags 5–0.

These are general purpose flags for use under software control.

1 STOP Stop Mode Select.

Setting this bit will place the CIP-51 in Stop mode. This bit will always be read as 0.
1: CPU goes into Stop mode (internal oscillator stopped).

0 IDLE IDLE: Idle Mode Select.

Setting this bit will place the CIP-51 in Idle mode. This bit will always be read as 0.
1: CPU goes into Idle mode. (Shuts off clock to CPU, but clock to Timers, Interrupts,
Serial Ports, and Analog Peripherals are still active.)

C8051F80x-83x

124 Rev. 1.0

21.1. Power-On Reset
During power-up, the device is held in a reset state and the RST pin is driven low until VDD settles above
VRST. A delay occurs before the device is released from reset; the delay decreases as the VDD ramp time
increases (VDD ramp time is defined as how fast VDD ramps from 0 V to VRST). Figure 21.2. plots the
power-on and VDD monitor reset timing. The maximum VDD ramp time is 1 ms; slower ramp times may
cause the device to be released from reset before VDD reaches the VRST level. For ramp times less than
1 ms, the power-on reset delay (TPORDelay) is typically less than 10 ms.

On exit from a power-on reset, the PORSF flag (RSTSRC.1) is set by hardware to logic 1. When PORSF is
set, all of the other reset flags in the RSTSRC Register are indeterminate (PORSF is cleared by all other
resets). Since all resets cause program execution to begin at the same location (0x0000) software can
read the PORSF flag to determine if a power-up was the cause of reset. The content of internal data mem-
ory should be assumed to be undefined after a power-on reset. The VDD monitor is enabled and selected
as a reset source following a power-on reset.

Figure 21.2. Power-On and VDD Monitor Reset Timing

Power-On
Reset

VDD
Monitor
Reset

RST

t

V
D

D
 S

up
pl

y

Logic HIGH

Logic LOW
TPORDelay

VDD

VRST

VDD

C8051F80x-83x

Rev. 1.0 133

22.3. External Oscillator Drive Circuit
The external oscillator circuit may drive an external crystal, ceramic resonator, capacitor, or RC network. A
CMOS clock may also provide a clock input. For a crystal or ceramic resonator configuration, the crys-
tal/resonator must be wired across the XTAL1 and XTAL2 pins as shown in Option 1 of Figure 22.1. A
10 MΩ resistor also must be wired across the XTAL2 and XTAL1 pins for the crystal/resonator configura-
tion. In RC, capacitor, or CMOS clock configuration, the clock source should be wired to the XTAL2 pin as
shown in Option 2, 3, or 4 of Figure 22.1. The type of external oscillator must be selected in the OSCXCN
register, and the frequency control bits (XFCN) must be selected appropriately (see SFR Definition 22.4).

Important Note on External Oscillator Usage: Port pins must be configured when using the external
oscillator circuit. When the external oscillator drive circuit is enabled in crystal/resonator mode, Port pins
P0.2 and P0.3 are used as XTAL1 and XTAL2 respectively. When the external oscillator drive circuit is
enabled in capacitor, RC, or CMOS clock mode, Port pin P0.3 is used as XTAL2. The Port I/O Crossbar
should be configured to skip the Port pins used by the oscillator circuit; see Section “23.3. Priority Crossbar
Decoder” on page 143 for Crossbar configuration. Additionally, when using the external oscillator circuit in
crystal/resonator, capacitor, or RC mode, the associated Port pins should be configured as analog inputs.
In CMOS clock mode, the associated pin should be configured as a digital input. See Section “23.4. Port
I/O Initialization” on page 147 for details on Port input mode selection.

C8051F80x-83x

Rev. 1.0 138

23. Port Input/Output

Digital and analog resources are available through 17 I/O pins (24-pin and 20-pin packages) or 13 I/O pins
(16-pin packages). Port pins P0.0–P1.7 can be defined as general-purpose I/O (GPIO) or assigned to one
of the internal digital resources as shown in Figure 23.4. Port pin P2.0 can be used as GPIO and is shared
with the C2 Interface Data signal (C2D). The designer has complete control over which functions are
assigned, limited only by the number of physical I/O pins. This resource assignment flexibility is achieved
through the use of a Priority Crossbar Decoder. Note that the state of a Port I/O pin can always be read in
the corresponding Port latch, regardless of the Crossbar settings.

The Crossbar assigns the selected internal digital resources to the I/O pins based on the Priority Decoder
(Figure 23.5). The registers XBR0 and XBR1, defined in SFR Definition 23.1 and SFR Definition 23.2, are
used to select internal digital functions.

All Port I/Os are 5 V tolerant (refer to Figure 23.2 for the Port cell circuit). The Port I/O cells are configured
as either push-pull or open-drain in the Port Output Mode registers (PnMDOUT, where n = 0,1). Complete
Electrical Specifications for Port I/O are given in Section “7. Electrical Characteristics” on page 39.

Figure 23.1. Port I/O Functional Block Diagram

XBR0, XBR1,
PnSKIP Registers

Digital
Crossbar

Priority
Decoder

2

P0
I/O

Cells

P0.0

P0.7

8

Port Match
P0MASK, P0MAT
P1MASK, P1MAT

UART

(I
nt

er
n

al
 D

ig
ita

l S
ig

n
al

s)

Highest
Priority

Lowest
Priority

SYSCLK

2
SMBus

T0, T1
2

4
PCA

2CP0
Outputs

SPI
4

P1.0
8

(P
or

t
La

tc
he

s)

P0 (P0.0-P0.7)

(P1.0-P1.7)

8

8

P1

PnMDOUT,
PnMDIN Registers

P1.7*

P2.0

To Analog Peripherals
(ADC0, CP0, VREF, XTAL)

External Interrupts
EX0 and EX1

P1
I/O

Cells

P2
I/O

Cells

To CS0

*Note: P1.4-P1.7
are not available
on the 16-pin
packages.

C8051F80x-83x

157 Rev. 1.0

SFR Address = 0xD5

SFR Address = 0xA0; Bit-Addressable

SFR Definition 23.14. P1SKIP: Port 1 Skip

Bit 7 6 5 4 3 2 1 0

Name P1SKIP[7:0]

Type R/W

Reset 0* 0* 0* 0* 0 0 0 0

Bit Name Function

7:0 P1SKIP[7:0] Port 1 Crossbar Skip Enable Bits.

These bits select Port 1 pins to be skipped by the Crossbar Decoder. Port pins
used for analog, special functions or GPIO should be skipped by the Crossbar.
0: Corresponding P1.n pin is not skipped by the Crossbar.
1: Corresponding P1.n pin is skipped by the Crossbar.
Note: P1.4–P1.7 are not available on 16-pin packages, with the reset value of 1111b for

P1SKIP[7:4].

SFR Definition 23.15. P2: Port 2

Bit 7 6 5 4 3 2 1 0

Name P2[0]

Type R R R R R R R R/W

Reset 0 0 0 0 0 0 0 1

Bit Name Description Write Read

7:1 Unused Unused. Don’t Care 0000000b

0 P2[0] Port 2 Data.

Sets the Port latch logic
value or reads the Port pin
logic state in Port cells con-
figured for digital I/O.

0: Set output latch to logic
LOW.
1: Set output latch to logic
HIGH.

0: P2.0 Port pin is logic
LOW.
1: P2.0 Port pin is logic
HIGH.

C8051F80x-83x

Rev. 1.0 161

24.2. 32-bit CRC Algorithm
The C8051F80x-83x CRC unit calculates the 32-bit CRC using a poly of 0x04C11DB7. The CRC-32 algo-
rithm is "reflected", meaning that all of the input bytes and the final 32-bit output are bit-reversed in the pro-
cessing engine. The following is a description of a simplified CRC algorithm that produces results identical
to the hardware:

1. XOR the least-significant byte of the current CRC result with the input byte. If this is the first iteration of
the CRC unit, the current CRC result will be the set initial value (0x00000000 or 0xFFFFFFFF).

2. Right-shift the CRC result.

3. If the LSB of the CRC result is set, XOR the CRC result with the reflected polynomial (0xEDB88320).

4. Repeat at Step 2 for the number of input bits (8).

For example, the 32-bit C8051F80x-83x CRC algorithm can be described by the following code:

unsigned long UpdateCRC (unsigned long CRC_acc, unsigned char CRC_input){
unsigned char i; // loop counter
#define POLY 0xEDB88320 // bit-reversed version of the poly 0x04C11DB7
// Create the CRC "dividend" for polynomial arithmetic (binary arithmetic
// with no carries)
CRC_acc = CRC_acc ^ CRC_input;
// "Divide" the poly into the dividend using CRC XOR subtraction
// CRC_acc holds the "remainder" of each divide
// Only complete this division for 8 bits since input is 1 byte
for (i = 0; i < 8; i++)
{

// Check if the MSB is set (if MSB is 1, then the POLY can "divide"
// into the "dividend")
if ((CRC_acc & 0x00000001) == 0x00000001)
{

// if so, shift the CRC value, and XOR "subtract" the poly
CRC_acc = CRC_acc >> 1;
CRC_acc ^= POLY;

}
else
{

// if not, just shift the CRC value
CRC_acc = CRC_acc >> 1;

}
}
return CRC_acc; // Return the final remainder (CRC value)

}
Table 24.2 lists example input values and the associated outputs using the 32-bit C8051F80x-83x CRC
algorithm (an initial value of 0xFFFFFFFF is used):

Table 24.2. Example 32-bit CRC Outputs

Input Output

0x63 0xF9462090
0xAA, 0xBB, 0xCC 0x41B207B3

0x00, 0x00, 0xAA, 0xBB, 0xCC 0x78D129BC

C8051F80x-83x

178 Rev. 1.0

Figure 25.10. SPI Slave Timing (CKPHA = 0)

Figure 25.11. SPI Slave Timing (CKPHA = 1)

SCK*

T
SE

NSS

T
CKH

T
CKL

MOSI

T
SIS

T
SIH

MISO

T
SD

T
SOH

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

T
SEZ

T
SDZ

SCK*

T
SE

NSS

T
CKH

T
CKL

MOSI

T
SIS

T
SIH

MISO

T
SD

T
SOH

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

T
SLHT

SEZ
T
SDZ

C8051F80x-83x

187 Rev. 1.0

26.4.2. SMB0CN Control Register

SMB0CN is used to control the interface and to provide status information (see SFR Definition 26.2). The
higher four bits of SMB0CN (MASTER, TXMODE, STA, and STO) form a status vector that can be used to
jump to service routines. MASTER indicates whether a device is the master or slave during the current
transfer. TXMODE indicates whether the device is transmitting or receiving data for the current byte.

STA and STO indicate that a START and/or STOP has been detected or generated since the last SMBus
interrupt. STA and STO are also used to generate START and STOP conditions when operating as a mas-
ter. Writing a 1 to STA will cause the SMBus interface to enter Master Mode and generate a START when
the bus becomes free (STA is not cleared by hardware after the START is generated). Writing a 1 to STO
while in Master Mode will cause the interface to generate a STOP and end the current transfer after the
next ACK cycle. If STO and STA are both set (while in Master Mode), a STOP followed by a START will be
generated.

The ARBLOST bit indicates that the interface has lost an arbitration. This may occur anytime the interface
is transmitting (master or slave). A lost arbitration while operating as a slave indicates a bus error condi-
tion. ARBLOST is cleared by hardware each time SI is cleared.

The SI bit (SMBus Interrupt Flag) is set at the beginning and end of each transfer, after each byte frame, or
when an arbitration is lost; see Table 26.3 for more details.

Important Note About the SI Bit: The SMBus interface is stalled while SI is set; thus SCL is held low, and
the bus is stalled until software clears SI.

26.4.2.1. Software ACK Generation

When the EHACK bit in register SMB0ADM is cleared to 0, the firmware on the device must detect incom-
ing slave addresses and ACK or NACK the slave address and incoming data bytes. As a receiver, writing
the ACK bit defines the outgoing ACK value; as a transmitter, reading the ACK bit indicates the value
received during the last ACK cycle. ACKRQ is set each time a byte is received, indicating that an outgoing
ACK value is needed. When ACKRQ is set, software should write the desired outgoing value to the ACK
bit before clearing SI. A NACK will be generated if software does not write the ACK bit before clearing SI.
SDA will reflect the defined ACK value immediately following a write to the ACK bit; however SCL will
remain low until SI is cleared. If a received slave address is not acknowledged, further slave events will be
ignored until the next START is detected.

26.4.2.2. Hardware ACK Generation

When the EHACK bit in register SMB0ADM is set to 1, automatic slave address recognition and ACK gen-
eration is enabled. More detail about automatic slave address recognition can be found in Section 26.4.3.
As a receiver, the value currently specified by the ACK bit will be automatically sent on the bus during the
ACK cycle of an incoming data byte. As a transmitter, reading the ACK bit indicates the value received on
the last ACK cycle. The ACKRQ bit is not used when hardware ACK generation is enabled. If a received
slave address is NACKed by hardware, further slave events will be ignored until the next START is
detected, and no interrupt will be generated.

Table 26.3 lists all sources for hardware changes to the SMB0CN bits. Refer to Table 26.5 for SMBus sta-
tus decoding using the SMB0CN register.

C8051F80x-83x

Rev. 1.0 198

S
la

ve
 T

ra
n

s
m

it
te

r

0100

0 0 0
A slave byte was transmitted;
NACK received.

No action required (expecting
STOP condition).

0 0 X 0001

0 0 1
A slave byte was transmitted;
ACK received.

Load SMB0DAT with next data
byte to transmit.

0 0 X 0100

0 1 X
A Slave byte was transmitted;
error detected.

No action required (expecting
Master to end transfer).

0 0 X 0001

0101 0 X X
An illegal STOP or bus error
was detected while a Slave
Transmission was in progress.

Clear STO.
0 0 X —

S
la

v
e

R
ec

e
iv

er

0010

1 0 X
A slave address + R/W was
received; ACK requested.

If Write, Acknowledge received
address

0 0 1 0000

If Read, Load SMB0DAT with
data byte; ACK received address

0 0 1 0100

NACK received address. 0 0 0 —

1 1 X
Lost arbitration as master;
slave address + R/W received;
ACK requested.

If Write, Acknowledge received
address

0 0 1 0000

If Read, Load SMB0DAT with
data byte; ACK received address

0 0 1 0100

NACK received address. 0 0 0 —

Reschedule failed transfer;
NACK received address.

1 0 0 1110

0001

0 0 X
A STOP was detected while
addressed as a Slave Trans-
mitter or Slave Receiver.

Clear STO.
0 0 X —

1 1 X
Lost arbitration while attempt-
ing a STOP.

No action required (transfer
complete/aborted).

0 0 0 —

0000 1 0 X
A slave byte was received;
ACK requested.

Acknowledge received byte;
Read SMB0DAT.

0 0 1 0000

NACK received byte. 0 0 0 —

B
u

s
 E

rr
o

r
C

o
n

d
it

io
n

0010 0 1 X
Lost arbitration while attempt-
ing a repeated START.

Abort failed transfer. 0 0 X —

Reschedule failed transfer. 1 0 X 1110

0001 0 1 X
Lost arbitration due to a
detected STOP.

Abort failed transfer. 0 0 X —

Reschedule failed transfer. 1 0 X 1110

0000 1 1 X
Lost arbitration while transmit-
ting a data byte as master.

Abort failed transfer. 0 0 0 —

Reschedule failed transfer. 1 0 0 1110

Table 26.5. SMBus Status Decoding With Hardware ACK Generation Disabled (EHACK = 0)
(Continued)

M
o

d
e

Values Read

Current SMbus State Typical Response Options

Values to
Write

N
ex

t
S

ta
tu

s

V
ec

to
r

E
x

p
ec

te
d

S
ta

tu
s

V
e

c
to

r

A
C

K
R

Q

A
R

B
L

O
S

T

A
C

K

S
TA

S
T

O

A
C

K

C8051F80x-83x

199 Rev. 1.0

Table 26.6. SMBus Status Decoding With Hardware ACK Generation Enabled (EHACK = 1)

M
o

d
e

Values Read

Current SMbus State Typical Response Options

Values to
Write

N
ex

t
S

ta
tu

s

V
e

ct
o

r
E

xp
e

ct
ed

S
ta

tu
s

V
ec

to
r

A
C

K
R

Q

A
R

B
L

O
S

T

A
C

K

S
TA

S
T

O

A
C

K

M
a

st
er

 T
ra

n
s

m
it

te
r

1110 0 0 X
A master START was gener-
ated.

Load slave address + R/W into
SMB0DAT.

0 0 X 1100

1100

0 0 0
A master data or address byte
was transmitted; NACK
received.

Set STA to restart transfer. 1 0 X 1110

Abort transfer. 0 1 X —

0 0 1
A master data or address byte
was transmitted; ACK
received.

Load next data byte into
SMB0DAT.

0 0 X 1100

End transfer with STOP. 0 1 X —

End transfer with STOP and start
another transfer.

1 1 X —

Send repeated START. 1 0 X 1110

Switch to Master Receiver Mode
(clear SI without writing new data
to SMB0DAT). Set ACK for initial
data byte.

0 0 1 1000

M
as

te
r

R
e

ce
iv

e
r

1000

0 0 1
A master data byte was
received; ACK sent.

Set ACK for next data byte;
Read SMB0DAT.

0 0 1 1000

Set NACK to indicate next data
byte as the last data byte;
Read SMB0DAT.

0 0 0 1000

Initiate repeated START. 1 0 0 1110

Switch to Master Transmitter
Mode (write to SMB0DAT before
clearing SI).

0 0 X 1100

0 0 0
A master data byte was
received; NACK sent (last
byte).

Read SMB0DAT; send STOP. 0 1 0 —

Read SMB0DAT; Send STOP
followed by START.

1 1 0 1110

Initiate repeated START. 1 0 0 1110

Switch to Master Transmitter
Mode (write to SMB0DAT before
clearing SI).

0 0 X 1100

C8051F80x-83x

Rev. 1.0 203

27.2. Operational Modes
UART0 provides standard asynchronous, full duplex communication. The UART mode (8-bit or 9-bit) is
selected by the S0MODE bit (SCON0.7). Typical UART connection options are shown in Figure 27.3.

Figure 27.3. UART Interconnect Diagram

27.2.1. 8-Bit UART

8-Bit UART mode uses a total of 10 bits per data byte: one start bit, eight data bits (LSB first), and one stop
bit. Data are transmitted LSB first from the TX0 pin and received at the RX0 pin. On receive, the eight data
bits are stored in SBUF0 and the stop bit goes into RB80 (SCON0.2).

Data transmission begins when software writes a data byte to the SBUF0 register. The TI0 Transmit Inter-
rupt Flag (SCON0.1) is set at the end of the transmission (the beginning of the stop-bit time). Data recep-
tion can begin any time after the REN0 Receive Enable bit (SCON0.4) is set to logic 1. After the stop bit is
received, the data byte will be loaded into the SBUF0 receive register if the following conditions are met:
RI0 must be logic 0, and if MCE0 is logic 1, the stop bit must be logic 1. In the event of a receive data over-
run, the first received 8 bits are latched into the SBUF0 receive register and the following overrun data bits
are lost.

If these conditions are met, the eight bits of data is stored in SBUF0, the stop bit is stored in RB80 and the
RI0 flag is set. If these conditions are not met, SBUF0 and RB80 will not be loaded and the RI0 flag will not
be set. An interrupt will occur if enabled when either TI0 or RI0 is set.

Figure 27.4. 8-Bit UART Timing Diagram

OR

RS-232
C8051xxxx

RS-232
LEVEL
XLTR

TX

RX

C8051xxxx
RX

TX

MCU
RX

TX

D1D0 D2 D3 D4 D5 D6 D7
START

BIT
MARK

STOP
BIT

BIT TIMES

BIT SAMPLING

SPACE

C8051F80x-83x

Rev. 1.0 223

SFR Address = 0xCA

SFR Address = 0xCB

SFR Definition 28.9. TMR2RLL: Timer 2 Reload Register Low Byte

Bit 7 6 5 4 3 2 1 0

Name TMR2RLL[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 TMR2RLL[7:0] Timer 2 Reload Register Low Byte.

TMR2RLL holds the low byte of the reload value for Timer 2.

SFR Definition 28.10. TMR2RLH: Timer 2 Reload Register High Byte

Bit 7 6 5 4 3 2 1 0

Name TMR2RLH[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 TMR2RLH[7:0] Timer 2 Reload Register High Byte.

TMR2RLH holds the high byte of the reload value for Timer 2.

C8051F80x-83x

240 Rev. 1.0

SFR Address = 0xF7

SFR Definition 29.3. PCA0PWM: PCA0 PWM Configuration

Bit 7 6 5 4 3 2 1 0

Name ARSEL ECOV COVF EAR16 CLSEL[1:0]

Type R/W R/W R/W R R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7 ARSEL Auto-Reload Register Select.

This bit selects whether to read and write the normal PCA capture/compare registers
(PCA0CPn), or the Auto-Reload registers at the same SFR addresses. This function
is used to define the reload value for 9-bit through 15-bit PWM mode and 16-bit PWM
mode. In all other modes, the Auto-Reload registers have no function.
0: Read/Write Capture/Compare Registers at PCA0CPHn and PCA0CPLn.
1: Read/Write Auto-Reload Registers at PCA0CPHn and PCA0CPLn.

6 ECOV Cycle Overflow Interrupt Enable.

This bit sets the masking of the Cycle Overflow Flag (COVF) interrupt.
0: COVF will not generate PCA interrupts.
1: A PCA interrupt will be generated when COVF is set.

5 COVF Cycle Overflow Flag.

This bit indicates an overflow of the nth bit (n= 9 through 15) of the main PCA counter
(PCA0). The specific bit used for this flag depends on the setting of the CLSEL bits.
The bit can be set by hardware or software, but must be cleared by software.
0: No overflow has occurred since the last time this bit was cleared.
1: An overflow has occurred since the last time this bit was cleared.

4 Unused Read = 0b; Write = Don’t care.

3 EAR16 16-Bit PWM Auto-Reload Enable.

This bit controls the Auto-Reload feature in 16-bit PWM mode, which loads the
PCA0CPn capture/compare registers with the values from the Auto-Reload registers
at the same SFR addresses on an overflow of the PCA counter (PCA0). This setting
affects all PCA channels that are configured to use 16-bit PWM mode.
0: 16-bit PWM mode Auto-Reload is disabled. This default setting is backwards-com-
patible with the 16-bit PWM mode available on other devices.
1: 16-bit PWM mode Auto-Reload is enabled.

2:0 CLSEL[2:0] Cycle Length Select.

When 16-bit PWM mode is not selected, these bits select the length of the PWM
cycle, from 8 to 15 bits. This affects all channels configured for PWM which are not
using 16-bit PWM mode. These bits are ignored for individual channels configured
to16-bit PWM mode.

000: 8 bits.
001: 9 bits.
010: 10 bits.

011: 11 bits.
100: 12 bits.
101: 13 bits.

110: 14 bits.
111: 15 bits.

C8051F80x-83x

249 Rev. 1.0

NOTES:

