E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	13
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-SOIC (0.154", 3.90mm Width)
Supplier Device Package	16-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f832-gs

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1.8. C8051F825, C8051F828, C8051F831, C8051F834 Block Diagram

5. **QSOP-24 Package Specifications**

Figure 5.1. QSOP-24 Package Drawing

Dimension	Min	Nom	Max		Dimension	Min	Nom	Мах
А	—	—	1.75		L	0.40	—	1.27
A1	0.10	—	0.25		L2	0.25 BSC		
b	0.20	—	0.30		θ	0°	—	8º
С	0.10	_	0.25		aaa	0.20		
D		8.65 BSC		1	bbb		0.18	
E		6.00 BSC			CCC		0.10	
E1	3.90 BSC				ddd		0.10	
е		0.635 BSC	;	1				

Table 5.1. QSOP-24 Package Dimensions

Notes:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

- 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
- 3. This drawing conforms to JEDEC outline MO-137, variation AE.
- Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Figure 5.2. QSOP-24 PCB Land Pattern

Table 5.2. QSOP-24 PCB Land Pattern Dimensions

Dimension	Min	Мах		
С	5.20	5.30		
E	0.635 BSC			
Х	0.30	0.40		
Y	1.50	1.60		

Notes: General

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This land pattern design is based on the IPC-7351 guidelines.

Solder Mask Design

3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad.

Stencil Design

- **4.** A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 5. The stencil thickness should be 0.125 mm (5 mils).
- 6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.

Card Assembly

- 7. A No-Clean, Type-3 solder paste is recommended.
- 8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

9. Temperature Sensor

An on-chip temperature sensor is included on the C8051F800/1/2/3/4/5, C8051F812/3/4/5/6/7, C8051F824/5/6, and C8051F830/1/2 which can be directly accessed via the ADC multiplexer in singleended configuration. To use the ADC to measure the temperature sensor, the ADC mux channel should be configured to connect to the temperature sensor. The temperature sensor transfer function is shown in Figure 9.1. The output voltage (V_{TEMP}) is the positive ADC input when the ADC multiplexer is set correctly. The TEMPE bit in register REF0CN enables/disables the temperature sensor, as described in SFR Definition 10.1. While disabled, the temperature sensor defaults to a high impedance state and any ADC measurements performed on the sensor will result in meaningless data. Refer to Table 7.11 for the slope and offset parameters of the temperature sensor.

Figure 9.1. Temperature Sensor Transfer Function

9.1. Calibration

The uncalibrated temperature sensor output is extremely linear and suitable for relative temperature measurements (see Table 5.1 for linearity specifications). For absolute temperature measurements, offset and/or gain calibration is recommended. Typically a 1-point (offset) calibration includes the following steps:

- 1. Control/measure the ambient temperature (this temperature must be known).
- 2. Power the device, and delay for a few seconds to allow for self-heating.
- 3. Perform an ADC conversion with the temperature sensor selected as the ADC's input.
- 4. Calculate the offset characteristics, and store this value in non-volatile memory for use with subsequent temperature sensor measurements.

Figure 5.3 shows the typical temperature sensor error assuming a 1-point calibration at 0 °C.

Parameters that affect ADC measurement, in particular the voltage reference value, will also affect temperature measurement.

10.1. External Voltage References

To use an external voltage reference, REFSL[1:0] should be set to 00. Bypass capacitors should be added as recommended by the manufacturer of the external voltage reference.

10.2. Internal Voltage Reference Options

A 1.65 V high-speed reference is included on-chip. The high speed internal reference is selected by setting REFSL[1:0] to 11. When selected, the high speed internal reference will be automatically enabled on an as-needed basis by ADC0.

For applications with a non-varying power supply voltage, using the power supply as the voltage reference can provide ADC0 with added dynamic range at the cost of reduced power supply noise rejection. To use the 1.8 to 3.6 V power supply voltage (V_{DD}) or the 1.8 V regulated digital supply voltage as the reference source, REFSL[1:0] should be set to 01 or 10, respectively.

10.3. Analog Ground Reference

To prevent ground noise generated by switching digital logic from affecting sensitive analog measurements, a separate analog ground reference option is available. When enabled, the ground reference for ADC0 is taken from the P0.1/AGND pin. Any external sensors sampled by ADC0 should be referenced to the P0.1/AGND pin. The separate analog ground reference option is enabled by setting REFGND to 1. Note that when using this option, P0.1/AGND must be connected to the same potential as GND.

10.4. Temperature Sensor Enable

The TEMPE bit in register REF0CN enables the temperature sensor. While disabled, the temperature sensor defaults to a high impedance state and any ADC0 measurements performed on the sensor result in meaningless data.

12. Comparator0

C8051F80x-83x devices include an on-chip programmable voltage comparator, Comparator0, shown in Figure 12.1.

The Comparator offers programmable response time and hysteresis, an analog input multiplexer, and two outputs that are optionally available at the Port pins: a synchronous "latched" output (CP0), or an asynchronous "raw" output (CP0A). The asynchronous CP0A signal is available even when the system clock is not active. This allows the Comparator to operate and generate an output with the device in STOP mode. When assigned to a Port pin, the Comparator output may be configured as open drain or push-pull (see Section "23.4. Port I/O Initialization" on page 147). Comparator0 may also be used as a reset source (see Section "21.5. Comparator0 Reset" on page 127).

The Comparator0 inputs are selected by the comparator input multiplexer, as detailed in Section "12.1. Comparator Multiplexer" on page 69.

Figure 12.1. Comparator0 Functional Block Diagram

The Comparator output can be polled in software, used as an interrupt source, and/or routed to a Port pin. When routed to a Port pin, the Comparator output is available asynchronous or synchronous to the system clock; the asynchronous output is available even in STOP mode (with no system clock active). When disabled, the Comparator output (if assigned to a Port I/O pin via the Crossbar) defaults to the logic low state, and the power supply to the comparator is turned off. See Section "23.3. Priority Crossbar Decoder" on page 143 for details on configuring Comparator outputs via the digital Crossbar. Comparator inputs can be externally driven from -0.25 V to (V_{DD}) + 0.25 V without damage or upset. The complete Comparator electrical specifications are given in Section "7. Electrical Characteristics" on page 39.

15. Memory Organization

The memory organization of the CIP-51 System Controller is similar to that of a standard 8051. There are two separate memory spaces: program memory and data memory. Program and data memory share the same address space but are accessed via different instruction types. The memory organization of the C8051F80x-83x device family is shown in Figure 15.1

Figure 15.1. C8051F80x-83x Memory Map

Table 17.2. Special Function Registers (Continued)

SFRs are listed in alphabetical order. All undefined SFR locations are reserved

Register	Address	Description	Page
P1MAT	0xED	P1 Match	152
P1MDIN	0xF2	Port 1 Input Mode Configuration	156
P1MDOUT	0xA5	Port 1 Output Mode Configuration	156
P1SKIP	0xD5	Port 1 Skip	157
P2	0xA0	Port 2 Latch	157
P2MDOUT	0xA6	Port 2 Output Mode Configuration	158
PCA0CN	0xD8	PCA Control	238
PCA0CPH0	0xFC	PCA Capture 0 High	243
PCA0CPH1	0xEA	PCA Capture 1 High	243
PCA0CPH2	0xEC	PCA Capture 2 High	243
PCA0CPL0	0xFB	PCA Capture 0 Low	243
PCA0CPL1	0xE9	PCA Capture 1 Low	243
PCA0CPL2	0xEB	PCA Capture 2 Low	243
PCA0CPM0	0xDA	PCA Module 0 Mode Register	241
PCA0CPM1	0xDB	PCA Module 1 Mode Register	241
PCA0CPM2	0xDC	PCA Module 2 Mode Register	241
PCA0H	0xFA	PCA Counter High	242
PCA0L	0xF9	PCA Counter Low	242
PCA0MD	0xD9	PCA Mode	239
PCA0PWM	0xF7	PCA PWM Configuration	240
PCON	0x87	Power Control	122
PSCTL	0x8F	Program Store R/W Control	118
PSW	0xD0	Program Status Word	91
REF0CN	0xD1	Voltage Reference Control	62
REG0CN	0xC9	Voltage Regulator Control	64
REVID	0xB6	Revision ID	96
RSTSRC	0xEF	Reset Source Configuration/Status	128

Table 17.2. Special Function Registers (Continued)

SFRs are listed in alphabetical order. All undefined SFR locations are reserved

Register	Address	Description	Page
SBUF0	0x99	UART0 Data Buffer	207
SCON0	0x98	UART0 Control	206
SMB0ADM	0xD6	SMBus Slave Address mask	191
SMB0ADR	0xD7	SMBus Slave Address	191
SMB0CF	0xC1	SMBus Configuration	186
SMB0CN	0xC0	SMBus Control	188
SMB0DAT	0xC2	SMBus Data	192
SP	0x81	Stack Pointer	89
SPI0CFG	0xA1	SPI0 Configuration	174
SPIOCKR	0xA2	SPI0 Clock Rate Control	176
SPIOCN	0xF8	SPI0 Control	175
SPIODAT	0xA3	SPI0 Data	176
TCON	0x88	Timer/Counter Control	215
TH0	0x8C	Timer/Counter 0 High	218
TH1	0x8D	Timer/Counter 1 High	218
TL0	0x8A	Timer/Counter 0 Low	217
TL1	0x8B	Timer/Counter 1 Low	217
TMOD	0x89	Timer/Counter Mode	216
TMR2CN	0xC8	Timer/Counter 2 Control	222
TMR2H	0xCD	Timer/Counter 2 High	224
TMR2L	0xCC	Timer/Counter 2 Low	224
TMR2RLH	0xCB	Timer/Counter 2 Reload High	223
TMR2RLL	0xCA	Timer/Counter 2 Reload Low	223
VDM0CN	0xFF	VDD Monitor Control	126
XBR0	0xE1	Port I/O Crossbar Control 0	148
XBR1	0xE2	Port I/O Crossbar Control 1	149
All other SFR Loc	ations	Reserved	

SFR Definition 19.2. FLKEY: Flash Lock and Key

Bit	7	6	5	4	3	2	1	0	
Name	FLKEY[7:0]								
Туре	R/W								
Reset	0	0	0	0	0	0	0	0	

SFR Address = 0xB7

Bit	Name	Function
7:0	FLKEY[7:0]	Flash Lock and Key Register.
		Write:
		This register provides a lock and key function for Flash erasures and writes. Flash writes and erases are enabled by writing 0xA5 followed by 0xF1 to the FLKEY register. Flash writes and erases are automatically disabled after the next write or erase is complete. If any writes to FLKEY are performed incorrectly, or if a Flash write or erase operation is attempted while these operations are disabled, the Flash will be permanently locked from writes or erasures until the next device reset. If an application never writes to Flash, it can intentionally lock the Flash by writing a non-0xA5 value to FLKEY from software
		Read:
		When read, bits 1–0 indicate the current Flash lock state.
		00: Flash is write/erase locked.
		01: The first key code has been written (0xA5).
		10: Flash is unlocked (writes/erases allowed).
		11: Flash writes/erases disabled until the next reset.

SFR Definition 24.2. CRC0IN: CRC Data Input

Bit	7	6	5	4	3	2	1	0
Name	CRC0IN[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xDD

Bit	Name	Function
7:0	CRC0IN[7:0]	CRC0 Data Input.
		Each write to CRC0IN results in the written data being computed into the existing CRC result according to the CRC algorithm described in Section 24.1

SFR Definition 24.3. CRC0DATA: CRC Data Output

Bit	7	6	5	4	3	2	1	0	
Name	CRC0DAT[7:0]								
Туре	R/W								
Reset	0	0	0	0	0	0	0	0	

SFR Address = 0xDE

Bit	Name	Function
7:0	CRC0DAT[7:0]	CRC0 Data Output.
		Each read or write performed on CRC0DAT targets the CRC result bits pointed to by the CRC0 Result Pointer (CRC0PNT bits in CRC0CN).

SFR Definition 25.2. SPI0CN: SPI0 Control

Bit	7	6	5	4	3	2	1	0
Name	SPIF	WCOL	MODF	RXOVRN	NSSMD[1:0]		TXBMT	SPIEN
Туре	R/W	R/W	R/W	R/W	R/W		R	R/W
Reset	0	0	0	0	0	1	1	0

SFR Address = 0xF8; Bit-Addressable

Bit	Name	Function
7	SPIF	SPI0 Interrupt Flag.
		This bit is set to logic 1 by hardware at the end of a data transfer. If SPI interrupts are enabled, an interrupt will be generated. This bit is not automatically cleared by hardware, and must be cleared by software.
6	WCOL	Write Collision Flag.
		This bit is set to logic 1 if a write to SPI0DAT is attempted when TXBMT is 0. When this occurs, the write to SPI0DAT will be ignored, and the transmit buffer will not be written. If SPI interrupts are enabled, an interrupt will be generated. This bit is not automatically cleared by hardware, and must be cleared by software.
5	MODF	Mode Fault Flag.
		This bit is set to logic 1 by hardware when a master mode collision is detected (NSS is low, $MSTEN = 1$, and $NSSMD[1:0] = 01$). If SPI interrupts are enabled, an interrupt will be generated. This bit is not automatically cleared by hardware, and must be cleared by software.
4	RXOVRN	Receive Overrun Flag (valid in slave mode only).
		This bit is set to logic 1 by hardware when the receive buffer still holds unread data from a previous transfer and the last bit of the current transfer is shifted into the SPI0 shift register. If SPI interrupts are enabled, an interrupt will be generated. This bit is not automatically cleared by hardware, and must be cleared by software.
3:2	NSSMD[1:0]	Slave Select Mode.
		Selects between the following NSS operation modes: (See Section 25.2 and Section 25.3). 00: 3-Wire Slave or 3-Wire Master Mode. NSS signal is not routed to a port pin. 01: 4-Wire Slave or Multi-Master Mode (Default). NSS is an input to the device. 1x: 4-Wire Single-Master Mode. NSS signal is mapped as an output from the device and will assume the value of NSSMD0.
1	TXBMT	Transmit Buffer Empty.
		This bit will be set to logic 0 when new data has been written to the transmit buffer. When data in the transmit buffer is transferred to the SPI shift register, this bit will be set to logic 1, indicating that it is safe to write a new byte to the transmit buffer.
0	SPIEN	SPI0 Enable.
		0: SPI disabled. 1: SPI enabled.

SFR Definition 26.3. SMB0ADR: SMBus Slave Address

Bit	7	6	5	4	3	2	1	0	
Name	SLV[6:0]								
Туре	R/W								
Reset	0	0	0	0	0	0	0	0	

SFR Address = 0xD7

Bit	Name	Function
7:1	SLV[6:0]	SMBus Hardware Slave Address.
		Defines the SMBus Slave Address(es) for automatic hardware acknowledgement. Only address bits which have a 1 in the corresponding bit position in SLVM[6:0] are checked against the incoming address. This allows multiple addresses to be recognized.
0	GC	General Call Address Enable.
		 When hardware address recognition is enabled (EHACK = 1), this bit will determine whether the General Call Address (0x00) is also recognized by hardware. 0: General Call Address is ignored. 1: General Call Address is recognized.

SFR Definition 26.4. SMB0ADM: SMBus Slave Address Mask

Bit	7	6	5	4	3	2	1	0		
Name	SLVM[6:0]									
Туре	R/W									
Reset	1	1	1	1	1	1	1	0		

SFR Address = 0xD6

Bit	Name	Function
7:1	SLVM[6:0]	SMBus Slave Address Mask.
		Defines which bits of register SMB0ADR are compared with an incoming address byte, and which bits are ignored. Any bit set to 1 in SLVM[6:0] enables comparisons with the corresponding bit in SLV[6:0]. Bits set to 0 are ignored (can be either 0 or 1 in the incoming address).
0	EHACK	Hardware Acknowledge Enable.
		Enables hardware acknowledgement of slave address and received data bytes. 0: Firmware must manually acknowledge all incoming address and data bytes. 1: Automatic Slave Address Recognition and Hardware Acknowledge is Enabled.

 Table 26.5. SMBus Status Decoding With Hardware ACK Generation Disabled (EHACK = 0)

	Valu	es I	Rea	d			Val V	lues Vrit	e to	tus ected
Mode	Status Vector	ACKRQ	ARBLOST	ACK	Current SMbus State	Typical Response Options	STA	STO	ACK	Next Sta Vector Exp
	1110	0	0	Х	A master START was gener- ated.	Load slave address + R/W into SMB0DAT.	0	0	Х	1100
					A master data or address byte	Set STA to restart transfer.	1	0	Х	1110
tter		0	0	0	was transmitted; NACK received.	Abort transfer.	0	1	Х	—
insmit						Load next data byte into SMB0DAT.	0	0	Х	1100
Tra	1100					End transfer with STOP.	0	1	Х	—
laster	1100	0	0	1	A master data or address byte was transmitted; ACK	End transfer with STOP and start another transfer.	1	1	Х	—
2					received.	Send repeated START.	1	0	Х	1110
						Switch to Master Receiver Mode (clear SI without writing new data to SMB0DAT).	0	0	Х	1000
						Acknowledge received byte; Read SMB0DAT.	0	0	1	1000
						Send NACK to indicate last byte, and send STOP.	0	1	0	—
iver						Send NACK to indicate last byte, and send STOP followed by START.	1	1	0	1110
Recei	1000	1	0	x	A master data byte was	Send ACK followed by repeated START.	1	0	1	1110
Aaster						Send NACK to indicate last byte, and send repeated START.	1	0	0	1110
~						Send ACK and switch to Master Transmitter Mode (write to SMB0DAT before clearing SI).	0	0	1	1100
						Send NACK and switch to Mas- ter Transmitter Mode (write to SMB0DAT before clearing SI).	0	0	0	1100

27.2. Operational Modes

UART0 provides standard asynchronous, full duplex communication. The UART mode (8-bit or 9-bit) is selected by the S0MODE bit (SCON0.7). Typical UART connection options are shown in Figure 27.3.

Figure 27.3. UART Interconnect Diagram

27.2.1. 8-Bit UART

8-Bit UART mode uses a total of 10 bits per data byte: one start bit, eight data bits (LSB first), and one stop bit. Data are transmitted LSB first from the TX0 pin and received at the RX0 pin. On receive, the eight data bits are stored in SBUF0 and the stop bit goes into RB80 (SCON0.2).

Data transmission begins when software writes a data byte to the SBUF0 register. The TI0 Transmit Interrupt Flag (SCON0.1) is set at the end of the transmission (the beginning of the stop-bit time). Data reception can begin any time after the REN0 Receive Enable bit (SCON0.4) is set to logic 1. After the stop bit is received, the data byte will be loaded into the SBUF0 receive register if the following conditions are met: RI0 must be logic 0, and if MCE0 is logic 1, the stop bit must be logic 1. In the event of a receive data overrun, the first received 8 bits are latched into the SBUF0 receive register and the following overrun data bits are lost.

If these conditions are met, the eight bits of data is stored in SBUF0, the stop bit is stored in RB80 and the RI0 flag is set. If these conditions are not met, SBUF0 and RB80 will not be loaded and the RI0 flag will not be set. An interrupt will occur if enabled when either TI0 or RI0 is set.

Figure 27.4. 8-Bit UART Timing Diagram

27.3. Multiprocessor Communications

9-Bit UART mode supports multiprocessor communication between a master processor and one or more slave processors by special use of the ninth data bit. When a master processor wants to transmit to one or more slaves, it first sends an address byte to select the target(s). An address byte differs from a data byte in that its ninth bit is logic 1; in a data byte, the ninth bit is always set to logic 0.

Setting the MCE0 bit (SCON0.5) of a slave processor configures its UART such that when a stop bit is received, the UART will generate an interrupt only if the ninth bit is logic 1 (RB80 = 1) signifying an address byte has been received. In the UART interrupt handler, software will compare the received address with the slave's own assigned 8-bit address. If the addresses match, the slave will clear its MCE0 bit to enable interrupts on the reception of the following data byte(s). Slaves that weren't addressed leave their MCE0 bits set and do not generate interrupts on the reception of the following data byte(s) addressed slave resets its MCE0 bit to ignore all transmissions until it receives the next address byte.

Multiple addresses can be assigned to a single slave and/or a single address can be assigned to multiple slaves, thereby enabling "broadcast" transmissions to more than one slave simultaneously. The master processor can be configured to receive all transmissions or a protocol can be implemented such that the master/slave role is temporarily reversed to enable half-duplex transmission between the original master and slave(s).

Figure 27.6. UART Multi-Processor Mode Interconnect Diagram

SFR Definition 28.2. TCON: Timer Control

Bit	7	6	5	4	3	2	1	0				
Name	e TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0				
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Rese	t 0	0	0	0	0	0	0	0				
SFR A	ddress = 0x8	38: Bit-Addres	sable									
Bit	Name				Function							
7	TF1	Timer 1 Ov	erflow Flag									
		Set to 1 by but is autom routine.	hardware wh natically clea	nen Timer 1 red when th	overflows. T e CPU vecto	his flag can t ors to the Tim	be cleared by her 1 interrup	y software ot service				
6	TR1	Timer 1 Ru	n Control.									
		Timer 1 is e	Timer 1 is enabled by setting this bit to 1.									
5	TF0	Timer 0 Ov	Timer 0 Overflow Flag.									
		Set to 1 by hardware when Timer 0 overflows. This flag can be cleared by software but is automatically cleared when the CPU vectors to the Timer 0 interrupt service routine.										
4	TR0	Timer 0 Ru	n Control.									
		Timer 0 is e	nabled by se	etting this bit	to 1.							
3	IE1	External In	terrupt 1.									
		This flag is s can be clea External Inte	set by hardw red by softwa errupt 1 serv	are when ar are but is au rice routine i	n edge/level tomatically o n edge-trigg	of type defin cleared when ered mode.	ed by IT1 is the CPU ve	detected. It ctors to the				
2	IT1	Interrupt 1	Type Select									
		This bit selects whether the configured /INT1 interrupt will be edge or level sensitive. /INT1 is configured active low or high by the IN1PL bit in the IT01CF register (see SFR Definition 18.7). 0: /INT1 is level triggered. 1: /INT1 is edge triggered.										
1	IE0	External In	terrupt 0.									
		This flag is a can be clea	set by hardw red by softwa errupt 0 serv	are when ar are but is au rice routine i	n edge/level tomatically c n edge-trigg	of type defin cleared when ered mode.	ed by IT1 is the CPU ve	detected. It ctors to the				
0	IT0	Interrupt 0	Type Select	-								

 This bit selects whether the configured INT0 interrupt will be edge or level sensitive.

 INT0 is configured active low or high by the IN0PL bit in register IT01CF (see SFR Definition 18.7).

 0: INT0 is level triggered.

 1: INT0 is edge triggered.

SFR Definition 28.11. TMR2L: Timer 2 Low Byte

Bit	7	6	5	4	3	2	1	0		
Name	TMR2L[7:0]									
Туре	R/W									
Reset	0 0 0 0 0 0 0 0									
SER Ad										

• • • • •									
Bit	Name	Function							
7:0	TMR2L[7:0]	Timer 2 Low Byte.							
		In 16-bit mode, the TMR2L register contains the low byte of the 16-bit Timer 2. In 8- bit mode, TMR2L contains the 8-bit low byte timer value.							

SFR Definition 28.12. TMR2H Timer 2 High Byte

Bit	7	6	5	4	3	2	1	0	
Name	TMR2H[7:0]								
Туре	R/W								
Reset	0	0	0	0	0	0	0	0	

SFR Address = 0xCD

Bit	Name	Function
7:0	TMR2H[7:0]	Timer 2 Low Byte.
		In 16-bit mode, the TMR2H register contains the high byte of the 16-bit Timer 2. In 8- bit mode, TMR2H contains the 8-bit high byte timer value.

29.3.1. Edge-Triggered Capture Mode

In this mode, a valid transition on the CEXn pin causes the PCA to capture the value of the PCA counter/timer and load it into the corresponding module's 16-bit capture/compare register (PCA0CPLn and PCA0CPHn). The CAPPn and CAPNn bits in the PCA0CPMn register are used to select the type of transition that triggers the capture: low-to-high transition (positive edge), high-to-low transition (negative edge), or either transition (positive or negative edge). When a capture occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1. An interrupt request is generated if the CCFn interrupt for that module is enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. If both CAPPn and CAPNn bits are set to logic 1, then the state of the Port pin associated with CEXn can be read directly to determine whether a rising-edge or fall-ing-edge caused the capture.

Figure 29.4. PCA Capture Mode Diagram

Note: The CEXn input signal must remain high or low for at least 2 system clock cycles to be recognized by the hardware.

SFR Definition 29.5. PCA0L: PCA0 Counter/Timer Low Byte

Bit	7	6	5	4	3	2	1	0
Name				PCA	0[7:0]			
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xF9

Bit	Name	Function			
7:0	PCA0[7:0]	PCA Counter/Timer Low Byte.			
		The PCA0L register holds the low byte (LSB) of the 16-bit PCA Counter/Timer.			
Note:	When the WDTE bit is set to 1, the PCA0L register cannot be modified by software. To change the contents o the PCA0L register, the Watchdog Timer must first be disabled.				

SFR Definition 29.6. PCA0H: PCA0 Counter/Timer High Byte

Bit	7	6	5	4	3	2	1	0
Name	PCA0[15:8]							
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xFA

Bit	Name	Function				
7:0	PCA0[15:8]	PCA Counter/Timer High Byte.				
		The PCA0H register holds the high byte (MSB) of the 16-bit PCA Counter/Timer. Reads of this register will read the contents of a "snapshot" register, whose contents are updated only when the contents of PCA0L are read (see Section 29.1).				
Note:	When the WDTE bit is set to 1, the PCA0H register cannot be modified by software. To change the contents of the PCA0H register, the Watchdog Timer must first be disabled.					

