E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I²C), SPI, UART/USART
Peripherals	Cap Sense, POR, PWM, WDT
Number of I/O	13
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-SOIC (0.154", 3.90mm Width)
Supplier Device Package	16-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f834-gsr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1. System Overview	15
2. Ordering Information	25
3. Pin Definitions	28
4. QFN-20 Package Specifications	33
5. QSOP-24 Package Specifications	35
6. SOIC-16 Package Specifications	37
7. Electrical Characteristics	39
7.1. Absolute Maximum Specifications	39
7.2. Electrical Characteristics	40
8. 10-Bit ADC (ADC0)	46
8.1. Output Code Formatting	47
8.2. 8-Bit Mode	47
8.3. Modes of Operation	47
8.3.1. Starting a Conversion	47
8.3.2. Tracking Modes	48
8.3.3. Settling Time Requirements	49
8.4. Programmable Window Detector	53
8.4.1. Window Detector Example	55
8.5. ADC0 Analog Multiplexer	56
9. Temperature Sensor	58
9.1. Calibration	58
10. Voltage and Ground Reference Options	60
10.1. External Voltage References	61
10.2. Internal Voltage Reference Options	61
10.3. Analog Ground Reference	61
10.4. Temperature Sensor Enable	61
11. Voltage Regulator (REG0)	63
12. Comparator0	65
12.1. Comparator Multiplexer	69
13. Capacitive Sense (CS0)	71
13.1. Configuring Port Pins as Capacitive Sense Inputs	72
13.2. Capacitive Sense Start-Of-Conversion Sources	72
13.3. Automatic Scanning	72
13.4. CS0 Comparator	73
13.5. CS0 Conversion Accumulator	74
13.6. Capacitive Sense Multiplexer	80
14. CIP-51 Microcontroller	82
14.1. Instruction Set	83
14.1.1. Instruction and CPU Timing	83
14.2. CIP-51 Register Descriptions	88
15. Memory Organization	92
15.1. Program Memory	93
15.1.1. MOVX Instruction and Program Memory	93

	Figure 13.1. CS0 Block Diagram71
	Figure 13.2. Auto-Scan Example73
	Figure 13.3. CS0 Multiplexer Block Diagram 80
14.	CIP-51 Microcontroller
	Figure 14.1. CIP-51 Block Diagram 82
15.	Memory Organization
I	Figure 15.1. C8051F80x-83x Memory Map 92
I	Figure 15.2. Flash Program Memory Map
16.	In-System Device Identification
17.	Special Function Registers
18.	Interrupts
19.	Flash Memory
20.	Power Management Modes
21.	Reset Sources
l	Figure 21.1. Reset Sources 123
I	Figure 21.2. Power-On and VDD Monitor Reset Timing 124
22.	Oscillators and Clock Selection
	Figure 22.1. Oscillator Options 129
	Figure 22.2. External 32.768 kHz Quartz Crystal Oscillator Connection Diagram 136
23.	Port Input/Output
l	Figure 23.1. Port I/O Functional Block Diagram
l	Figure 23.2. Port I/O Cell Block Diagram
	Figure 23.3. Port I/O Overdrive Current
	Figure 23.4. Priority Crossbar Decoder Potential Pin Assignments
l	Figure 23.5. Priority Crossbar Decoder Example 1—No Skipped Pins
	Figure 23.6. Priority Crossbar Decoder Example 2—Skipping Pins
24.	Cyclic Redundancy Check Unit (CRC0)
25	Figure 24.1. CRC0 Block Diagram
25.	Ennanced Serial Peripheral Interface (SPIU)
1	Figure 25.1. SPI Block Diagram
1	Figure 25.2. Multiple-Master Mode Connection Diagram
	169
I	Figure 25.4. 4-Wire Single Master Mode and 4-Wire Slave Mode Connection Diagram 170
I	Figure 25.5. Master Mode Data/Clock Timing 172
I	Figure 25.6. Slave Mode Data/Clock Timing (CKPHA = 0) 172
I	Figure 25.7. Slave Mode Data/Clock Timing (CKPHA = 1) 173
I	Figure 25.8. SPI Master Timing (CKPHA = 0) 177
	Figure 25.9. SPI Master Timing (CKPHA = 1) 177
I	Figure 25.10. SPI Slave Timing (CKPHA = 0)
I	Figure 25.11. SPI Slave Timing (CKPHA = 1) 178
26.	SMBus
I	Figure 26.1. SMBus Block Diagram
	Figure 26.2. Typical SMBus Configuration

Figure 26.3. SMBus Transaction 182 Figure 26.4. Typical SMBus SCL Generation 184 Figure 26.5. Typical Master Write Sequence 193 Figure 26.6. Typical Master Read Sequence 194 Figure 26.7. Typical Slave Write Sequence 194 Figure 26.8. Typical Slave Read Sequence 194 Figure 26.8. Typical Slave Read Sequence 194
Figure 27.1. UARTO Block Diagram
Figure 27.2. UARTO Baud Rate Logic 202
Figure 27.3. UAR I Interconnect Diagram
Figure 27.4. 8-Bit UART Timing Diagram 203
Figure 27.5. 9-Bit UART Timing Diagram 204
Figure 27.6. UAR I Multi-Processor Mode Interconnect Diagram
28. Timers
Figure 28.1. T0 Mode 0 Block Diagram 212
Figure 28.2. T0 Mode 2 Block Diagram 21:
Figure 28.3. T0 Mode 3 Block Diagram 214
Figure 28.4. Timer 2 16-Bit Mode Block Diagram 219
Figure 28.5. Timer 2 8-Bit Mode Block Diagram 220
29. Programmable Counter Array
Figure 29.1. PCA Block Diagram 22
Figure 29.2. PCA Counter/Timer Block Diagram 220
Figure 29.3. PCA Interrupt Block Diagram 22
Figure 29.4. PCA Capture Mode Diagram 229
Figure 29.5. PCA Software Timer Mode Diagram 230
Figure 29.6. PCA High-Speed Output Mode Diagram 23
Figure 29.7. PCA Frequency Output Mode 232
Figure 29.8. PCA 8-Bit PWM Mode Diagram 233
Figure 29.9. PCA 9-bit through 15-Bit PWM Mode Diagram 234
Figure 29.10. PCA 16-Bit PWM Mode 23
Figure 29.11. PCA Module 2 with Watchdog Timer Enabled 230
30. C2 Interface
Figure 30.1. Typical C2 Pin Sharing 24

Figure 4.2. QFN-20 Recommended PCB Land Pattern

Dimension	Min	Max		
C1	3.	70		
C2	3.70			
E	0.:	50		
X1	0.20	0.30		

Dimension	Min	Max
X2	2.15	2.25
Y1	0.90	1.00
Y2	2.15	2.25

Notes:

General

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.
- 3. This Land Pattern Design is based on the IPC-7351 guidelines.

Solder Mask Design

4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad.

Stencil Design

- 5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 6. The stencil thickness should be 0.125 mm (5 mils).
- 7. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pins.
- **8.** A 2x2 array of 0.95 mm openings on a 1.1 mm pitch should be used for the center pad to assure the proper paste volume.

Card Assembly

- **9.** A No-Clean, Type-3 solder paste is recommended.
- **10.** The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Table 7.9. ADC0 Electrical Characteristics

 V_{DD} = 3.0 V, VREF = 2.40 V (REFSL=0), –40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units			
DC Accuracy								
Resolution			10		bits			
Integral Nonlinearity			±0.5	±1	LSB			
Differential Nonlinearity	Guaranteed Monotonic		±0.5	±1	LSB			
Offset Error		-2	0	2	LSB			
Full Scale Error		-2	0	2	LSB			
Offset Temperature Coefficient			45		ppm/°C			
Dynamic performance (10 kHz ६	sine-wave single-ended input	t, 1 dB belo	w Full Sc	ale, 200:	ksps)			
Signal-to-Noise Plus Distortion		54	60		dB			
Total Harmonic Distortion	Up to the 5th harmonic		75		dB			
Spurious-Free Dynamic Range			-90		dB			
Conversion Rate	<u> </u>							
SAR Conversion Clock	1		—	8.33	MHz			
Conversion Time in SAR Clocks	10-bit Mode	13	—		clocks			
	8-bit Mode	11	—	_	clocks			
Track/Hold Acquisition Time	V _{DD} >= 2.0 V	300	—		ns			
	V _{DD} < 2.0 V	2.0	—	—	μs			
Throughput Rate		_	—	500	ksps			
Analog Inputs	<u> </u>							
ADC Input Voltage Range	1	0	—	VREF	V			
Sampling Capacitance	1x Gain		5		pF			
	0.5x Gain	_	3	—	pF			
Input Multiplexer Impedance			5		kΩ			
Power Specifications	<u> </u>		L	. <u> </u>				
Power Supply Current	Operating Mode, 500 ksps		630	1000	μA			
Power Supply Rejection			-70		dB			

Table 7.10. Power Management Electrical Characteristics

 V_{DD} = 1.8 to 3.6 V; T_A = -40 to +85 °C unless otherwise specified. Use factory-calibrated settings.

Parameter	Conditions	Min	Тур	Max	Units
Idle Mode Wake-Up Time		2		3	SYSCLKs
Suspend Mode Wake-up Time		_	500		ns

Table 7.11. Temperature Sensor Electrical Characteristics

 V_{DD} = 3.0 V, -40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units	
Linearity	1	[_ '	1	[_]	°C	
Slope		[2.43		mV/°C	
Slope Error*	1	[±45		µV/°C	
Offset	Temp = 0 °C	['	873		mV	
Offset Error*	Temp = 0 °C	[14.5		mV	
*Note: Represents one standard deviation from the mean.						

Table 7.12. Voltage Reference Electrical Characteristics

 V_{DD} = 1.8 to 3.6 V; -40 to +85 °C unless otherwise specified.

arameter Conditions			Тур	Max	Units			
In	Internal High Speed Reference (REFSL[1:0] = 11)							
Output Voltage	25 °C ambient	1.55	1.65	1.75	V			
Turn-on Time		—	_	1.7	μs			
Supply Current		—	180	_	μA			
External Reference (REF0E = 0)								
Input Voltage Range		0	_	V _{DD}				
Input Current	Sample Rate = 500 ksps; VREF = 3.0 V		7	_	μA			

Figure 13.2. Auto-Scan Example

13.4. CS0 Comparator

The CS0 comparator compares the latest capacitive sense conversion result with the value stored in CS0THH:CS0THL. If the result is less than or equal to the stored value, the CS0CMPF bit(CS0CN:0) is set to 0. If the result is greater than the stored value, CS0CMPF is set to 1.

If the CS0 conversion accumulator is configured to accumulate multiple conversions, a comparison will not be made until the last conversion has been accumulated.

An interrupt will be generated if CS0 greater-than comparator interrupts are enabled by setting the ECS-GRT bit (EIE2.1) when the comparator sets CS0CMPF to 1.

If auto-scan is running when the comparator sets the CS0CMPF bit, no further auto-scan initiated conversions will start until firmware sets CS0BUSY to 1.

A CS0 greater-than comparator event can wake a device from suspend mode. This feature is useful in systems configured to continuously sample one or more capacitive sense channels. The device will remain in the low-power suspend state until the captured value of one of the scanned channels causes a CS0 greater-than comparator event to occur. It is not necessary to have CS0 comparator interrupts enabled in order to wake a device from suspend with a greater-than event.

Note: On waking from suspend mode due to a CS0 greater-than comparator event, the CS0CN register should be accessed only after at least two system clock cycles have elapsed.

For a summary of behavior with different CS0 comparator, auto-scan, and auto accumulator settings, please see Table 13.1.

Table 17.2. Special Function Registers (Continued)

SFRs are listed in alphabetical order. All undefined SFR locations are reserved

Register	Address	Description	Page
SBUF0	0x99	UART0 Data Buffer	207
SCON0	0x98	UART0 Control	206
SMB0ADM	0xD6	SMBus Slave Address mask	191
SMB0ADR	0xD7	SMBus Slave Address	191
SMB0CF	0xC1	SMBus Configuration	186
SMB0CN	0xC0	SMBus Control	188
SMB0DAT	0xC2	SMBus Data	192
SP	0x81	Stack Pointer	89
SPI0CFG	0xA1	SPI0 Configuration	174
SPIOCKR	0xA2	SPI0 Clock Rate Control	176
SPIOCN	0xF8	SPI0 Control	175
SPIODAT	0xA3	SPI0 Data	176
TCON	0x88	Timer/Counter Control	215
TH0	0x8C	Timer/Counter 0 High	218
TH1	0x8D	Timer/Counter 1 High	218
TL0	0x8A	Timer/Counter 0 Low	217
TL1	0x8B	Timer/Counter 1 Low	217
TMOD	0x89	Timer/Counter Mode	216
TMR2CN	0xC8	Timer/Counter 2 Control	222
TMR2H	0xCD	Timer/Counter 2 High	224
TMR2L	0xCC	Timer/Counter 2 Low	224
TMR2RLH	0xCB	Timer/Counter 2 Reload High	223
TMR2RLL	0xCA	Timer/Counter 2 Reload Low	223
VDM0CN	0xFF	VDD Monitor Control	126
XBR0	0xE1	Port I/O Crossbar Control 0	148
XBR1	0xE2	Port I/O Crossbar Control 1	149
All other SFR Loc	ations	Reserved	

18.3. INTO and INT1 External Interrupts

The INTO and INT1 external interrupt sources are configurable as active high or low, edge or level sensitive. The INOPL (INTO Polarity) and IN1PL (INT1 Polarity) bits in the IT01CF register select active high or active low; the IT0 and IT1 bits in TCON (Section "28.1. Timer 0 and Timer 1" on page 211) select level or edge sensitive. The table below lists the possible configurations.

IT0	IN0PL	INT0 Interrupt			
1	0	Active low, edge sensitive			
1	1	Active high, edge sensitive			
0	0	Active low, level sensitive			
0	1	Active high, level sensitive			

IT1	IN1PL	INT1 Interrupt
1	0	Active low, edge sensitive
1	1	Active high, edge sensitive
0	0	Active low, level sensitive
0	1	Active high, level sensitive

INT0 and INT1 are assigned to Port pins as defined in the IT01CF register (see SFR Definition 18.7). Note that INT0 and INT0 Port pin assignments are independent of any Crossbar assignments. INT0 and INT1 will monitor their assigned Port pins without disturbing the peripheral that was assigned the Port pin via the Crossbar. To assign a Port pin only to INT0 and/or INT1, configure the Crossbar to skip the selected pin(s). This is accomplished by setting the associated bit in register XBR0 (see Section "23.3. Priority Crossbar Decoder" on page 143 for complete details on configuring the Crossbar).

IE0 (TCON.1) and IE1 (TCON.3) serve as the interrupt-pending flags for the INT0 and INT1 external interrupts, respectively. If an INT0 or INT1 external interrupt is configured as edge-sensitive, the corresponding interrupt-pending flag is automatically cleared by the hardware when the CPU vectors to the ISR. When configured as level sensitive, the interrupt-pending flag remains logic 1 while the input is active as defined by the corresponding polarity bit (IN0PL or IN1PL); the flag remains logic 0 while the input is inactive. The external interrupt source must hold the input active until the interrupt request is recognized. It must then deactivate the interrupt request before execution of the ISR completes or another interrupt request will be generated.

21. Reset Sources

Reset circuitry allows the controller to be easily placed in a predefined default condition. On entry to this reset state, the following occur:

- CIP-51 halts program execution
- Special Function Registers (SFRs) are initialized to their defined reset values
- External Port pins are forced to a known state
- Interrupts and timers are disabled.

All SFRs are reset to the predefined values noted in the SFR detailed descriptions. The contents of internal data memory are unaffected during a reset; any previously stored data is preserved. However, since the stack pointer SFR is reset, the stack is effectively lost, even though the data on the stack is not altered.

The Port I/O latches are reset to 0xFF (all logic ones) in open-drain mode. Weak pullups are enabled during and after the reset. For V_{DD} Monitor and power-on resets, the \overrightarrow{RST} pin is driven low until the device exits the reset state.

On exit from the reset state, the program counter (PC) is reset, and the system clock defaults to the internal oscillator. The Watchdog Timer is enabled with the system clock divided by 12 as its clock source. Program execution begins at location 0x0000.

Figure 21.1. Reset Sources

SFR Definition 21.1. VDM0CN: V_{DD} Monitor Control

Bit	7	6	5	4	3	2	1	0
Name	VDMEN	VDDSTAT						
Туре	R/W	R	R	R	R	R	R	R
Reset	Varies	Varies	Varies	Varies	Varies	Varies	Varies	Varies

SFR Address = 0xFF

Bit	Name	Function
7	VDMEN	V _{DD} Monitor Enable.
		This bit turns the V _{DD} monitor circuit on/off. The V _{DD} Monitor cannot generate system resets until it is also selected as a reset source in register RSTSRC (SFR Definition 21.2). Selecting the V _{DD} monitor as a reset source before it has stabilized may generate a system reset. In systems where this reset would be undesirable, a delay should be introduced between enabling the V _{DD} Monitor and selecting it as a reset source. After a power-on reset, the VDD monitor is enabled, and this bit will read 1. The state of this bit is sticky through any other reset source. 0: V _{DD} Monitor Disabled. 1: V _{DD} Monitor Enabled.
6	VDDSTAT	V _{DD} Status.
		This bit indicates the current power supply status (V_{DD} Monitor output). 0: V_{DD} is at or below the V_{DD} monitor threshold. 1: V_{DD} is above the V_{DD} monitor threshold.
5:0	Unused	Read = Varies; Write = Don't care.

21.3. External Reset

The external RST pin provides a means for external circuitry to force the device into a reset state. Asserting an active-low signal on the RST pin generates a reset; an external pullup and/or decoupling of the RST pin may be necessary to avoid erroneous noise-induced resets. See Section "7. Electrical Characteristics" on page 39 for complete RST pin specifications. The PINRSF flag (RSTSRC.0) is set on exit from an external reset.

21.4. Missing Clock Detector Reset

The Missing Clock Detector (MCD) is a one-shot circuit that is triggered by the system clock. If the system clock remains high or low for more than the MCD timeout, the one-shot will time out and generate a reset. After a MCD reset, the MCDRSF flag (RSTSRC.2) will read 1, signifying the MCD as the reset source; otherwise, this bit reads 0. Writing a 1 to the MCDRSF bit enables the Missing Clock Detector; writing a 0 disables it. The state of the RST pin is unaffected by this reset.

SFR Definition 21.2. RSTSRC: Reset Source

Bit	7	6 5		4	3	2	1	0	
Name		FERROR	C0RSEF	SWRSF	WDTRSF	MCDRSF	PORSF	PINRSF	
Туре	R	R	R/W	R/W	R	R/W	R/W	R	
Reset	0	Varies							

SFR Address = 0xEF

Bit	Name	Description	Write	Read
7	Unused	Unused.	Don't care.	0
6	FERROR	Flash Error Reset Flag.	N/A	Set to 1 if Flash read/write/erase error caused the last reset.
5	CORSEF	Comparator0 Reset Enable and Flag.	Writing a 1 enables Comparator0 as a reset source (active-low).	Set to 1 if Comparator0 caused the last reset.
4	SWRSF	Software Reset Force and Flag.	Writing a 1 forces a system reset.	Set to 1 if last reset was caused by a write to SWRSF.
3	WDTRSF	Watchdog Timer Reset Flag.	N/A	Set to 1 if Watchdog Timer overflow caused the last reset.
2	MCDRSF	Missing Clock Detector Enable and Flag.	Writing a 1 enables the Missing Clock Detector. The MCD triggers a reset if a missing clock condition is detected.	Set to 1 if Missing Clock Detector timeout caused the last reset.
1	PORSF	Power-On / V _{DD} Monitor Reset Flag, and V _{DD} monitor Reset Enable.	Writing a 1 enables the V_{DD} monitor as a reset source. Writing 1 to this bit before the V_{DD} monitor is enabled and stabilized may cause a system reset.	Set to 1 anytime a power- on or V _{DD} monitor reset occurs. When set to 1 all other RSTSRC flags are inde- terminate.
0	PINRSF	HW Pin Reset Flag.	N/A	Set to 1 if RST pin caused the last reset.
Note:	Do not use	read-modify-write operations on this	s register	1

22.2. Programmable Internal High-Frequency (H-F) Oscillator

All C8051F80x-83x devices include a programmable internal high-frequency oscillator that defaults as the system clock after a system reset. The internal oscillator period can be adjusted via the OSCICL register as defined by SFR Definition 22.2.

On C8051F80x-83x devices, OSCICL is factory calibrated to obtain a 24.5 MHz base frequency.

The internal oscillator output frequency may be divided by 1, 2, 4, or 8, as defined by the IFCN bits in register OSCICN. The divide value defaults to 8 following a reset.

The precision oscillator supports a spread spectrum mode which modulates the output frequency in order to reduce the EMI generated by the system. When enabled (SSE = 1), the oscillator output frequency is modulated by a stepped triangle wave whose frequency is equal to the oscillator frequency divided by 384 (63.8 kHz using the factory calibration). The maximum deviation from the center frequency is $\pm 0.75\%$. The output frequency updates occur every 32 cycles and the step size is typically 0.25% of the center frequency.

SFR Definition 22.2. OSCICL: Internal H-F Oscillator Calibration

Bit	7	6	5	4	3	2	1	0				
Name	OSCICL[6:0]											
Туре	R/W											
Reset	Varies	Varies Varies Varies Varies Varies Varies Varies										

SFR Address = 0xB3

Bit	Name	Function
6:0	OSCICL[7:0]	Internal Oscillator Calibration Bits.
		These bits determine the internal oscillator period. When set to 00000000b, the H-F oscillator operates at its fastest setting. When set to 1111111b, the H-F oscillator operates at its slowest setting. The reset value is factory calibrated to generate an internal oscillator frequency of 24.5 MHz.

Port				Ρ	0							Ρ	1				P2
Pin Number	0	1	2	3	4	5	6	7	0	1	2	3	4 ¹	5 ¹	6 ¹	7 ¹	0
Special Function Signals	VREF	AGND	XTAL1	XTAL2			CNVSTR										
TX0																	† I
RX0																	
SCK																	
MISO																	ar
MOSI																	ssk
NSS ²																	5 U
SDA																	5 to
SCL																	able
CP0																	vail:
CP0A																	Jna
SYSCLK																	al
CEX0																	ign
CEX1																	0
CEX2																	
ECI																	
TO																	
T1																	
Pin Skip	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Settings				P0S	SKIF)						P1S	KIF)			
In this exampl RX0 signals, t signals are as using the P0S These boy in this configu	le, ti the ssigr SKIP kes ratio	he c SPI ned or or repi	ros sigi as i P1S	sba nals mult SKIF ent t	r is (, an iple P reg he p	con d th sig giste	figui ie P nals ers. pins	red CA s, ar s wh	to a sigr nd th nich	ssig nals nere are	gn th . N e are use	ne L ote e no	IAR that pin y th	TT the ss	X0 a SP kipp eripl	and I ed hera	als
1 st TX0 is assigned to P0.4 2 nd RX0 is assigned to P0.5 3 rd SCK, MISO, MOSI, and NSS are assigned to P0.0, P0.1, P0.2, and P0.3, respectively. 4 th CEX0, CEX1, and CEX2 are assigned to P0.6, P0.7, and P1.0, respectively.																	
All unassigned pins can be used as GPIO or for other non-crossbar functions.																	
Notes: 1. P1.4-P1.7 a 2. NSS is only	are i / pir	not	ava d ou	ilab t wł	le oi nen	n 16 the	8-pir SPI	n pa is i	cka n 4-	ges wire	e mo	ode.					

Figure 23.5. Priority Crossbar Decoder Example 1—No Skipped Pins

SFR Definition 23.2. XBR1: Port I/O Crossbar Register 1

Bit	7	6	5	4	3	2	1	0	
Name	WEAKPUD	XBARE	T1E	T0E	ECIE		PCA0ME[1:0]		
Туре	R/W	R/W	R/W	R/W	R/W	R	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

SFR Address = 0xE2

Bit	Name	Function
7	WEAKPUD	Port I/O Weak Pullup Disable.
		0: Weak Pullups enabled (except for Ports whose I/O are configured for analog
		mode).
		1: Weak Pullups disabled.
6	XBARE	Crossbar Enable.
		0: Crossbar disabled.
		1: Crossbar enabled.
5	T1E	T1 Enable.
		0: T1 unavailable at Port pin.
		1: T1 routed to Port pin.
4	T0E	T0 Enable.
		0: T0 unavailable at Port pin.
		1: T0 routed to Port pin.
3	ECIE	PCA0 External Counter Input Enable.
		0: ECI unavailable at Port pin.
		1: ECI routed to Port pin.
2	Unused	Read = 0b; Write = Don't Care.
1:0	PCA0ME[1:0]	PCA Module I/O Enable Bits.
		00: All PCA I/O unavailable at Port pins.
		01: CEX0 routed to Port pin.
		10: CEX0, CEX1 routed to Port pins.
		11: CEX0, CEX1, CEX2 routed to Port pins.

SFR Definition 23.10. P0SKIP: Port 0 Skip

Bit	7	6	5	4	3	2	1	0					
Name	P0SKIP[7:0]												
Туре	R/W												
Reset	0	0	0	0	0	0	0	0					

SFR Address = 0xD4

Bit	Name	Function
7:0	P0SKIP[7:0]	Port 0 Crossbar Skip Enable Bits.
		 These bits select Port 0 pins to be skipped by the Crossbar Decoder. Port pins used for analog, special functions or GPIO should be skipped by the Crossbar. 0: Corresponding P0.n pin is not skipped by the Crossbar. 1: Corresponding P0.n pin is skipped by the Crossbar.

SFR Definition 23.11. P1: Port 1

Bit	7	6	5	4	3	2	1	0
Name	P1[7:0]							
Туре	R/W							
Reset	1	1	1	1	1	1	1	1

SFR Address = 0x90; Bit-Addressable

Bit	Name	Description	Write	Read
7:0	P1[7:0]	Port 1 Data. Sets the Port latch logic value or reads the Port pin logic state in Port cells con- figured for digital I/O. Note: P1.4–P1.7 are not available on 16-pin packages.	0: Set output latch to logic LOW. 1: Set output latch to logic HIGH.	0: P1.n Port pin is logic LOW. 1: P1.n Port pin is logic HIGH.

26.5.2. Read Sequence (Master)

During a read sequence, an SMBus master reads data from a slave device. The master in this transfer will be a transmitter during the address byte, and a receiver during all data bytes. The SMBus interface generates the START condition and transmits the first byte containing the address of the target slave and the data direction bit. In this case the data direction bit (R/W) will be logic 1 (READ). Serial data is then received from the slave on SDA while the SMBus outputs the serial clock. The slave transmits one or more bytes of serial data.

If hardware ACK generation is disabled, the ACKRQ is set to 1 and an interrupt is generated after each received byte. Software must write the ACK bit at that time to ACK or NACK the received byte.

With hardware ACK generation enabled, the SMBus hardware will automatically generate the ACK/NACK, and then post the interrupt. It is important to note that the appropriate ACK or NACK value should be set up by the software prior to receiving the byte when hardware ACK generation is enabled.

Writing a 1 to the ACK bit generates an ACK; writing a 0 generates a NACK. Software should write a 0 to the ACK bit for the last data transfer, to transmit a NACK. The interface exits Master Receiver Mode after the STO bit is set and a STOP is generated. The interface will switch to Master Transmitter Mode if SMB0-DAT is written while an active Master Receiver. Figure 26.6 shows a typical master read sequence. Two received data bytes are shown, though any number of bytes may be received. Notice that the 'data byte transferred' interrupts occur at different places in the sequence, depending on whether hardware ACK generation is enabled. The interrupt occurs **before** the ACK with hardware ACK generation disabled, and **after** the ACK when hardware ACK generation is enabled.

Figure 26.6. Typical Master Read Sequence

27.1. Enhanced Baud Rate Generation

The UART0 baud rate is generated by Timer 1 in 8-bit auto-reload mode. The TX clock is generated by TL1; the RX clock is generated by a copy of TL1 (shown as RX Timer in Figure 27.2), which is not useraccessible. Both TX and RX Timer overflows are divided by two to generate the TX and RX baud rates. The RX Timer runs when Timer 1 is enabled, and uses the same reload value (TH1). However, an RX Timer reload is forced when a START condition is detected on the RX pin. This allows a receive to begin any time a START is detected, independent of the TX Timer state.

Figure 27.2. UART0 Baud Rate Logic

Timer 1 should be configured for Mode 2, 8-bit auto-reload (see Section "28.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload" on page 212). The Timer 1 reload value should be set so that overflows will occur at two times the desired UART baud rate frequency. Note that Timer 1 may be clocked by one of six sources: SYSCLK, SYSCLK/4, SYSCLK/12, SYSCLK/48, the external oscillator clock/8, or an external input T1. For any given Timer 1 clock source, the UART0 baud rate is determined by Equation 27.1-A and Equation 27.1-B.

A) UartBaudRate =
$$\frac{1}{2} \times T1_Overflow_Rate$$

B) T1_Overflow_Rate = $\frac{T1_{CLK}}{256 - TH1}$

Equation 27.1. UART0 Baud Rate

Where $T1_{CLK}$ is the frequency of the clock supplied to Timer 1, and T1H is the high byte of Timer 1 (reload value). Timer 1 clock frequency is selected as described in Section "28. Timers" on page 209. A quick reference for typical baud rates and system clock frequencies is given in Table 27.1 through Table 27.2. The internal oscillator may still generate the system clock when the external oscillator is driving Timer 1.

SFR Definition 28.4. TL0: Timer 0 Low Byte

Bit	7	6	5	4	3	2	1	0
Nam	e	TL0[7:0]						
Туре	9	R/W						
Rese	et 0	0	0	0	0	0	0	0
SFR A	SFR Address = 0x8A							
Bit	Name	Function						
7:0	TL0[7:0]	Timer 0 Low Byte.						
		The TL0 register is the low byte of the 16-bit Timer 0.						

SFR Definition 28.5. TL1: Timer 1 Low Byte

Bit	7	6	5	4	3	2	1	0
Nam	ne TL1[7:0]							
Туре	•	R/W						
Rese	et 0	0	0	0	0	0	0	0
SFR Address = 0x8B								
Bit	Name		Function					
			D (

7:0	TL1[7:0]	Timer 1 Low Byte.
		The TL1 register is the low byte of the 16-bit Timer 1.

SFR Definition 28.11. TMR2L: Timer 2 Low Byte

Bit	7	6	5	4	3	2	1	0
Name	TMR2L[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0
SER Address - OxCC								

• • • • •								
Bit	Name	Function						
7:0	TMR2L[7:0]	Timer 2 Low Byte.						
		In 16-bit mode, the TMR2L register contains the low byte of the 16-bit Timer 2. In 8- bit mode, TMR2L contains the 8-bit low byte timer value.						

SFR Definition 28.12. TMR2H Timer 2 High Byte

Bit	7	6	5	4	3	2	1	0
Name	TMR2H[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xCD

Bit	Name	Function
7:0	TMR2H[7:0]	Timer 2 Low Byte.
		In 16-bit mode, the TMR2H register contains the high byte of the 16-bit Timer 2. In 8- bit mode, TMR2H contains the 8-bit high byte timer value.

